1
|
Ma T, Wang YY, Lu Y, Feng L, Yang YT, Li GH, Li C, Chu Y, Wang W, Zhang H. Inhibition of Piezo1/Ca 2+/calpain signaling in the rat basal forebrain reverses sleep deprivation-induced fear memory impairments. Behav Brain Res 2022; 417:113594. [PMID: 34560129 DOI: 10.1016/j.bbr.2021.113594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
In this study, we tested the hypothesis that the Piezo1/Ca2+/calpain pathway of the basal forebrain (BF) modulates impaired fear conditioning caused by sleep deprivation. Adult male Wistar rats were subjected to 6 h of total sleep deprivation using the gentle handling protocol. Step-down inhibitory avoidance tests revealed that sleep deprivation induced substantial short- and long-term fear memory impairment in rats, which was accompanied by increased Piezo1 protein expression (P < 0.01) and increased cleavage of full-length tropomyocin receptor kinase B (TrkB-FL) (P < 0.01) in the BF area. Microinjection of the Piezo1 activator Yoda1 into the BF mimicked these sleep deprivation-induced phenomena; TrkB-FL cleavage was increased (P < 0.01) and short- and long-term fear memory was impaired (both P < 0.01) by Yoda1. Inhibition of Piezo1 by GsMTx4 in the BF area reduced TrkB-FL degradation (P < 0.01) and partially reversed short- and long-term fear memory impairments in sleep-deprived rats (both P < 0.01). Inhibition of calpain activation, downstream of Piezo1 signaling, also improved short- and long-term fear memory impairments (P = 0.038, P = 0.011) and reduced TrkB degradation (P < 0.01) in sleep-deprived rats. Moreover, sleep deprivation induced a lower pain threshold than the rest control, which was partly reversed by microinjection of GsMTx4 or PD151746. Neither sleep deprivation nor the abovementioned drugs affected locomotion and sedation. Taken together, these results indicate that BF Piezo1/Ca2+/calpain signaling plays a role in sleep deprivation-induced TrkB signaling disruption and fear memory impairments in rats.
Collapse
Affiliation(s)
- Tao Ma
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ying-Ying Wang
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Lu
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Long Feng
- Department of Anesthesiology, PLA general hospital of Hainan Hospital, Hainan 572013, China
| | - Yi-Tian Yang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Guan-Hua Li
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Chi Li
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Yang Chu
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Wei Wang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China.
| | - Hao Zhang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China.
| |
Collapse
|
2
|
Yu Q, Zhao MW, Yang P. LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochem Res 2020; 45:783-795. [DOI: 10.1007/s11064-019-02952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/01/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
3
|
Uliassi E, Peña-Altamira LE, Morales AV, Massenzio F, Petralla S, Rossi M, Roberti M, Martinez Gonzalez L, Martinez A, Monti B, Bolognesi ML. A Focused Library of Psychotropic Analogues with Neuroprotective and Neuroregenerative Potential. ACS Chem Neurosci 2019; 10:279-294. [PMID: 30253086 DOI: 10.1021/acschemneuro.8b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overcoming the lack of effective treatments and the continuous clinical trial failures in neurodegenerative drug discovery might require a shift from the prevailing paradigm targeting pathogenesis to the one targeting simultaneously neuroprotection and neuroregeneration. In the studies reported herein, we sought to identify small molecules that might exert neuroprotective and neuroregenerative potential as tools against neurodegenerative diseases. In doing so, we started from the reported neuroprotective/neuroregenerative mechanisms of psychotropic drugs featuring a tricyclic alkylamine scaffold. Thus, we designed a focused-chemical library of 36 entries aimed at exploring the structural requirements for efficient neuroprotective/neuroregenerative cellular activity, without the manifestation of toxicity. To this aim, we developed a synthetic protocol, which overcame the limited applicability of previously reported procedures. Next, we evaluated the synthesized compounds through a phenotypic screening pipeline, based on primary neuronal systems. Phenothiazine 2Bc showed improved neuroregenerative and neuroprotective properties with respect to reference drug desipramine (2Aa). Importantly, we have also shown that 2Bc outperformed currently available drugs in cell models of Alzheimer's and Parkinson's diseases and attenuates microglial activation by reducing iNOS expression.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Luis Emiliano Peña-Altamira
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Aixa V. Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid 28002, Spain
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Loreto Martinez Gonzalez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Ana Martinez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
4
|
Tamtaji OR, Mirhosseini N, Reiter RJ, Behnamfar M, Asemi Z. Melatonin and pancreatic cancer: Current knowledge and future perspectives. J Cell Physiol 2018; 234:5372-5378. [PMID: 30229898 DOI: 10.1002/jcp.27372] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, Texas
| | - Morteza Behnamfar
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Hu S, Mak S, Zuo X, Li H, Wang Y, Han Y. Neuroprotection Against MPP +-Induced Cytotoxicity Through the Activation of PI3-K/Akt/GSK3β/MEF2D Signaling Pathway by Rhynchophylline, the Major Tetracyclic Oxindole Alkaloid Isolated From Uncaria rhynchophylla. Front Pharmacol 2018; 9:768. [PMID: 30072894 PMCID: PMC6060423 DOI: 10.3389/fphar.2018.00768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Rhynchophylline is a major tetracyclic oxindole alkaloid in Uncaria rhynchophylla, which has been extensively used as traditional herb medicine for the prevention of convulsions and hypertension. However, there is still little evidence about the neuroprotective effects of rhynchophylline for Parkinson’s disease (PD), a neurodegenerative condition currently without any effective cure. In this present study, the neuroprotective molecular mechanisms of rhynchophylline were investigated in a cellular model associated with PD. It is shown that rhynchophylline (10–50 μM) greatly prevented neurotoxicity caused by 1-methyl-4-phenylpyridinium ion (MPP+) in primary cerebellar granule neurons, as evidenced by the promotion of cell viability as well as the reversal of dysregulated protein expression of Bax/Bcl-2 ratio. Very encouragingly, we found that rhynchophylline markedly enhanced the activity of the transcription factor myocyte enhancer factor 2D (MEF2D) at both basal and pathological conditions using luciferase reporter gene assay, and reversed the inhibition of MEF2D caused by MPP+. Additionally, pharmacological inhibition of PI3-Kinase or short hairpin RNA-mediated gene down-regulation of MEF2D abrogated the protection provided by rhynchophylline. Furthermore, Western blot analysis revealed that rhynchophylline could potentiate PI3-K/Akt to attenuate GSK3β (the MEF2D inhibitor) in response to MPP+ insult. In conclusion, rhynchophylline inhibits MPP+-triggered neurotoxicity by stimulating MEF2D via activating PI3-K/Akt/GSK3β cascade. Rhynchophylline is served as a novel MEF2D enhancer and might be a potential candidate for further preclinical study in the prevention of PD.
Collapse
Affiliation(s)
- Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xialin Zuo
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Haitao Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
6
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
7
|
Guida N, Laudati G, Mascolo L, Cuomo O, Anzilotti S, Sirabella R, Santopaolo M, Galgani M, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. MC1568 Inhibits Thimerosal-Induced Apoptotic Cell Death by Preventing HDAC4 Up-Regulation in Neuronal Cells and in Rat Prefrontal Cortex. Toxicol Sci 2016; 154:227-240. [PMID: 27660204 DOI: 10.1093/toxsci/kfw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons. Interestingly, we found that thimerosal, at 0.5 μM in SH-SY5Y cells and at 1 μM in neurons, caused cell death by activation of apoptosis, which was prevented by the HDAC class IIA inhibitor MC1568 but not the class I inhibitor MS275. Furthermore, thimerosal specifically increased HDAC4 protein expression but not that of HDACs 5, 6, 7, and 9. Western blot analysis revealed that MC1568 prevented thimerosal-induced HDAC4 increase. In addition, both HDAC4 knocking-down and MC1568 inhibited thimerosal-induced cell death in SH-SY5Y cells and cortical neurons. Importantly, intramuscular injection of 12 μg/kg thimerosal on postnatal days 7, 9, 11, and 15 increased HDAC4 levels in the prefrontal cortex (PFC), which decreased histone H4 acetylation in infant male rats, in parallel increased motor activity changes. In addition, coadministration of 40 mg/kg MC1568 (intraperitoneal injection) moderated the HDAC4 increase which reduced histone H4 deacetylation and caspase-3 cleavage in the PFC. Finally, open-field testing showed that thimerosal-induced motor activity changes are reduced by MC1568. These findings indicate that HDAC4 regulates thimerosal-induced cell death in neurons and that treatment with MC1568 prevents thimerosal-induced activation of caspase-3 in the rat PFC.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy
| | | | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy
| | - Marianna Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" Napoli, Naples 80131, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | - Paolo Montuori
- Department of Preventive Medical Sciences, University Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples 80131, Italy .,Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| |
Collapse
|
8
|
Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 2015; 11:297-310. [PMID: 25709452 PMCID: PMC4327398 DOI: 10.2147/ndt.s78226] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysegul Yildiz-Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey
| | - Sirin Korulu
- Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
9
|
Kumar P, Choonara YE, Pillay V. In silico affinity profiling of neuroactive polyphenols for post-traumatic calpain inactivation: a molecular docking and atomistic simulation sensitivity analysis. Molecules 2014; 20:135-68. [PMID: 25546626 PMCID: PMC6272800 DOI: 10.3390/molecules20010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation and inhibition site recognition. Subsequently, two natural neuroactive polyphenols, curcumin and quercetin, were tested for their sensitivity and activity towards calpain's proteolytic sequence and compared with the known calpain inhibitors via detailed molecular mechanics (MM), molecular dynamics (MD), and docking simulations. The MM and MD energy profiles (SJA6017 < AK275 < AK295 < PD151746 < quercetin < leupeptin < PD150606 < curcumin < ALLN < ALLM < MDL-28170 < calpeptin) and the docking analysis (AK275 < AK295 < PD151746 < ALLN < PD150606 < curcumin < leupeptin < quercetin < calpeptin < SJA6017 < MDL-28170 < ALLM) demonstrated that polyphenols conferred comparable calpain inhibition profiling. The modeling paradigm used in this study provides the first detailed account of corroboration of enzyme inhibition efficacy of calpain inhibitors and the respective calpain-calpain inhibitor molecular complexes' energetic landscape and in addition stimulates the polyphenol bioactive paradigm for post-SCI intervention with implications reaching to experimental in vitro, in cyto, and in vivo studies.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
10
|
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure. Int J Radiat Biol 2013; 89:976-84. [DOI: 10.3109/09553002.2013.817699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Weber H, Müller L, Jonas L, Schult C, Sparmann G, Schuff-Werner P. Calpain mediates caspase-dependent apoptosis initiated by hydrogen peroxide in pancreatic acinar AR42J cells. Free Radic Res 2013; 47:432-46. [PMID: 23495712 DOI: 10.3109/10715762.2013.785633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several studies have shown that oxidative stress induces apoptosis in many cellular systems including pancreatic acinar cells. However, the exact molecular mechanisms leading to apoptosis remain partially understood. This study aimed to investigate the role of the cytosolic cysteine protease calpain in H2O2-induced apoptosis in pancreatic AR42J cells. Apoptosis was evaluated using flow cytometric analysis of sub-G1 DNA populations, electron-microscopic analysis, caspase-3-specific αII-spectrin breakdown, and measuring the proteolytic activities of the initiator caspase-12 and caspase-8, and the executioner caspase-3. H2O2 induced an increase in the calpain proteolytic activity immediately after starting the experiments that tended to return to a nearly normal level after 8 h and could be attributed to m-calpain. Whereas no caspase-12, caspase-8 and caspase-3 activations could be detected within the first 0.5 h, significantly increased proteolytic activities were observed after 8 h compared with the control. At the same time, the cells showed first ultrastructural hallmarks of apoptosis and a decreased viability. In addition, αII-spectrin fragmentation was identified using immunoblotting that could be attributed to both calpain and caspase-3. Calpain inhibition reduced the activities of caspase-12, caspase-8, and caspase-3 leading to a decrease in the number of apoptotic cells. Immunoblotting analyses of caspase-12 and caspase-8 indicate that calpain may be involved in the activation process of both proteases. The results suggest that H2O2-induced apoptosis of AR42J cells requires activation of m-calpain initiating the endoplasmic reticulum stress-induced caspase-12 pathway and a caspase-8-dependent pathway. The findings also suggest that calpain may be involved in the execution phase of apoptosis.
Collapse
Affiliation(s)
- H Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Mount MP, Zhang Y, Amini M, Callaghan S, Kulczycki J, Mao Z, Slack RS, Anisman H, Park DS. Perturbation of transcription factor Nur77 expression mediated by myocyte enhancer factor 2D (MEF2D) regulates dopaminergic neuron loss in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Biol Chem 2013; 288:14362-14371. [PMID: 23536182 DOI: 10.1074/jbc.m112.439216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have earlier reported the critical nature of calpain-CDK5-MEF2 signaling in governing dopaminergic neuronal loss in vivo. CDK5 mediates phosphorylation of the neuronal survival factor myocyte enhancer factor 2 (MEF2) leading to its inactivation and loss. However, the downstream factors that mediate MEF2-regulated survival are unknown. Presently, we define Nur77 as one such critical downstream survival effector. Following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo, Nur77 expression in the nigrostriatal region is dramatically reduced. This loss is attenuated by expression of MEF2. Importantly, MEF2 constitutively binds to the Nur77 promoter in neurons under basal conditions. This binding is lost following 1-methyl-4-phenylpyridinium treatment. Nur77 deficiency results in significant sensitization to dopaminergic loss following 1-methyl-4-phenylpyridinium/MPTP treatment, in vitro and in vivo. Furthermore, Nur77-deficient MPTP-treated mice displayed significantly reduced levels of dopamine and 3,4-Dihydroxyphenylacetic acid in the striatum as well as elevated post synaptic FosB activity, indicative of increased nigrostriatal damage when compared with WT MPTP-treated controls. Importantly, this sensitization in Nur77-deficient mice was rescued with ectopic Nur77 expression in the nigrostriatal system. These results indicate that the inactivation of Nur77, induced by loss of MEF2 activity, plays a critical role in nigrostriatal degeneration in vivo.
Collapse
Affiliation(s)
- Matthew P Mount
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yi Zhang
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mandana Amini
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steve Callaghan
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jerzy Kulczycki
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ruth S Slack
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - David S Park
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cogno-Mechatronics Engineering, Pusan National University, Miryang 627-706, South Korea.
| |
Collapse
|
13
|
Barros-Miñones L, Martín-de-Saavedra D, Perez-Alvarez S, Orejana L, Suquía V, Goñi-Allo B, Hervias I, López MG, Jordan J, Aguirre N, Puerta E. Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta Mol Basis Dis 2013; 1832:705-17. [PMID: 23415811 DOI: 10.1016/j.bbadis.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors have recently been reported to exert beneficial effects against ischemia-reperfusion injury in several organs but their neuroprotective effects in brain stroke models are scarce. The present study was undertaken to assess the effects of sildenafil against cell death caused by intrastriatal injection of malonate, an inhibitor of succinate dehydrogenase; which produces both energy depletion and lesions similar to those seen in cerebral ischemia. Our data demonstrate that sildenafil (1.5mg/kg by mouth (p.o.)), given 30min before malonate (1.5μmol/2μL), significantly decreased the lesion volume caused by this toxin. This protective effect can be probably related to the inhibition of excitotoxic pathways. Thus, malonate induced the activation of the calcium-dependent protease, calpain and the cyclin-dependent kinase 5, cdk5; which resulted in the hyperphosphorylation of tau and the cleavage of the protective transcription factor, myocyte enhancer factor 2, MEF2. All these effects were also significantly reduced by sildenafil pre-treatment, suggesting that sildenafil protects against malonate-induced cell death through the regulation of the calpain/p25/cdk5 signaling pathway. Similar findings were obtained using inhibitors of calpain or cdk5, further supporting our contention. Sildenafil also increased MEF2 phosphorylation and Bcl-2/Bax and Bcl-xL/Bax ratios, effects that might as well contribute to prevent cell death. Finally, sildenafil neuroprotection was extended not only to rat hippocampal slices subjected to oxygen and glucose deprivation when added at the time of reoxygenation, but also, in vivo when administered after malonate injection. Thus, the therapeutic window for sildenafil against malonate-induced hypoxia was set at 3h.
Collapse
|
14
|
Blancas S, Moran J. Role for apoptosis-inducing factor in the physiological death of cerebellar neurons. Neurochem Int 2011; 58:934-42. [PMID: 21447364 DOI: 10.1016/j.neuint.2011.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/29/2022]
Abstract
Apoptosis-inducing factor (AIF) is implicated in caspase-independent apoptotic-like death. AIF released from mitochondria translocates to the nucleus, where it mediates some apoptotic events such as chromatin condensation and DNA degradation. Here, the role of AIF in the neuronal death was studied under physiological conditions. When we analyzed the cellular localization of AIF during cerebellar development, we found a significant increase in the number of neurons with nuclear AIF localization in an age-dependent manner. On the other hand, cerebellar granule neurons (CGN) chronically cultured in low concentration of potassium (5 mM; K5) die with apoptotic-like characteristics after five days. In the present study we found that K5 induces a caspase-dependent apoptotic-like death of CGN as well as a late nuclear translocation of AIF. When CGN death induced by K5 was carried out in the presence of a general inhibitor of caspases, there was a slight decrement of cell death, but neurons eventually died by showing apoptotic-like features such as phosphatidylserine translocation and nuclear condensation. Besides, there was a significant increment of nuclear AIF translocation. These findings support the idea that AIF could be involved in apoptotic-like death of CGN and that it could be an alternative mechanism of neuronal death during cerebellar development.
Collapse
Affiliation(s)
- Sugela Blancas
- Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
15
|
Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg Med Chem 2010; 19:359-73. [PMID: 21144757 DOI: 10.1016/j.bmc.2010.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in cognitive and behavioral impairment. The two classic pathological hallmarks of AD include extraneuronal deposition of amyloid β (Aβ) and intraneuronal formation of neurofibrillary tangles (NFTs). NFTs contain hyperphosphorylated tau. Tau is the major microtubule-associated protein in neurons and stabilizes microtubules (MTs). Cyclin dependent kinase 5 (CDK5), when activated by the regulatory binding protein p25, phosphorylates tau at a number of proline-directed serine/threonine residues, resulting in formation of phosphorylated tau as paired helical filaments (PHFs) then in subsequent deposition of PHFs as NFTs. Beginning with the structure of Roscovitine, a moderately selective CDK5 inhibitor, we sought to conduct structural modifications to increase inhibitory potency of CDK5 and increase selectivity over a similar enzyme, cyclin dependent kinase 2 (CDK2). The design, synthesis, and testing of a series of 1-isopropyl-4-aminobenzyl-6-ether-linked benzimidazoles is presented.
Collapse
|
16
|
Forsby A, Bal-Price A, Camins A, Coecke S, Fabre N, Gustafsson H, Honegger P, Kinsner-Ovaskainen A, Pallas M, Rimbau V, Rodríguez-Farré E, Suñol C, Vericat J, Zurich M. Neuronal in vitro models for the estimation of acute systemic toxicity. Toxicol In Vitro 2009; 23:1564-9. [DOI: 10.1016/j.tiv.2009.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 12/18/2022]
|
17
|
Tamada Y, Walkup RD, Shearer TR, Azuma M. Contribution of Calpain to Cellular Damage in Human Retinal Pigment Epithelial Cells Cultured with Zinc Chelator. Curr Eye Res 2009; 32:565-73. [PMID: 17612972 DOI: 10.1080/02713680701359633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE We previously showed involvement of calpains in neural retina degeneration induced by hypoxia and ischemia-reperfusion. Age-related macular degeneration (AMD) is one of the leading causes for loss of vision. AMD showed degeneration of neural retina due to dysfunction and degeneration of the retinal pigment epithelium (RPE). RPE performs critical functions in neural retina, such as phagocytosis of shed rod outer segments. The purpose of the current study was to determine the contribution of calpain-induced proteolysis to damage in cultured human RPE cells. Zinc chelator TPEN was used to induce cellular damage as zinc deficiency is a suspected risk factor for AMD. METHODS In RPE/choroid preparations from normal and AMD patients, calpain mRNAs were measured by qPCR, and calpain activity was assessed by casein zymography. Third- to fifth-passage cells from human RPE cells were cultured with TPEN. Cell damage was morphologically assessed under the phase-contrast microscope, and TUNEL staining was performed to detect apoptosis. Leakage of lactate dehydrogenase (LDH) into the medium was measured as a marker of RPE cell damage. Activation of calpains and proteolysis of the known calpain substrate alpha -spectrin were assessed by immunoblotting. To further confirm calpain-induced proteolysis, calpain in homogenized RPE was also activated directly by addition of calcium. RESULTS RPE/choroid from normal patients expressed mRNAs for calpain 1, calpain 2, and calpastatin moderately, and calpain 2 activity tended to be lower in AMD patients. TPEN caused RPE cell damage with positive TUNEL staining. TPEN also caused leakage of LDH into the medium from RPE cells, and calpain inhibitor SJA6017 inhibited the leakage. Caspase-3 inhibitors z-VAD and z-DEVD also showed inhibitory effects. Immunoblotting for calpain and alpha -spectrin showed activation of calpain in RPE cells cultured with TPEN. Proteolysis by activated calpain was confirmed by addition of calcium to homogenized RPE. CONCLUSIONS These results suggested that activation of calpain contributed to cellular damage induced by TPEN in cultured human RPE cells.
Collapse
Affiliation(s)
- Yoshiyuki Tamada
- Senju Laboratory of Ocular Sciences, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
18
|
Chen HM, Wang L, D'Mello SR. A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase. Eur J Neurosci 2009; 28:2003-16. [PMID: 19046382 DOI: 10.1111/j.1460-9568.2008.06491.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the double-stranded RNA-dependent protein kinase (PKR) has been implicated in the pathogenesis of several neurodegenerative diseases. We find that a compound widely used as a pharmacological inhibitor of this enzyme, referred to as PKR inhibitor (PKRi), {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g]benzothiazol-7-one}, protects against the death of cultured cerebellar granule and cortical neurons. PKRi also prevents striatal neurodegeneration and improves behavioral outcomes in a chemically induced mouse model of Huntington's disease. Surprisingly, PKRi fails to block the phosphorylation of eIF2alpha, a downstream target of PKR, and does not reduce the autophosphorylation of PKR enzyme immunoprecipitated from neurons. Furthermore, neurons lacking PKR are fully protected from apoptosis by PKRi, demonstrating that neuroprotection by this compound is not mediated by PKR inhibition. Using in vitro kinase assays we investigated whether PKRi affects any other protein kinase. These analyses demonstrated that PKRi has no major inhibitory effect on pro-apoptotic kinases such as the c-Jun N-terminal kinases, the p38 MAP kinases and the death-associated protein kinases, or on other kinases including c-Raf, MEK1, MKK6 and MKK7. PKRi does, however, inhibit the activity of certain cyclin-dependent kinases (CDKs), including CDK1, CDK2 and CDK5 both in vitro and in low potassium-treated neurons. Consistent with its inhibitory action on mitotic CDKs, the treatment of HT-22 and HEK293T cell lines with PKRi sharply reduces the rate of cell cycle progression. Taken together with the established role of CDK activation in the promotion of neurodegeneration, our results suggest that PKRi exerts its neuroprotective action by inhibiting CDK.
Collapse
Affiliation(s)
- Hsin-Mei Chen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083, USA
| | | | | |
Collapse
|
19
|
Yeste-Velasco M, Folch J, Pallàs M, Camins A. The p38(MAPK) signaling pathway regulates neuronal apoptosis through the phosphorylation of the retinoblastoma protein. Neurochem Int 2008; 54:99-105. [PMID: 19007833 DOI: 10.1016/j.neuint.2008.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 01/21/2023]
Abstract
We investigated the role of SB202190, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor in cerebellar granule neurons (CGC) in response to serum potassium deprivation (S/K deprivation), an apoptotic stimulus. CGC apoptosis after S/K deprivation was shown to be mediated through cell cycle re-entry and the induction of transcription factor E2F-1. We found that SB 202190 (10muM) inhibits retinoblastoma protein (pRb) phosphorylation, in response to S/K deprivation. Moreover, the expression of cyclin E and E2F-1 were also significantly decreased. Interestingly, SB202190 did not affect or modulate the increase in the protein expression levels of cyclin D1. Similarly, p-Akt and p-GSK3 protein levels, measured after 12h S/K deprivation, did not appear to be regulated by SB 202190 (10muM). These data indicate that the neuroprotective effects of the p38 inhibitor were not mediated via Akt activation. In conclusion, these results suggest that p38MAPK converged with the cell cycle in S/K deprivation-induced apoptosis through pRb phosphorylation.
Collapse
Affiliation(s)
- Marc Yeste-Velasco
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Crespo-Biel N, Camins A, Pelegrí C, Vilaplana J, Pallàs M, Canudas AM. 3-Nitropropionic acid activates calpain/cdk5 pathway in rat striatum. Neurosci Lett 2007; 421:77-81. [PMID: 17566644 DOI: 10.1016/j.neulet.2007.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/13/2007] [Accepted: 05/14/2007] [Indexed: 11/30/2022]
Abstract
3-Nitropropionic acid (3-NP) is a neurotoxin that inhibits mitochondrial complex II and is used in an experimental model of Huntington's disease. Treatment of rats with 3-NP 30mgkg(-1) i.p. once a day for 5 days induced an increase in calpain activation in rat striatum, measured by the formation of 145kDa fragment of alpha-spectrin breakdown and by an increase in enzymatic calpain activity. In this neurotoxic model, Western blot studies revealed that calpain activity increase was followed by changes in cyclin-dependent kinase 5 (cdk5) and its activator p25. Our results indicated, after 10 days of treatment with 3-NP, a decrease in myocyte enhancer factor phosphorylation, a neuronal prosurvival factor. Thus, a decrease in its expression indicates a new potential mechanism of neuronal cell death mediated by the neurotoxin 3-NP. Accordingly, in our study we demonstrated in rat striatum the activation of the calpain/cdk5/p25 pathway in the 3-NP model. Previous studies have linked the deregulation of cdk5 with neurodegenerative diseases, such as Alzheimer's and Parkinson's. We suggest that calpain/cdk5 activation could also be a common pathway activated in other neurodegenerative diseases, which is liable to be targeted.
Collapse
Affiliation(s)
- Natalia Crespo-Biel
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Sharma M, Hanchate NK, Tyagi RK, Sharma P. Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun 2007; 358:379-84. [PMID: 17498664 DOI: 10.1016/j.bbrc.2007.04.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Cyclin dependent kinase 5 (cdk5) is active mainly in postmitotic cells like neurons and regulates important cellular functions by phosphorylating a wide variety of targets. Nerve growth factor stimulates the MEK-ERK MAP kinase pathway and causes neuronal differentiation and survival. It was reported previously that Cdk5 inhibits the MAP kinase pathway by phosphorylating Map kinase kinase-1 (MEK1) [1]. We have delineated the functional consequence of this cross talk and found that the cdk5 mediated inhibition of MEK1 results in apoptosis. We also demonstrate that the activity of transcription factor CREB, which is known to play pro-survival roles in neuronal cells, is attenuated as a result of this cross-talk.
Collapse
Affiliation(s)
- Monica Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | |
Collapse
|
23
|
Amadoro G, Pieri M, Ciotti MT, Carunchio I, Canu N, Calissano P, Zona C, Severini C. Substance P provides neuroprotection in cerebellar granule cells through Akt and MAPK/Erk activation: Evidence for the involvement of the delayed rectifier potassium current. Neuropharmacology 2007; 52:1366-77. [PMID: 17397881 DOI: 10.1016/j.neuropharm.2007.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 01/09/2007] [Accepted: 01/23/2007] [Indexed: 01/24/2023]
Abstract
In the current study, we have evaluated the ability of substance P (SP) and other neurokinin 1 receptor (NK1) agonists to protect, in a dose- and time-dependent manner, primary cultures of rat cerebellar granule cells (CGCs) from serum and potassium deprivation-induced cell death (S-K5). We also established the presence of SP high affinity NK1 transcripts and the NK1 protein localization in the membrane of a sub-population of CGCs. Moreover, SP significantly and dose-dependently reduced the Akt 1/2 and Erk1/2 dephosphorylation induced by S-K5 conditions, as demonstrated by Western blot analysis. Surprisingly, in SP-treated CGCs caspase-3 activity was not inhibited, while the calpain-1 activity was moderately reduced. Corroborating this result, SP blocked calpain-mediated cleavage of tau protein, as demonstrated by the reduced appearance of a diagnostic fragment of 17 kDa by Western blot analysis. In addition, SP induced a significant reduction of the delayed rectifier K+ currents (Ik) in about 42% of the patched neurons, when these were evoked with depolarizing potential steps. Taken together, the present results demonstrate that the activation of NK1 receptors expressed in CGCs promote the neuronal survival via pathways involving Akt and Erk activation and by inhibition of Ik which can contribute to the neuroprotective effect of the peptide.
Collapse
Affiliation(s)
- G Amadoro
- Institute of Neurobiology and Molecular Medicine, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|