1
|
Gadanec LK, McSweeney KR, Kubatka P, Caprnda M, Gaspar L, Prosecky R, Dragasek J, Kruzliak P, Apostolopoulos V, Zulli A. Angiotensin II constricts mouse iliac arteries: possible mechanism for aortic aneurysms. Mol Cell Biochem 2024; 479:233-242. [PMID: 37027096 DOI: 10.1007/s11010-023-04724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Abdominal aortic aneurysms (AAA) result from maladaptive remodeling of the vascular wall and reduces structural integrity. Angiotensin II (AngII) infusion has become a standard laboratory model for studying AAA initiation and progression. We determined the different vasoactive responses of various mouse arteries to Ang II. Ex vivo isometric tension analysis was conducted on 18-week-old male C57BL/6 mice (n = 4) brachiocephalic arteries (BC), iliac arteries (IL), and abdominal (AA) and thoracic aorta (TA). Arterial rings were mounted between organ hooks, gently stretched and an AngII dose response was performed. Rings were placed in 4% paraformaldehyde for immunohistochemistry analysis to quantify peptide expression of angiotensin type 1 (AT1R) and 2 receptors (AT2R) in the endothelium, media, and adventitia. Results from this study demonstrated vasoconstriction responses in IL were significantly higher at all AngII doses when compared to BC, and TA and AA responses (maximum constriction-IL: 68.64 ± 5.47% vs. BC: 1.96 ± 1.00%; TA: 3.13 ± 0.16% and AA: 2.75 ± 1.77%, p < 0.0001). Expression of AT1R was highest in the endothelium of IL (p < 0.05) and in the media and (p < 0.05) adventitia (p < 0.05) of AA. In contrast, AT2R expression was highest in endothelium (p < 0.05), media (p < 0.01, p < 0.05) and adventitia of TA. These results suggest that mouse arteries display different vasoactive responses to AngII, and the exaggerated response in IL arteries may play a role during AAA development.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia.
| | - Kristen Renee McSweeney
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne'S University Hospital, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Jozef Dragasek
- Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, Melbourne, VIC, 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Werribee Camous, Melbourne, VIC, 3030, Australia.
| |
Collapse
|
2
|
Estradiol Supplement or Induced Hypertension May Attenuate the Angiotensin II Type 1 Receptor Antagonist-Promoted Renal Blood Flow Response to Graded Angiotensin II Administration in Ovariectomized Rats. J Renin Angiotensin Aldosterone Syst 2022; 2022:3223008. [PMID: 35859805 PMCID: PMC9270140 DOI: 10.1155/2022/3223008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Backgrounds. Estrogen replacement therapy (ERT) and hypertension may influence females’ renin-angiotensin system (RAS) and its components. The angiotensin II (Ang II) type 1 receptor (AT1R) antagonist (losartan) may promote renal blood flow (RBF), and it is widely used in the clinic to control hypertension. The main objective of this study was the effects of estradiol or induced hypertension on RBF response to Ang II in losartan-treated ovariectomized (OVX) rats. Methods. Two groups of OVX rats were treated with placebo (group 1) and estradiol (group 2) for period of four weeks, and another group of OVX rats was subjected to induce hypertension by two-kidney one clip (2K1C) model (group 3). All the groups were subjected to the surgical procedure under anesthesia, and AT1R was blocked by losartan. RBF and renal vascular resistance (RVR) responses to Ang II administration were determined and compared. Results. Mean arterial (MAP) and renal perfusion (RPP) pressures in group 3 and uterus weight (UT) in group 2 were significantly more than other groups (
). Ang II infusion resulted in dose-related percentage change increase in RBF and decrease in RVR. However, these responses in the OVX-estradiol and OVX-hypertensive rats were significantly lower than in the OVX-control group (
). For instance, at the dose of 1000 ng/kg/min of Ang II administration, the percentage change of RBF was
,
, and
in the groups of 1 to 3, respectively. Conclusion. Losartan prescription in some conditions such as hypertension or ERT could worsen RBF and RVR responses to Ang II.
Collapse
|
3
|
Increased AT 2R expression is induced by AT 1R autoantibody via two axes, Klf-5/IRF-1 and circErbB4/miR-29a-5p, to promote VSMC migration. Cell Death Dis 2020; 11:432. [PMID: 32514012 PMCID: PMC7280191 DOI: 10.1038/s41419-020-2643-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Vascular remodeling can be caused by angiotensin II type 1 receptor (AT1R) autoantibody (AT1-AA), although the related mechanism remains unknown. Angiotensin II type 2 receptor (AT2R) plays multiple roles in vascular remodeling through cross-talk with AT1R in the cytoplasm. Here, we aimed to explore the role and mechanism of AT2R in AT1-AA-induced vascular smooth muscle cell (VSMC) migration, which is a key event in vascular remodeling. In vitro and in vivo, we found that AT2R can promote VSMC migration in AT1-AA-induced vascular remodeling. Moreover, AT2R expression was upregulated via Klf-5/IRF-1-mediated transcriptional and circErbB4/miR-29a-5p-mediated posttranscriptional mechanisms in response to AT1-AA. Our data provide a molecular basis for AT1-AA-induced AT2R expression by transcription factors, namely, a circular RNA and a microRNA, and showed that AT2R participated in AT1-AA-induced VSMC migration during the development of vascular remodeling. AT2R may be a potential target for the treatment of AT1-AA-induced vascular diseases.
Collapse
|
4
|
Shieh E, Marzinke MA, Fuchs EJ, Hamlin A, Bakshi R, Aung W, Breakey J, Poteat T, Brown T, Bumpus NN, Hendrix CW. Transgender women on oral HIV pre-exposure prophylaxis have significantly lower tenofovir and emtricitabine concentrations when also taking oestrogen when compared to cisgender men. J Int AIDS Soc 2019; 22:e25405. [PMID: 31692269 PMCID: PMC6832671 DOI: 10.1002/jia2.25405] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Oral HIV Pre-Exposure Prophylaxis (PrEP) with tenofovir (TFV) disoproxil fumarate (TDF)/emtricitabine (FTC) is highly effective. Transgender women (TGW) have increased HIV risk, but have been underrepresented in trials. For TGW on oestrogens for gender-affirming hormone treatment (GAHT), TDF/FTC-oestrogen interactions may negatively affect HIV prevention or gender-affirming goals. Our aim was to evaluate any pharmacokinetic drug-drug interaction between GAHT and TDF/FTC. METHODS We performed a pharmacokinetic study, in an urban outpatient setting in 2016 to 2018, of the effects of GAHT on TFV, FTC and the active forms TFV diphosphate (TFV-DP) and FTC triphosphate (FTC-TP) in eight TGW and eight cisgender men (CGM). At screening, participants were HIV negative. TGW were to maintain their GAHT regimens and have plasma oestradiol concentrations >100 pg/mL. Under direct observation, participants took oral TDF/FTC daily for seven days. At the last dose, blood was collected pre-dose, one, two, four, six, eight and twenty-four hours, and colon biopsies were collected at 24 hours to measure drug concentration. TGW versus CGM concentration comparisons used non-parametric tests. Blood and colon tissue were also obtained to assess kinase expression. RESULTS Plasma TFV and FTC C24 (trough) concentrations in TGW were lower by 32% (p = 0.010) and 32% (p = 0.038) respectively, when compared to CGM. Plasma TFV and FTC 24-hr area under the concentration-time curve in TGW trended toward and was significantly lower by 27% (p = 0.065) and 24% (p = 0.028) respectively. Peak plasma TFV and FTC concentrations, as well as all other pharmacokinetic measures, were not statistically significant when comparing TGW to CGM. Oestradiol concentrations were not different comparing before and after TDF/FTC dosing. Plasma oestrogen concentration, renal function (estimated creatinine clearance and glomerular filtration rate), and TFV and FTC plasma concentrations (trough and area under the concentration-time curve) were all correlated. CONCLUSIONS GAHT modestly reduces both TFV and FTC plasma concentrations. In TGW taking GAHT, it is unknown if this reduction will impact the HIV protective efficacy of a daily PrEP regimen. However, the combination of an on demand (2 + 1 + 1) PrEP regimen and GAHT may result in concentrations too low for reliable prevention of HIV infection.
Collapse
Affiliation(s)
- Eugenie Shieh
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mark A Marzinke
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Edward J Fuchs
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Allyson Hamlin
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rahul Bakshi
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Wutyi Aung
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jennifer Breakey
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tonia Poteat
- Department of Social MedicineUniversity of North Carolina Chapel HillChapel HillNorth CarolinaUSA
| | - Todd Brown
- Department of Medicine (Endocrinology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Namandjé N Bumpus
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Craig W Hendrix
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
5
|
High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism. Adv Pharmacol Sci 2015; 2015:682745. [PMID: 26681937 PMCID: PMC4670851 DOI: 10.1155/2015/682745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023] Open
Abstract
Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R-) mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week) for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min) were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF) decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by 45.7 ± 1.9% in estradiol-treated rats but only by 27.3 ± 5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen.
Collapse
|
6
|
Verdonk K, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor agonists: where should they be applied? Expert Opin Investig Drugs 2012; 21:501-13. [PMID: 22348403 DOI: 10.1517/13543784.2012.664131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Angiotensin II, the active endproduct of the renin-angiotensin system (RAS), exerts its effects via angiotensin II type 1 and type 2 (AT(1), AT(2)) receptors. AT(1) receptors mediate all well-known effects of angiotensin II, ranging from vasoconstriction to tissue remodeling. Thus, to treat cardiovascular disease, RAS blockade aims at preventing angiotensin II-AT(1) receptor interaction. Yet RAS blockade is often accompanied by rises in angiotensin II, which may exert beneficial effects via AT(2) receptors. AREAS COVERED This review summarizes our current knowledge on AT(2) receptors, describing their location, function(s), endogenous agonist(s) and intracellular signaling cascades. It discusses the beneficial effects obtained with C21, a recently developed AT(2) receptor agonist. Important questions that are addressed are do these receptors truly antagonize AT(1) receptor-mediated effects? What about their role in the diseased state and their heterodimerization with other receptors? EXPERT OPINION The general view that AT(2) receptors exclusively exert beneficial effects has been challenged, and in pathological models, their function sometimes mimics that of AT(1) receptors, for example, inducing vasoconstriction and cardiac hypertrophy. Yet given its upregulation in various pathological conditions, the AT(2) receptor remains a promising target for treatment, allowing effects beyond blood pressure-lowering, for example, in stroke, aneurysm formation, inflammation and myocardial fibrosis.
Collapse
Affiliation(s)
- Koen Verdonk
- Erasmus Medical Center, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Moltzer E, Essers J, van Esch JHM, Roos-Hesselink JW, Danser AHJ. The role of the renin-angiotensin system in thoracic aortic aneurysms: clinical implications. Pharmacol Ther 2011; 131:50-60. [PMID: 21504760 DOI: 10.1016/j.pharmthera.2011.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 03/26/2011] [Indexed: 01/06/2023]
Abstract
Thoracic aortic aneurysms (TAAs) are a potential life-threatening disease with limited pharmacological treatment options. Current treatment options are aimed at lowering aortic hemodynamic stress, predominantly with β-adrenoceptor blockers. Increasing evidence supports a role for the renin-angiotensin system (RAS) in aneurysm development. RAS blockade would not only lower blood pressure, but might also target the molecular pathways involved in aneurysm formation, in particular the transforming growth factor-β and extracellular signal-regulated kinase 1/2 pathways. Indeed, the angiotensin II type 1 (AT₁) receptor blocker losartan was effective in lowering aortic root growth in mice and patients with Marfan's syndrome. RAS inhibition (currently possible at 3 levels, i.e. renin, ACE and the AT₁ receptor) is always accompanied by a rise in renin due to interference with the negative feedback loop between renin and angiotensin II. Only during AT₁ receptor blockade will this result in stimulation of the non-blocked angiotensin II type 2 (AT₂) receptor. This review summarizes the clinical aspects of TAAs, provides an overview of the current mouse models for TAAs, and focuses on the RAS as a new target for TAA treatment, discussing in particular the possibility that AT₂ receptor stimulation might be crucial in this regard. If true, this would imply that AT₁ receptor blockers (and not ACE inhibitors or renin inhibitors) should be the preferred treatment option for TAAs.
Collapse
Affiliation(s)
- Els Moltzer
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Moltzer E, Verkuil AV, van Veghel R, Danser AHJ, van Esch JH. Effects of Angiotensin Metabolites in the Coronary Vascular Bed of the Spontaneously Hypertensive Rat. Hypertension 2010; 55:516-22. [DOI: 10.1161/hypertensionaha.109.145037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Els Moltzer
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anna V.A. Verkuil
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H.M. van Esch
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol 2010; 37:e58-69. [DOI: 10.1111/j.1440-1681.2009.05233.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
11
|
Abstract
Nitric oxide (NO) has multiple protective effects for regulating the cardiovascular and renal systems. The major functions include endothelium-dependent relaxation, anti-inflammatory effects, as well as antihypertrophic and antithrombotic activities. Many of the activities mediated by NO are systematically antagonized by angiotensin-II (Ang II), a vasconstrictor peptide. Studies described in the review below have demonstrated that the balance between NO and Ang II activities rather than the absolute concentration of each molecule determines their effects on the physiology and pathophysiology of the cardiovascular and renal systems. NO donors have been used for years as therapeutic agents for a range of cardiovascular conditions including angina, myocardial infarction and for the reduction of arterial stiffness. An understanding of the mechanisms underlying the effects of these medications will enable the development of novel therapies to balance the effects of NO in the cardiovascular system.
Collapse
Affiliation(s)
- Leopoldo Raij
- Nephrology/Hypertension Division, University of Miami, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
12
|
Palm F, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension 2007; 51:345-51. [PMID: 18158356 DOI: 10.1161/hypertensionaha.107.097832] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) decrease the glomerular filtration rate and renal blood flow in the clipped kidneys of early 2-kidney, 1-clip Goldblatt hypertensive rats, but the consequences for oxygenation are unclear. We investigated the hypothesis that angiotensin II type 1 or angiotensin II type 2 receptors or NO synthase mediate renal oxygenation responses to ACEI. Three weeks after left renal artery clipping, kidney function, oxygen (O(2)) use, renal blood flow, renal cortical blood flow, and renal cortical oxygen tension (Po(2)) were measured after acute administration of an ACEI (enalaprilat) and after acute administration of ACEI following acute administration of an angiotensin II type 1 or angiotensin II type 2 receptor blocker (candesartan or PD-123,319) or an NO synthase blocker (N(G)-nitro-L-arginine methyl ester with control of renal perfusion pressure) and compared with mechanical reduction in renal perfusion pressure to the levels after ACEI. The basal renal cortical Po(2) of clipped kidneys was significantly lower than contralateral kidneys (35+/-1 versus 51+/-1 mm Hg; n=40 each). ACEI lowered renal venous Po(2), cortical Po(2), renal blood flow, glomerular filtration rate, and cortical blood flow and increased the renal vascular resistance in the clipped kidney, whereas mechanical reduction in renal perfusion pressure was ineffective. PD-123,319 and N(G)-nitro-L-arginine methyl ester, but not candesartan, reduced the Po(2) of clipped kidneys and blocked the fall in Po(2) with acute ACEI administration. In conclusion, oxygen availability in the clipped kidney is maintained by angiotensin II generation, angiotensin II type 2 receptors, and NO synthase. This discloses a novel mechanism whereby angiotensin can prevent hypoxia in a kidney challenged with a reduced perfusion pressure.
Collapse
Affiliation(s)
- Fredrik Palm
- Division of Nephrology and Hypertension, Cardiovascular Kidney Hypertension Institute, Georgetown University, 3800 Reservoir Rd, NW, PHC F6003, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
13
|
Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE. Role of the angiotensin II type-2 receptor in radiation nephropathy. Transl Res 2007; 150:106-15. [PMID: 17656330 PMCID: PMC2034340 DOI: 10.1016/j.trsl.2007.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 01/08/2023]
Abstract
Experimental studies have shown that blockade of the angiotensin II type-1 (AT(1)) receptor is effective in the mitigation and treatment of radiation-induced chronic renal failure. Also, blockade of the angiotensin II type-2 (AT(2)) receptor with PD-123319 also had a modest, but reproducible, beneficial effect in experimental radiation nephropathy, and it might augment the efficacy of an AT(1) blocker (L-158,809). Those studies could not exclude the possibility that the effects of AT(2) blockade were nonspecific. The current studies confirm the efficacy of AT(2) blockade for mitigation of experimental radiation nephropathy but paradoxically find no detectable level of AT(2) receptor binding in renal membranes. However, the results of a bioassay showed that the circulating levels of the AT(2) blocker were orders-of-magnitude too low to block AT(1) receptors. The effect of AT(2) blockade in radiation nephropathy cannot be explained by binding to the AT(1) receptor, and the efficacy of the AT(1) blockade in the same model cannot be explained by unopposed overstimulation of the AT(2) receptor.
Collapse
Affiliation(s)
- Eric P Cohen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
14
|
Toda N, Ayajiki K, Okamura T. Interaction of Endothelial Nitric Oxide and Angiotensin in the Circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The balance of angiotensin II and nitric oxide determines the sensitivity of the tubuloglomerular feedback mechanism, renal vascular resistance and filtration rate. Angiotensin II induces nitric oxide release, but the role of angiotensin II receptors here is not fully understood. Further, the angiotensin II-nitric oxide interaction can be modulated by reactive oxygen species. This review focuses on the angiotensin II-nitric oxide interaction and their modulation by reactive oxygen species in the control of renal blood flow. RECENT FINDINGS Ideas about the role of angiotensin II type 1 and angiotensin II type 2 receptors are extended by the observation of angiotensin II type 1-mediated nitric oxide release with direct effects on vascular tone, tubuloglomerular feedback and sympathetic neurotransmission. Angiotensin receptors elicit disparate effects on intrarenal circulation. Angiotensin II-nitric oxide interactions are modulated by reactive oxygen species, as shown by angiotensin II type 1-mediated activation of superoxide and depression of antioxidant enzymes leading to reduced nitric oxide concentration - mechanisms that may be also important in angiotensin II-dependent hypertension. SUMMARY Recent studies show that angiotensin II stimulates the nitric oxide system via angiotensin II type 1 and angiotensin II type 2 receptors, whereas receptors exert different effects on renal and medullary flow. The interaction via angiotensin II type 1 is modulated by reactive oxygen species.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
16
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:52-7. [PMID: 17143072 DOI: 10.1097/mnh.0b013e32801271d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Esch JHV, Danser AJ. Local Angiotensin Generation and AT2 Receptor Activation. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7119946 DOI: 10.1007/978-1-4020-6372-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Rajapakse NW, Eppel GA, Widdop RE, Evans RG. ANG II type 2 receptors and neural control of intrarenal blood flow. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1669-76. [PMID: 16857892 DOI: 10.1152/ajpregu.00183.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that activation of angiotensin type 2 (AT(2)) receptors, by both exogenous and endogenous ANG II, modulates neurally mediated vasoconstriction in the renal cortical and medullary circulations. Under control conditions in pentobarbital-anesthetized rabbits, electrical stimulation of the renal nerves (RNS; 0.5-8 Hz) reduced renal blood flow (RBF; -88 +/- 3% at 8 Hz) and cortical perfusion (CBF; -92 +/- 2% at 8 Hz) more than medullary perfusion (MBF; -67 +/- 6% at 8 Hz). Renal arterial infusion of ANG II, at a dose titrated to reduce RBF by approximately 40-50% (5-50 ng.kg(-1).min(-1)) blunted responses of MBF to RNS, without significantly affecting responses of RBF or CBF. Subsequent administration of PD123319 (1 mg/kg plus 1 mg.kg(-1).h(-1)) during continued renal arterial infusion of ANG II did not significantly affect responses of RBF or CBF to RNS but enhanced responses of MBF, so that they were similar to those observed under control conditions. In contrast, administration of PD123319 alone blunted responses of CBF and MBF to RNS. Subsequent renal arterial infusion of ANG II in PD123319-pretreated rabbits restored CBF responses to RNS back to control levels. In contrast, ANG II infusion in PD123319-pretreated rabbits did not alter MBF responses to RNS. These data indicate that exogenous ANG II can blunt neurally mediated vasoconstriction in the medullary circulation through activation of AT(2) receptors. However, AT(2)-receptor activation by endogenous ANG II appears to enhance neurally mediated vasoconstriction in both the cortical and medullary circulations.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Department of Physiology, Monash University, Melbourne 3800, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
O'Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol 2005; 290:F688-94. [PMID: 16219913 DOI: 10.1152/ajprenal.00275.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the current study was to determine whether renal medullary oxygenation is independent of the level of cortical blood flow by testing responses to stimuli that selectively reduce blood flow in either the cortex or medulla. In anesthetized rabbits, renal arterial infusion of [Phe(2),Ile(3),Orn(8)]-vasopressin selectively reduced medullary perfusion and Po(2) (-54 +/- 24 and -50 +/- 10%, respectively) but did not significantly affect cortical perfusion or tissue oxygenation. In contrast, stimulation of the renal nerves resulted in renal cortical ischemia with reductions in total renal blood flow (-76 +/- 3% at 4 Hz), cortical perfusion (-57 +/- 17%), and cortical Po(2) (-44 +/- 12%). Medullary tissue Po(2) was reduced by -70 +/- 5% at 4 Hz, despite medullary perfusion being unaffected and distal tubular sodium reabsorption being reduced (by -83.3 +/- 1.2% from baseline). In anesthetized rats, in which renal perfusion pressure was maintained with an aortic constrictor, intravenous infusion of ANG II (0.5-5 microg. kg(-1).min(-1)) dose dependently reduced cortical perfusion (up to -65 +/- 3%; P < 0.001) and cortical Po(2) (up to -57 +/- 4%; P < 0.05). However, medullary perfusion was only significantly reduced at the highest dose (5 microg. kg(-1).min(-1); by 29 +/- 6%). Medullary perfusion was not reduced by 1 microg. kg(-1).min(-1) ANG II, but medullary Po(2) was significantly reduced (-12 +/- 4%). Thus, although cortical and medullary blood flow may be independently regulated, medullary oxygenation may be compromised during moderate to severe cortical ischemia even when medullary blood flow is maintained.
Collapse
Affiliation(s)
- Paul M O'Connor
- Dept. of Physiology, Medical College of Wisconsin, 8071 Watertown Plank Road, Milwaukee, WI 53266, USA.
| | | | | | | |
Collapse
|
20
|
Rajapakse NW, Sampson AK, Eppel GA, Evans RG. Angiotensin II and nitric oxide in neural control of intrarenal blood flow. Am J Physiol Regul Integr Comp Physiol 2005; 289:R745-54. [PMID: 15890788 DOI: 10.1152/ajpregu.00477.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the roles of the renin-angiotensin system and the significance of interactions between angiotensin II and nitric oxide, in responses of regional kidney perfusion to electrical renal nerve stimulation (RNS) in pentobarbital sodium-anesthetized rabbits. Under control conditions, RNS (0.5–8 Hz) reduced total renal blood flow (RBF; −89 ± 3% at 8 Hz) and cortical perfusion (CBF; −90 ± 2% at 8 Hz) more than medullary perfusion (MBF; −55 ± 5% at 8 Hz). Angiotensin II type 1 (AT1)-receptor antagonism (candesartan) blunted RNS-induced reductions in RBF ( P = 0.03), CBF ( P = 0.007), and MBF ( P = 0.04), particularly at 4 and 8 Hz. Nitric oxide synthase inhibition with NG-nitro-l-arginine (l-NNA) enhanced RBF ( P = 0.003), CBF ( P = 0.001), and MBF ( P = 0.03) responses to RNS, particularly at frequencies of 2 Hz and less. After candesartan pretreatment, l-NNA significantly enhanced RNS-induced reductions in RBF ( P = 0.04) and CBF ( P = 0.007) but not MBF ( P = 0.66). Renal arterial infusion of angiotensin II (5 ng·kg−1·min−1) selectively enhanced responses of MBF to RNS in l-NNA-pretreated but not in vehicle-pretreated rabbits. In contrast, greater doses of angiotensin II (5–15 ng·kg−1·min−1) blunted responses of MBF to RNS in rabbits with intact nitric oxide synthase. These results suggest that endogenous angiotensin II enhances, whereas nitric oxide blunts, neurally mediated vasoconstriction in the renal cortical and medullary circulations. In the renal medulla, but not the cortex, angiotensin II also appears to be able to blunt neurally mediated vasoconstriction.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Dept. of Physiology, PO Box 13F, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | |
Collapse
|
21
|
Duke LM, Evans RG, Widdop RE. AT2 receptors contribute to acute blood pressure-lowering and vasodilator effects of AT1 receptor antagonism in conscious normotensive but not hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 288:H2289-97. [PMID: 15615839 DOI: 10.1152/ajpheart.01096.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to determine the contribution of the AT2 receptor to the antihypertensive and regional vasodilatory effects of AT1 receptor blockade in adult spontaneously hypertensive rats (SHR), 2-kidney, 1-clip hypertensive (2K1C) rats, and sham-operated normotensive rats. Several studies have provided evidence to support the notion that the AT2 receptor may have opposing effects to those mediated by the AT1 receptor. We therefore tested the hypothesis that the depressor and vasodilator effects of acute AT1 receptor blockade are dependent on AT2 receptor activation. Heart rate, mean arterial pressure, and regional hemodynamics were measured over a 4-day protocol in rats that received the following treatments in randomized order: saline vehicle, the AT1 receptor antagonist candesartan (0.1 mg/kg iv bolus), the AT2 receptor antagonist PD-123319 (50 μg·kg−1·min−1), or both antagonists. Intravenous candesartan reduced mean arterial pressure in all groups of rats, and this was accompanied by renal and mesenteric vasodilation. Neither saline nor PD-123319 significantly affected these variables. Concomitant PD-123319 administration partially reversed the depressor and mesenteric vasodilator effects of candesartan in sham-operated normotensive rats but not in SHR or 2K1C rats. These data indicate that the AT2 receptor contributes to the blood pressure-lowering and mesenteric vasodilator effects of AT1 receptor blockade in the acute setting in conscious normotensive but not hypertensive rats.
Collapse
Affiliation(s)
- Lisa M Duke
- Department of Physiology, Monash University, Victoria, Australia
| | | | | |
Collapse
|