1
|
Chen J, Sun W, Zhu Y, Zhao F, Deng S, Tian M, Wang Y, Gong Y. TRPV1: The key bridge in neuroimmune interactions. JOURNAL OF INTENSIVE MEDICINE 2024; 4:442-452. [PMID: 39310069 PMCID: PMC11411435 DOI: 10.1016/j.jointm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 09/25/2024]
Abstract
The nervous and immune systems are crucial in fighting infections and inflammation and in maintaining immune homeostasis. The immune and nervous systems are independent, yet tightly integrated and coordinated organizations. Numerous molecules and receptors play key roles in enabling communication between the two systems. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a non-selective cation channel, recently shown to be widely expressed in the neuroimmune axis and implicated in neuropathic pain, autoimmune disorders, and immune cell function. TRPV1 is a key bridge in neuroimmune interactions, allowing for smooth and convenient communication between the two systems. Here, we discuss the coordinated cross-talking between the immune and nervous systems and the functional role and the functioning manner of the TRPV1 involved. We suggest that TRPV1 provides new insights into the collaborative relationship between the nervous and immune systems, highlighting exciting opportunities for advanced therapeutic approaches to treating neurogenic inflammation and immune-mediated diseases.
Collapse
Affiliation(s)
- Jianwei Chen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenqian Sun
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Youjia Zhu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
2
|
Ibrahim RE, Rhouma NR, Elbealy MA, Abdelwarith AA, Younis EM, Khalil SS, Khamis T, Mansour AT, Davies SJ, El-Murr A, Abdel Rahman AN. Effect of dietary intervention with Capsicum annuum extract on growth performance, physiological status, innate immune response, and related gene expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110914. [PMID: 37939898 DOI: 10.1016/j.cbpb.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1β, il-6, il-8, and il-10), transforming growth factor-β, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Nasreddin R Rhouma
- Biology Department, Faculty of Science, Misurata University, PO Box 2478, Misurata, Libya
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
3
|
Wank I, Kutsche L, Kreitz S, Reeh P, Hess A. Imaging the influence of peripheral TRPV1-signaling on cerebral nociceptive processing applying fMRI-based graph theory in a resiniferatoxin rat model. PLoS One 2022; 17:e0266669. [PMID: 35482725 PMCID: PMC9049522 DOI: 10.1371/journal.pone.0266669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Kutsche
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Dumitrache MD, Jieanu AS, Scheau C, Badarau IA, Popescu GDA, Caruntu A, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp Ther Med 2021; 22:917. [PMID: 34306191 PMCID: PMC8280727 DOI: 10.3892/etm.2021.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are chronic respiratory diseases with high prevalence and mortality that significantly alter the quality of life in affected patients. While the cellular and molecular mechanisms engaged in the development and evolution of these two conditions are different, COPD and asthma share a wide array of symptoms and clinical signs that may impede differential diagnosis. However, the distinct signaling pathways regulating cough and airway hyperresponsiveness employ the interaction of different cells, molecules, and receptors. Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a major role in cough and airway inflammation. Consequently, its agonist, capsaicin, is of substantial interest in exploring the cellular effects and regulatory pathways that mediate these respiratory conditions. Increasingly more studies emphasize the use of capsaicin for the inhalation cough challenge, yet the involvement of TRPV1 in cough, bronchoconstriction, and the initiation of inflammation has not been entirely revealed. This review outlines a comparative perspective on the effects of capsaicin and its receptor in the pathophysiology of COPD and asthma, underlying the complex entanglement of molecular signals that bridge the alteration of cellular function with the multitude of clinical effects.
Collapse
Affiliation(s)
- Mihai-Daniel Dumitrache
- Department of Pneumology IV, 'Marius Nasta' Institute of Pneumophtysiology, 050159 Bucharest, Romania
| | - Ana Stefania Jieanu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Internal Medicine and Gastroenterology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N.C. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
5
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Tsuji K, Tsujimura T, Sakai S, Suzuki T, Yoshihara M, Nagoya K, Magara J, Satoh Y, Inoue M. Involvement of capsaicin-sensitive nerves in the initiation of swallowing evoked by carbonated water in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2020; 319:G564-G572. [PMID: 32878469 DOI: 10.1152/ajpgi.00233.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Capsaicin powerfully evokes the swallowing reflex and is a known therapeutic agent for improving dysphagia and preventing aspiration pneumonia. However, the role of capsaicin-sensitive nerves in the initiation of swallowing evoked by various natural stimuli remains unclear. To explore this question, we blocked laryngeal capsaicin-sensitive nerves following the coapplication of QX-314 and capsaicin (QX/Cap), and investigated the effects on swallowing evoked by mechanical and chemical stimulation in anesthetized rats. Swallows were evoked by capsaicin, carbonated water (CW), distilled water (DW), and punctate mechanical stimulation using von Frey filaments applied topically to the larynx. Swallows were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles. The initiation of swallowing by capsaicin was strongly suppressed at 5 min following QX/Cap treatment and returned in a time-dependent manner. CW-evoked swallows at 5 min following QX/Cap treatment were significantly diminished compared with before and 30 min after treatment. In contrast, DW-evoked and mechanically evoked swallows were unchanged by QX/Cap treatment. Furthermore, CW-evoked swallows were virtually abolished by transection of the superior laryngeal nerves and significantly decreased by the topical application of acid-sensing ion channel-3 (ASIC3) inhibitor APETx2, but they were not affected by the nonselective transient receptor potential channel inhibitor ruthenium red or the ASIC1 inhibitor mambalgin-1. Taken together, we speculate that capsaicin-sensitive nerves play an important role in the initiation of CW-evoked swallows.NEW & NOTEWORTHY The initiation of swallowing evoked by laryngeal capsaicin and carbonated water application was diminished by the coapplication of QX-314 and capsaicin. Carbonated water-evoked swallows were also abolished by transection of the superior laryngeal nerves and were inhibited by the acid-sensing ion channel-3 inhibitor. Capsaicin-sensitive nerves are involved in the initiation of carbonated water-evoked swallows.
Collapse
Affiliation(s)
- Kojun Tsuji
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan.,Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Shogo Sakai
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
7
|
N-Acetylcysteine protects human bronchi by modulating the release of neurokinin A in an ex vivo model of COPD exacerbation. Biomed Pharmacother 2018; 103:1-8. [DOI: 10.1016/j.biopha.2018.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
|
8
|
Shen W, Shen M, Zhao X, Zhu H, Yang Y, Lu S, Tan Y, Li G, Li M, Wang J, Hu F, Le S. Anti-obesity Effect of Capsaicin in Mice Fed with High-Fat Diet Is Associated with an Increase in Population of the Gut Bacterium Akkermansia muciniphila. Front Microbiol 2017; 8:272. [PMID: 28280490 PMCID: PMC5322252 DOI: 10.3389/fmicb.2017.00272] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/08/2017] [Indexed: 12/27/2022] Open
Abstract
Capsaicin (CAP) reduces body weight mainly through activation of transient receptor potential vanilloid 1 (TRPV1) cation channel. However, recent evidence indicates that the gut microbiota influences many physiological processes in host and might provoke obesity. This study determined whether the anti-obesity effect of CAP is related to the changes in gut microbiota. C57BL/6 mice were fed either with high-fat diet (HFD) or HFD with CAP (HFD-CAP) for 9 weeks. We observed a significantly reduced weight gain and improved glucose tolerance in HFD-CAP-fed mice compared with HFD-fed mice. 16S rRNA gene sequencing results showed a decrease of phylum Proteobacteria in HFD-CAP-fed mice. In addition, HFD-CAP-fed mice showed a higher abundance of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on host metabolism. Further studies found that CAP directly up-regulates the expression of Mucin 2 gene Muc2 and antimicrobial protein gene Reg3g in the intestine. These data suggest that the anti-obesity effect of CAP is associated with a modest modulation of the gut microbiota.
Collapse
Affiliation(s)
- Wei Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Mengyu Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Xia Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Hongbin Zhu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yuhui Yang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Gang Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University Chongqing, China
| |
Collapse
|
9
|
Egger C, Cannet C, Gérard C, Dunbar A, Tigani B, Beckmann N. Hyaluronidase modulates bleomycin-induced lung injury detected noninvasively in small rodents by radial proton MRI. J Magn Reson Imaging 2015; 41:755-764. [DOI: 10.1002/jmri.24612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Christine Egger
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
- University of Basel; Biocenter; Basel Switzerland
| | - Catherine Cannet
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Christelle Gérard
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Andrew Dunbar
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Bruno Tigani
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for BioMedical Research; Analytical Sciences and Imaging; Basel Switzerland
| |
Collapse
|
10
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
11
|
Liu Y, Song M, Che TM, Almeida JAS, Lee JJ, Bravo D, Maddox CW, Pettigrew JE. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J Anim Sci 2013; 91:5294-306. [PMID: 24045466 DOI: 10.2527/jas.2012-6194] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A study was conducted to evaluate the effects of 3 different plant extracts on diarrhea, immune response, intestinal morphology, and growth performance of weaned pigs experimentally infected with a pathogenic F-18 Escherichia coli (E. coli). Sixty-four weaned pigs (6.3±0.2 kg BW, and 21 d old) were housed in individual pens in disease containment chambers for 15 d: 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2×4 factorial arrangement: with or without an F-18 E. coli challenge (toxins: heat-labile toxin, heat-stable toxin b, and Shiga-like toxin 2; 10(10) cfu/3 mL oral dose; daily for 3 d from d 0) and 4 diets [a nursery basal diet (CON) or 10 ppm of capsicum oleoresin, garlic botanical, or turmeric oleoresin]. The growth performance was measured on d 0 to 5, 5 to 11, and 0 to 11. Diarrhea score (1, normal, to 5, watery diarrhea) was recorded for each pig daily. Frequency of diarrhea was the percentage of pig days with a diarrhea score of 3 or greater. Blood was collected on d 0, 5, and 11 to measure total and differential white blood cell counts and serum tumor necrosis factor (TNF)-α, IL-10, transforming growth factor (TGF)-β, C-reactive protein, and haptoglobin. On d 5 and 11, half of the pigs were euthanized to measure villi height and crypt depth of the small intestine and macrophage and neutrophil number in the ileum. The E. coli infection increased (P<0.05) diarrhea score, frequency of diarrhea, white blood cell counts, serum TNF-α and haptoglobin, and ileal macrophages and neutrophils but reduced (P<0.05) villi height and the ratio of villi height to crypt depth of the small intestine on d 5. In the challenged group, feeding plant extracts reduced (P<0.05) average diarrhea score from d 0 to 2 and d 6 to 11 and frequency of diarrhea and decreased (P<0.05) TNF-α and haptoglobin on d 5, white blood cell counts and neutrophils on d 11, and ileal macrophages and neutrophils on d 5. Feeding plant extracts increased (P<0.05) ileal villi height on d 5 but did not affect growth performance compared with the CON. In the sham group, feeding plant extract also reduced (P<0.05) diarrhea score, frequency of diarrhea, and ileal macrophages compared with the CON. In conclusion, the 3 plant extracts tested reduced diarrhea and inflammation caused by E. coli infection, which may be beneficial to pig health.
Collapse
Affiliation(s)
- Y Liu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hodges RR, Bair JA, Carozza RB, Li D, Shatos MA, Dartt DA. Signaling pathways used by EGF to stimulate conjunctival goblet cell secretion. Exp Eye Res 2012; 103:99-113. [PMID: 22975404 DOI: 10.1016/j.exer.2012.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/19/2012] [Accepted: 08/26/2012] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to identify the signaling pathways that epidermal growth factor (EGF) uses to stimulate mucin secretion from cultured rat conjunctival goblet cells and to compare the pathways used by EGF with those used by the known secretagogue muscarinic, cholinergic agonists. To this end, goblet cells from rat conjunctiva were grown in culture using RPMI media. For immunofluorescence experiments, antibodies against EGF receptor (EGFR) and ERK 2 as well as muscarinic receptors (M(1)AchR, M(2)AchR, and M(3)AchR) were used, and the cells viewed by fluorescence microscopy. Intracellular [Ca(2+)] ([Ca(2+)](i)) was measured using fura 2/AM. Glycoconjugate secretion was determined after cultured goblet cells were preincubated with inhibitors, and then stimulated with EGF or the cholinergic agonist carbachol (Cch). Goblet cell secretion was measured using an enzyme-linked lectin assay with UEA-I or ELISA for MUC5AC. In cultured goblet cells EGF stimulated an increase in [Ca(2+)](i) in a concentration-dependent manner. EGF-stimulated increase in [Ca(2+)](i) was blocked by inhibitors of the EGF receptor and removal of extracellular Ca(2+). Inhibitors against the EGFR and ERK 1/2 blocked EGF-stimulated mucin secretion. In addition, cultured goblet cells expressed M(1)AchR, M(2)AchR, and M(3)AchRs. Cch-stimulated increase in [Ca(2+)](i) was blocked by inhibitors for the M(1)AchRs, matrix metalloproteinases, and EGF receptors. Inhibitors against the EGF receptor and ERK 1/2 also blocked Cch-stimulated mucin secretion. We conclude that in conjunctival goblet cells, EGF itself increases [Ca(2+)](i) and activates ERK 1/2 to stimulate mucin secretion. EGF-stimulated secretion is dependent on extracellular Ca(2+). This mechanism of action is similar to cholinergic agonists that use muscarinic receptors to transactivate the EGF receptor, increase [Ca(2+)](i), and activate ERK 1/2 leading to an increase in mucin secretion.
Collapse
Affiliation(s)
- Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
13
|
Erin N, Türker S, Elpek O, Yıldırım B. Differential changes in Substance P, VIP as well as neprilysin levels in patients with gastritis or ulcer. Peptides 2012; 35:218-24. [PMID: 22484287 DOI: 10.1016/j.peptides.2012.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 02/08/2023]
Abstract
The protective effect of capsaicin-sensitive sensory nerve (CSSN) activation was recently demonstrated in human gastric mucosa. We here examined changes in neuropeptides, specifically Substance P (SP), calcitonin-gene related peptide (CGRP) and vasoactive intestinal peptide (VIP) in patients with chronic gastritis or ulcer. Furthermore changes in neprilysin levels, which hydrolyse these neuropeptides, were determined. Gastric biopsies were obtained from both lesion- and normal-appearing mucosa of 57 patients. The presence of H. pylori infection was verified with rapid urease assay. Neuronal and non-neuronal levels of SP, VIP, CGRP and neprilysin activity were determined in freshly frozen biopsies. Immunohistochemical localization of neprilysin was performed in 30 paraffin embedded specimens. We here found that neuronal SP levels decreased significantly in normally appearing mucosa of patients with gastritis while levels of non-neuronal SP increased in diseased areas of gastritis and ulcer. The presence of H. pylori led to further decreases of SP levels. The content of VIP in both disease-involved and uninvolved mucosa, and expression of neprilysin, markedly decreased in patients with gastritis or ulcer. Since VIP, as well as SP fragments, formed following hydrolysis with neprilysin is recognized to have gastroprotective effects, decreased levels of VIP, SP and neprilysin may predispose to cellular damage.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Pharmacology and SBAUM, Akdeniz University, School of Medicine, Antalya 07070, Turkey.
| | | | | | | |
Collapse
|
14
|
Alenmyr L, Herrmann A, Högestätt ED, Greiff L, Zygmunt PM. TRPV1 and TRPA1 stimulation induces MUC5B secretion in the human nasal airway in vivo. Clin Physiol Funct Imaging 2011; 31:435-44. [PMID: 21981454 DOI: 10.1111/j.1475-097x.2011.01039.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Nasal transient receptor potential vanilloid 1 (TRPV1) stimulation with capsaicin produces serous and mucinous secretion in the human nasal airway. The primary aim of this study was to examine topical effects of various TRP ion channel agonists on symptoms and secretion of specific mucins: mucin 5 subtype AC (MUC5AC) and B (MUC5B). METHODS Healthy individuals were subjected to nasal challenges with TRPV1 agonists (capsaicin, olvanil and anandamide), TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and mustard oil) and a TRP melastatin 8 (TRPM8) agonist (menthol). Symptoms were monitored, and nasal lavages were analysed for MUC5AC and MUC5B, i.e. specific mucins associated with airway diseases. In separate groups of healthy subjects, nasal biopsies and brush samples were analysed for TRPV1 and MUC5B, using immunohistochemistry and RT-qPCR. Finally, calcium responses and ciliary beat frequency were measured on isolated ciliated epithelial cells. RESULTS All TRP agonists induced nasal pain or smart. Capsaicin, olvanil and mustard oil also produced rhinorrhea. Lavage fluids obtained after challenge with capsaicin and mustard oil indicated increased levels of MUC5B, whereas MUC5AC was unaffected. MUC5B and TRPV1 immunoreactivities were primarily localized to submucosal glands and peptidergic nerve fibres, respectively. Although trpv1 transcripts were detected in nasal brush samples, functional responses to capsaicin could not be induced in isolated ciliated epithelial cells. CONCLUSION Agonists of TRPV1 and TRPA1 induced MUC5B release in the human nasal airways in vivo. These findings may be of relevance with regard to the regulation of mucin production under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Lisa Alenmyr
- Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University
| | | | | | | | | |
Collapse
|
15
|
Rogerio AP, Andrade EL, Calixto JB. C-fibers, but not the transient potential receptor vanilloid 1 (TRPV1), play a role in experimental allergic airway inflammation. Eur J Pharmacol 2011; 662:55-62. [DOI: 10.1016/j.ejphar.2011.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/24/2011] [Accepted: 04/12/2011] [Indexed: 01/21/2023]
|
16
|
van Echteld CJA, Beckmann N. A View on Imaging in Drug Research and Development for Respiratory Diseases. J Pharmacol Exp Ther 2011; 337:335-349. [DOI: 10.1124/jpet.110.172635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
17
|
Banner KH, Igney F, Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011; 130:371-84. [PMID: 21420429 DOI: 10.1016/j.pharmthera.2011.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/16/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels is divided into six subfamilies based on sequence homology TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). The expression of these channels is especially abundant in sensory nerves, and there is increasing evidence demonstrating their existence in a broad range of cell types which are thought to play a key role in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These ion channels can be activated by a diverse range of chemical and physical stimuli. Physical stimuli include temperature, membrane potential changes and osmotic stress, and some of the more well known chemical stimuli include capsaicin (TRPV1), menthol (TRPM8) and acrolein (TRPA1). There is increasing evidence in this rapidly moving field to suggest that selective blockers of these channels may represent attractive novel strategies to treat characteristic features of respiratory diseases such as asthma and COPD. This review focuses on summarising the evidence that modulation of selected TRP channels may have beneficial effects at targeting key features of these respiratory diseases including airways inflammation, airways hyper-reactivity, mucus secretion and cough.
Collapse
Affiliation(s)
- Katharine Helen Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom.
| | | | | |
Collapse
|
18
|
Zurek M, Bessaad A, Cieslar K, Crémillieux Y. Validation of simple and robust protocols for high-resolution lung proton MRI in mice. Magn Reson Med 2011; 64:401-7. [PMID: 20665784 DOI: 10.1002/mrm.22360] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One fundamental limitation of spatial resolution for in vivo MR lung imaging is related to motion in the thoracic cavity. To overcome this limitation, several methods have been proposed, including scan-synchronous ventilation and the cardiac gating approach. However, with cardiac and ventilation triggered techniques, the use of a predetermined and constant sequence repetition time is not possible, resulting in variable image contrast. In this study, the potential of two "constant repetition time" approaches based on retrospective self-gating and signal averaging were investigated for lung imaging. Image acquisitions were performed at a very short echo time for visualization of the lung structures and the parenchyma. Highly spatially resolved images acquired using retrospective self-gating, signal averaging technique and conventional cardiorespiratory gating are presented and compared.
Collapse
|
19
|
Samarasinghe AE, Hoselton SA, Schuh JM. The absence of VPAC2 leads to aberrant antibody production in Aspergillus fumigatus sensitized and challenged mice. Peptides 2011; 32:131-7. [PMID: 20923692 PMCID: PMC3299058 DOI: 10.1016/j.peptides.2010.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 11/26/2022]
Abstract
Vasoactive intestinal peptide (VIP) facilitates a "pro-allergy" phenotype when signaling through its G protein-coupled receptor, VPAC(2). We have shown that VPAC(2) knock-out (KO) mice developed an allergic phenotype marked by eosinophilia and elevated serum IgE. Therefore, we hypothesized that the humoral response to allergen challenge in these mice was T(H)2 dominant similar to wild-type (WT) C57BL/6 mice. Antibody responses in WT and KO mice were measured after Aspergillus fumigatus conidia inhalation. In contrast to previous reports, basal levels of serum IgG(2a) and IgA were significantly higher in naïve VPAC(2) KO animals. Antibody availability in the serum as well as the bronchoalveolar lavage fluid after fungal challenge was dominated by the pro-inflammatory isotype IgG(2a) and the mucosal isotype, IgA. IgA localizing cells dominated in the peribronchovascular areas of allergic KO mice while IgE immune complexes were found in WT allergic lungs. This research shows for the first time that VPAC(2) has a significant effect on antibody regulation, in the context of allergy.
Collapse
Affiliation(s)
- Amali E. Samarasinghe
- North Dakota State University, Department of Veterinary and Microbiological Sciences, PO Box 6050-Dept 7690, Fargo, ND 58108
| | - Scott A. Hoselton
- North Dakota State University, Department of Veterinary and Microbiological Sciences, PO Box 6050-Dept 7690, Fargo, ND 58108
| | - Jane M. Schuh
- North Dakota State University, Department of Veterinary and Microbiological Sciences, PO Box 6050-Dept 7690, Fargo, ND 58108
| |
Collapse
|
20
|
Veres TZ, Rochlitzer S, Braun A. The role of neuro-immune cross-talk in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:203-14. [PMID: 19292991 DOI: 10.1016/j.pharmthera.2009.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 12/22/2022]
Abstract
Despite recent advances in the development of anti-asthmatic medication, asthma continues to be a major health problem worldwide. The symptoms of asthmatic patients include wheezing, chest tightness, cough and shortness of breath, which, together with airway hyperresponiveness, previously have been attributed to a dysfunction of airway nerves. However, research in the last two decades identified Th2-sensitization and the subsequent allergic reaction to innocuous environmental antigens as a basic immunological mechanism leading to chronic airway inflammation. Recent evidence suggests that the development of allergic asthma is influenced by events and circumstances in early childhood and even in utero. Allergen, ozone or stress exposure, as well as RSV infection in early life could be able to induce irreversible changes in the developing epithelial-mesenchymal trophic unit of the airways. The co-existence of chronic inflammation and neural dysfunction have recently drawn attention to the involvement of interaction pathways between the nervous and the immune system in the airways. Intensive basic research has accumulated morphological as well as functional evidence for the interaction between nerves and immune cells. Neuropeptides and neurotrophins have come into focus of attention as the key mediators of neuro-immune interactions, which lead to the development of several pharmacological compounds specifically targeting these molecules. This review will integrate our current knowledge on the involvement of neuro-immune pathways in asthma on the cellular and molecular level. It will summarize the results of pharmacological studies addressing the potential of neuropeptides and neurotrophins as novel therapeutic targets in asthma.
Collapse
Affiliation(s)
- Tibor Z Veres
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | |
Collapse
|
21
|
Is TRPV1 a useful target in respiratory diseases? Pulm Pharmacol Ther 2008; 21:833-9. [PMID: 18992356 DOI: 10.1016/j.pupt.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/23/2022]
Abstract
This review focuses on the transient receptor potential vanilloid 1 (TRPV1). TRPV1 is a non-selective cation channel predominantly expressed in the cell membranes of sensory afferent fibers, which are activated multi-modally. In the mammalian respiratory system, immunohistochemical and electrophysiological studies have revealed heterogeneous localizations of TRPV1 channels in the airways and their presence in pleural afferents. TRPV1 channels in afferents are not only involved with sensory inputs, but also release several neuropeptides upon stimulation. These processes trigger pathophysiological effects (e.g. reflex bronchoconstriction, hypersecretion, cough, etc.) that cause various symptoms of airway diseases. Recent studies have identified several endogenous and exogenous substances that can activate TRPV1 in the lung. Because of its key role in initiating inflammatory processes, TRPV1 receptor antagonists have been proposed as therapeutic candidates. Therefore, a critical update of recent therapeutic results is also given in this review.
Collapse
|
22
|
Siebenhaar F, Magerl M, Peters EM, Hendrix S, Metz M, Maurer M. Mast cell–driven skin inflammation is impaired in the absence of sensory nerves. J Allergy Clin Immunol 2008; 121:955-61. [DOI: 10.1016/j.jaci.2007.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 12/26/2022]
|
23
|
Takahashi M, Kubo S, Kiryu S, Gee J, Hatabu H. MR microscopy of the lung in small rodents. Eur J Radiol 2007; 64:367-74. [PMID: 17904321 DOI: 10.1016/j.ejrad.2007.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 01/08/2023]
Abstract
Understanding how the mammalian respiratory system works and how it changes in disease states and under the influence of drugs is frequently pursued in model systems such as small rodents. These have many advantages, including being easily obtained in large numbers as purebred strains. Studies in small rodents are valuable for proof of concept studies and for increasing our knowledge about disease mechanisms. Since the recent developments in the generation of genetically designed animal models of disease, one needs the ability to assess morphology and function in in vivo systems. In this article, we first review previous reports regarding thoracic imaging. We then discuss approaches to take in making use of small rodents to increase MR microscopic sensitivity for these studies and to establish MR methods for clinically relevant lung imaging.
Collapse
Affiliation(s)
- Masaya Takahashi
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
24
|
Beckmann N, Cannet C, Karmouty-Quintana H, Tigani B, Zurbruegg S, Blé FX, Crémillieux Y, Trifilieff A. Lung MRI for experimental drug research. Eur J Radiol 2007; 64:381-96. [PMID: 17931813 DOI: 10.1016/j.ejrad.2007.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Current techniques to evaluate the efficacy of potential treatments for airways diseases in preclinical models are generally invasive and terminal. In the past few years, the flexibility of magnetic resonance imaging (MRI) to obtain anatomical and functional information of the lung has been explored with the scope of developing a non-invasive approach for the routine testing of drugs in models of airways diseases in small rodents. With MRI, the disease progression can be followed in the same animal. Thus, a significant reduction in the number of animals used for experimentation is achieved, as well as minimal interference with their well-being and physiological status. In addition, under certain circumstances the duration of the observation period after disease onset can be shortened since the technique is able to detect changes before these are reflected in parameters of inflammation determined using invasive procedures. The objective of this article is to briefly address MRI techniques that are being used in experimental lung research, with special emphasis on applications. Following an introduction on proton techniques and MRI of hyperpolarized gases, the attention is shifted to the MRI analysis of several aspects of lung disease models, including inflammation, ventilation, emphysema, fibrosis and sensory nerve activation. The next subject concerns the use of MRI in pharmacological studies within the context of experimental lung research. A final discussion points towards advantages and limitations of MRI in this area.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstr. 35, WSJ-386.2.09, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|