1
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Yang D. TRPA1-Related Diseases and Applications of Nanotherapy. Int J Mol Sci 2024; 25:9234. [PMID: 39273183 PMCID: PMC11395144 DOI: 10.3390/ijms25179234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Shirai T, Kinoshita K, Kumihashi K, Mugita N, Yoshida M, Kigoshi H. Skin- and airway-deliverable TRPA1 inhibitor. Bioorg Med Chem 2024; 110:117812. [PMID: 38941887 DOI: 10.1016/j.bmc.2024.117812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
This study explored the potential of perfumery compounds as sources of transient receptor potential ankyrin 1 (TRPA1) inhibitors that could be formulated for effective delivery to the skin and airways. A highly potent, small, and selective TRPA1 inhibitor, 2-methyl-4-phenyl-1-pentanol (1), was discovered in perfumery compounds. Compound 1 demonstrated promising inhibitory activity against a broad range of TRPA1 agonists. A single stereoisomer of 1 was identified as the most effective TRPA1 inhibitor, indicating the potential for stereoselective synthesis to enhance its potency. Additionally, the structure-activity relationship of 1 was evaluated to elucidate the structural features of TRPA1 inhibitors within the fragrance-like compounds. Notably, the topical application of 1 alleviated sensory irritation in individuals with sensitive skin, while the inhalation of 1 resulted in a significant reduction in ammonia irritation, underscoring its efficacy in both skin and airway applications.
Collapse
Affiliation(s)
- Tomohiro Shirai
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan; Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| | - Kazuki Kinoshita
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Kentaro Kumihashi
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Nanae Mugita
- Safety Science Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, Japan
| | - Masahito Yoshida
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hideo Kigoshi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Mager ML, Ciotu CI, Gold-Binder M, Heber S, Fischer MJM. TRPA1-dependent and -independent activation by commonly used preservatives. Front Pharmacol 2023; 14:1248558. [PMID: 37860113 PMCID: PMC10582264 DOI: 10.3389/fphar.2023.1248558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Background and purpose: Addition of preservatives ensures microbial stability, especially in multidose containers of parenterally administered pharmaceuticals. These compounds can cause side effects, and particularly at the site of application, might elicit or facilitate pain. TRPA1 is a cation channel expressed in peripheral neurons which contributes to pain and inflammation and is sensitive to many irritants. The most commonly used preservatives, in particular with a focus on parenteral formulations, were investigated for their potential to activate TRPA1. Experimental approach: Sixteen preservatives were screened for mediating calcium influx in human TRPA1-transfected HEK293t cells. Untransfected cells served as control, results were further validated in mouse sensory neurons. In addition, proinflammatory mediators serotonin, histamine and prostaglandin E2 were co-administered to probe a potential sensitisation of preservative-induced TRPA1 activation. Key results: Butylparaben, propylparaben, ethylparaben, bronopol, methylparaben, phenylethyl alcohol and phenol induced a TRPA1-dependent calcium influx in transfected HEK293t cells at concentrations used for preservation. Other preservatives increased calcium within the used concentration ranges, but to a similar degree in untransfected controls. Serotonin, histamine, and prostaglandin enhanced TRPA1 activation of phenylethyl alcohol, bronopol, ethylparaben, propylparaben and butylparaben. Conclusion and implications: Systematic screening of common preservatives applied for parenterally administered drugs resulted in identifying several preservatives with substantial TRPA1 channel activation. This activation was enhanced by the addition of proinflammatory meditators. This allows selecting a preservative without TRPA1 activation, particularly in case of pharmaceuticals that could act proinflammatory.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
6
|
Mori Y, Aoki A, Okamoto Y, Isobe T, Ohkawara S, Hanioka N, Tanaka-Kagawa T, Jinno H. Species-specific activation of transient receptor potential ankyrin 1 by phthalic acid monoesters. Biol Pharm Bull 2022; 45:1839-1846. [DOI: 10.1248/bpb.b22-00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Takashi Isobe
- Faculty of Pharmacy, Yokohama University of Pharmacy
| | | | | | | | | |
Collapse
|
7
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
8
|
A Novel In Vitro Assay Using Human iPSC-Derived Sensory Neurons to Evaluate the Effects of External Chemicals on Neuronal Morphology: Possible Implications in the Prediction of Abnormal Skin Sensation. Int J Mol Sci 2021; 22:ijms221910525. [PMID: 34638865 PMCID: PMC8508715 DOI: 10.3390/ijms221910525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal morphological changes in the epidermis are considered to be one of causes of abnormal skin sensations in dry skin-based skin diseases. The present study aimed to develop an in vitro model optimised for human skin to test the external factors that lead to its exacerbation. Human-induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) were used as a model of human sensory neurons. The effects of chemical substances on these neurons were evaluated by observing the elongation of nerve fibers, incidence of blebs (bead-like swellings), and the expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2). The nerve fiber length increased upon exposure to two common cosmetic preservatives-methylparaben and phenoxyethanol-but not to benzo[a]pyrene, an air pollutant at the estimated concentrations in the epidermis. Furthermore, the incidence of blebs increased upon exposure to benzo[a]pyrene. However, there was a decrease in the expression of NMNAT2 in nerve fibers, suggesting degenerative changes. No such degeneration was found after methylparaben or phenoxyethanol at the estimated concentrations in the epidermis. These findings suggest that methylparaben and phenoxyethanol promote nerve elongation in hiPSC-SNs, whereas benzo[a]pyrene induces nerve degeneration. Such alterations may be at least partly involved in the onset and progression of sensitive skin.
Collapse
|
9
|
Startek JB, Milici A, Naert R, Segal A, Alpizar YA, Voets T, Talavera K. The Agonist Action of Alkylphenols on TRPA1 Relates to Their Effects on Membrane Lipid Order: Implications for TRPA1-Mediated Chemosensation. Int J Mol Sci 2021; 22:ijms22073368. [PMID: 33806007 PMCID: PMC8037438 DOI: 10.3390/ijms22073368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.
Collapse
Affiliation(s)
- Justyna B. Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Alina Milici
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Yeranddy A. Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
10
|
Startek JB, Talavera K. Lipid Raft Destabilization Impairs Mouse TRPA1 Responses to Cold and Bacterial Lipopolysaccharides. Int J Mol Sci 2020; 21:E3826. [PMID: 32481567 PMCID: PMC7312353 DOI: 10.3390/ijms21113826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Transient Receptor Potential ankyrin 1 cation channel (TRPA1) is expressed in nociceptive sensory neurons and epithelial cells, where it plays key roles in the detection of noxious stimuli. Recent reports showed that mouse TRPA1 (mTRPA1) localizes in lipid rafts and that its sensitivity to electrophilic and non-electrophilic agonists is reduced by cholesterol depletion from the plasma membrane. Since effects of manipulating membrane cholesterol levels on other TRP channels are known to vary across different stimuli we here tested whether the disruption of lipid rafts also affects mTRPA1 activation by cold or bacterial lipopolysaccharides (LPS). Cooling to 12 °C, E. coli LPS and allyl isothiocyanate (AITC) induced robust Ca2+ responses in CHO-K1 cells stably transfected with mTRPA1. The amplitudes of the responses to these stimuli were significantly lower in cells treated with the cholesterol scavenger methyl β-cyclodextrin (MCD) or with the sphingolipids hydrolyzer sphingomyelinase (SMase). This effect was more prominent with higher concentrations of the raft destabilizers. Our data also indicate that reduction of cholesterol does not alter the expression of mTRPA1 in the plasma membrane in the CHO-K1 stable expression system, and that the most salient effect is that on the channel gating. Our findings further indicate that the function of mTRPA1 is regulated by the local lipid environment and suggest that targeting lipid-TRPA1 interactions may be a strategy for the treatment of pain and neurogenic inflammation.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium;
| |
Collapse
|
11
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
12
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Lidocaine lubricants for intubation-related complications: a systematic review and meta-analysis. Can J Anaesth 2019; 66:1221-1239. [DOI: 10.1007/s12630-019-01408-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
|
14
|
Kita T, Uchida K, Kato K, Suzuki Y, Tominaga M, Yamazaki J. FK506 (tacrolimus) causes pain sensation through the activation of transient receptor potential ankyrin 1 (TRPA1) channels. J Physiol Sci 2019; 69:305-316. [PMID: 30478741 PMCID: PMC10717736 DOI: 10.1007/s12576-018-0647-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
FK506 (tacrolimus) is an immunosuppressant widely used as an ointment in the treatment of atopic dermatitis. However, local application of FK506 can evoke burning sensations in atopic dermatitis patients, and its mechanisms are unknown. In this study, we found that FK506 activates transient receptor potential ankyrin 1 (TRPA1) channels. In Ca2+-imaging experiments, increases in intracellular Ca2+ concentrations ([Ca2+]i) by FK506 were observed in HEK293T cells expressing hTRPA1 or hTRPM8. FK506-induced currents were observed in HEK293T cells expressing hTRPA1 or mTRPA1, but less or not at all in cells expressing hTRPV1 or hTRPM8 using a patch-clamp technique. FK506 also evoked single-channel opening of hTRPA1 in an inside-out configuration. FK506-induced [Ca2+]i increases were also observed in TRPA1-expressing mouse primary sensory neurons. Furthermore, injection of FK506 evoked licking or biting behaviors and these behaviors were almost abolished in TRPA1 knockout mice. These results indicate that FK506 might cause pain sensations through TRPA1 activation.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| | - Kenichi Kato
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| |
Collapse
|
15
|
Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019; 20:E371. [PMID: 30654572 PMCID: PMC6359677 DOI: 10.3390/ijms20020371] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC, E-03550 Alicante , Spain.
| |
Collapse
|
16
|
Matsuoka T, Endo Y, Kurohane K, Imai Y. Skin Sensitization to Fluorescein Isothiocyanate Is Enhanced by Butyl Paraben in a Mouse Model. Biol Pharm Bull 2018; 41:1853-1858. [PMID: 30282852 DOI: 10.1248/bpb.b18-00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contact hypersensitivity (CHS) to preservatives is receiving increased attention. Parabens are widely used in foods, pharmaceutics and cosmetics as preservatives. The skin sensitizing activity of parabens remains controversial but a few investigations have been made as to whether parabens could facilitate sensitization to other chemicals. We have shown that di-n-butyl phthalate (DBP), a phthalate ester, has an adjuvant effect in a fluorescein isothiocyanate (FITC)-induced CHS mouse model. We have also demonstrated that DBP activates transient receptor potential ankyrin 1 (TRPA1) cation channels expressed on sensory neurons. Comparative studies of phthalate esters revealed that TRPA1 agonistic activity and the adjuvant effect on FITC-CHS coincide. Here we focused on two commonly used parabens, butyl paraben (BP) and ethyl paraben (EP), as to their adjuvant effects. BALB/c mice were epicutneously sensitized with FITC in acetone in the presence or absence of a paraben. Sensitization to FITC was evaluated as the ear-swelling response after FITC challenge. BP but not EP enhanced skin sensitization to FITC, but the effect of BP was much weaker than that of DBP. Mechanistically, BP enhanced the trafficking of FITC-presenting CD11c+ dendritic cells (DCs) from the skin to draining lymph nodes as well as cytokine production by draining lymph nodes. When the TRPA1 agonistic activity was measured with a cell line expressing TRPA1, BP exhibited higher activity than EP. The present study provides direct in vivo evidence that BP causes sensitization to other chemicals by means of a mouse FITC-CHS model.
Collapse
Affiliation(s)
- Takeshi Matsuoka
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yukina Endo
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
17
|
β-Eudesmol, an oxygenized sesquiterpene, stimulates appetite via TRPA1 and the autonomic nervous system. Sci Rep 2017; 7:15785. [PMID: 29150643 PMCID: PMC5693998 DOI: 10.1038/s41598-017-16150-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel, which is activated by various noxious or irritant substances in nature. TRPA1 activators have been generally recognized as noxious, however, foods and beverages containing TRPA1 activators are preferably consumed; the reasons for this discrepancy are not well understood. We demonstrate that TRPA1 is involved in the stimulatory appetite control mechanism. β-Eudesmol is an oxygenated sesquiterpene contained in medicinal or edible plants which activates TRPA1. Oral administration of β-eudesmol brought significant increments in food intake in rats and elevated plasma ghrelin levels. Gastric vagal nerve activity (GVNA) has been reported to affect feeding behavior. In vivo electrophysiological measurement of GVNA revealed that oral-ingestion of β-eudesmol significantly increased GVNA. This GVNA elevation was eliminated by TRPA1 inhibitor (HC-030031) treatment prior to β-eudesmol administration. The physiological effects of β-eudesmol, for example, incremental increase in food intake, ghrelin elevation and activation of GVNA, were significantly reduced in TRPA1 knockout rats. Our results indicated that β-eudesmol stimulates an increase in appetite through TRPA1, and suggests why TRPA1 activator containing foods and beverages are preferably consumed.
Collapse
|
18
|
Abstract
Hypotonic solutions can cause painful sensations in nasal and ocular mucosa through molecular mechanisms that are not entirely understood. We clarified the ability of human TRPA1 (hTRPA1) to respond to physical stimulus, and evaluated the response of hTRPA1 to cell swelling under hypotonic conditions. Using a Ca2+-imaging method, we found that modulation of AITC-induced hTRPA1 activity occurred under hypotonic conditions. Moreover, cell swelling in hypotonic conditions evoked single-channel activation of hTRPA1 in a cell-attached mode when the patch pipette was attached after cell swelling under hypotonic conditions, but not before swelling. Single-channel currents activated by cell swelling were also inhibited by a known hTRPA1 blocker. Since pre-application of thapsigargin or pretreatment with the calcium chelator BAPTA did not affect the single-channel activation induced by cell swelling, changes in intracellular calcium concentrations are likely not related to hTRPA1 activation induced by physical stimuli.
Collapse
Affiliation(s)
- Fumitaka Fujita
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Basic Research Institute, Mandom Corp., Osaka, 540-8530, Japan.
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Masayuki Takaishi
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Product Assurance Division, Mandom Corp., Osaka, 540-8530, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan.
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int 2017; 66:22-30. [PMID: 28012781 DOI: 10.1016/j.alit.2016.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Itch is an unpleasant cutaneous sensation that can arise following insect bites, exposure to plant ingredients, and some diseases. Itch can also have idiopathic causes. Itch sensations are thought to protect against external insults and toxic substances. Although itch is not directly lethal, chronic and long lasting itch in certain diseases can worsen quality of life. Therefore, the mechanisms responsible for chronic itch require careful investigation. There is a significant amount of basic research concerning itch, and the effect of various itch mediators on primary sensory neurons have been studied. Interestingly, many mediators of itch involve signaling related to transient receptor potential (TRP) channels. TRP channels, especially thermosensitive TRP channels, are expressed by primary sensory neurons and skin keratinocytes, which receive multimodal stimuli, including those that cause itch sensations. Here we review the molecular and cellular mechanisms of itch and the involvement of TRP channels in mediating itch sensations.
Collapse
|
20
|
Er M, Değirmencioğlu İ, Tahtacı H. Novel olefinic-centered macroacyclic compounds involving tetrasubstituted 4-hydroxybenzoic acid fragments: synthesis, structural characterization and comparison of experimental and computational results. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 139:68-74. [PMID: 25554954 DOI: 10.1016/j.saa.2014.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/17/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Dialkyl 4,4'-(2-(1,3-bis(4-(alkoxycarbonyl)phenoxy)propan-2-ylidene)propane-1,3-diyl)bis (oxy)dibenzoate 6a,b were synthesized through the reaction of ethene-1,1,2,2,-tetra-yl-tetra methylene tetra bromide 1 with methyl 4-hydroxy benzoate or ethyl 4-hydroxy benzoate 2a,b. In addition, compounds 6a,b were obtained by using the esterification reaction from the reaction compound 5 with methyl and ethyl alcohol in high yields. Compound 4 was synthesized from the reaction of ethene-1,1,2,2,-tetra-yl-tetra methylene tetra bromide 1 with 4-hydroxy benzonitrile 3. The structures of the novel synthesized compounds were confirmed by IR, (1)H NMR, (13)C NMR, COSY, elemental analysis, and mass spectral data. Compound 6b, C42H44O12, was also characterized with additional analysis such as UV-vis, and X-ray spectral techniques. The electronic structure of compound 6b was studied by DFT level 6-31G∗(d,p) using X-ray crystallographic data. The results obtained from this study are consistent with the X-ray data. In order to understand the electronic transitions of the compound 6b, time dependent density functional theory (TD-DFT) calculations were carried out. TD-DFT studies showed that the low-energy excitations are consistent with the experimental results.
Collapse
Affiliation(s)
- Mustafa Er
- Department of Chemistry, Faculty of Science, Karabuk University, 78050 Karabuk, Turkey.
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Hakan Tahtacı
- Department of Polymer Engineering, Faculty of Technology, Karabuk University, 78050 Karabuk, Turkey.
| |
Collapse
|
21
|
Ikeda-Miyagawa Y, Kobayashi K, Yamanaka H, Okubo M, Wang S, Dai Y, Yagi H, Hirose M, Noguchi K. Peripherally increased artemin is a key regulator of TRPA1/V1 expression in primary afferent neurons. Mol Pain 2015; 11:8. [PMID: 25889103 PMCID: PMC4357199 DOI: 10.1186/s12990-015-0004-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Artemin, a member of the glial cell line-derived neurotrophic factor family, is known to have a variety of neuronal functions, and has been the subject of attention because it has interesting effects, including bi-directional results in modulation in neuropathic and inflammatory pain. It has been shown that the overexpression of artemin is associated with an increase in the expression of TRP family channels in primary afferents and subsequent hyperalgesia, and an increase in neuronal activity. The purpose of this study was to examine the peripheral synthesis of artemin in inflammatory and neuropathic pain models, and to demonstrate the effects of long-term or repeated application of artemin in vivo on pain behaviors and on the expression of TRP family channels. Further, the regulatory mechanisms of artemin on TRPV1/A1 were examined using cultured DRG neurons. RESULTS We have demonstrated that artemin is locally elevated in skin over long periods of time, that artemin signals significantly increase in deep layers of the epidermis, and also that it is distributed over a broad area of the dermis. In contrast, NGF showed transient increases after peripheral inflammation. It was confirmed that the co-localization of TRPV1/A1 and GFRα3 was higher than that between TRPV1/A1 and TrkA. In the peripheral sciatic nerve trunk, the synthesis of artemin was found by RT-PCR and in situ hybridization to increase at a site distal to a nerve injury. We demonstrated that in vivo repeated artemin injections into the periphery changed the gene expression of TRPV1/A1 in DRG neurons without affecting GFRα3 expression. Repeated artemin injections also induced mechanical and heat hyperalgesia. Using primary cultured DRG neurons, we found that artemin application significantly increased TRPV1/A1 expression and Ca(2+) influx. Artemin-induced p38 MAPK pathway regulated the TRPV1 channel expression, however TRPA1 upregulation by artemin is not mediated through p38 MAPK. CONCLUSIONS These data indicate the important roles of peripherally-derived artemin on the regulation of TRPV1/A1 in DRG neurons in pathological conditions such as inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Yasuko Ikeda-Miyagawa
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan. .,Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, 650-8530, Japan.
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, 650-8530, Japan.
| | - Hideshi Yagi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Munetaka Hirose
- Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
22
|
Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci 2014; 64:47-57. [PMID: 24122170 PMCID: PMC3889502 DOI: 10.1007/s12576-013-0289-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/02/2013] [Indexed: 11/16/2022]
Abstract
TRPA1, one of the transient receptor potential channels, has been reported to be involved in nociception and inflammatory pain, suggesting that this molecule could be a promising target for the development of analgesic agents. We screened several monoterpene analogs of camphor, which is known to inhibit human (h) TRPA1, to identify more effective naturally occurring TRPA1 antagonists. Borneol, 2-methylisoborneol, and fenchyl alcohol exhibited higher inhibitory effects on hTRPA1 activity than either camphor or 1,8-cineole. Our results revealed further that the S873, T874, and Y812 residues of hTRPA1 were involved in the inhibitory effects, suggesting that the hydroxyl group in the six-membered ring of the inhibitors may be interacting with these amino acids. Further research on these identified TRPA1 antagonists could lead to new pain therapeutics.
Collapse
|
23
|
Zhou Y, Suzuki Y, Uchida K, Tominaga M. Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat Commun 2014; 4:2399. [PMID: 24008932 PMCID: PMC5882232 DOI: 10.1038/ncomms3399] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) protein is a nonselective cation channel. Although many studies suggest that TRPA1 is involved in inflammatory and neuropathic pain, its mechanism remains unclear. Here we identify an alternative splice variant of the mouse Trpa1 gene. TRPA1a (full-length) and TRPA1b (splice variant) physically interact with each other and TRPA1b increases the expression of TRPA1a in the plasma membrane. TRPA1a and TRPA1b co-expression significantly increases current density in response to different agonists without affecting their single-channel conductance. Exogenous overexpression of Trpa1b gene in wild-type and TRPA1KO DRG neurons also increases TRPA1a-mediated AITC responses. Moreover, expression levels of Trpa1a and Trpa1b mRNAs change dynamically in two pain models (complete Freund’s adjuvant-induced inflammatory pain and partial sciatic nerve ligation-induced neuropathic pain models). These results suggest that TRPA1 may be regulated through alternative splicing under these pathological conditions. TRPA1 is a transient receptor potential channel family member and is involved in the detection of nociceptive stimuli. Zhou et al. identify an alternative splice variant of TRPA1, which increases TRPA1 plasma expression and channel function, and enhances pain-like behaviour in mice.
Collapse
Affiliation(s)
- Yiming Zhou
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
24
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
25
|
Wang S, Dai Y, Kogure Y, Yamamoto S, Zhang W, Noguchi K. Etodolac activates and desensitizes transient receptor potential ankyrin 1. J Neurosci Res 2013; 91:1591-8. [DOI: 10.1002/jnr.23274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Shenglan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal UniversityBeijing China
- Department of PharmacySchool of Pharmacy, Hyogo University of Health SciencesKobe Hyogo Japan
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiya Hyogo Japan
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of MedicineKobe Hyogo Japan
| | - Yi Dai
- Department of PharmacySchool of Pharmacy, Hyogo University of Health SciencesKobe Hyogo Japan
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiya Hyogo Japan
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of MedicineKobe Hyogo Japan
| | - Yoko Kogure
- Department of PharmacySchool of Pharmacy, Hyogo University of Health SciencesKobe Hyogo Japan
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiya Hyogo Japan
| | - Satoshi Yamamoto
- Department of PharmacySchool of Pharmacy, Hyogo University of Health SciencesKobe Hyogo Japan
| | - Wensheng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal UniversityBeijing China
| | - Koichi Noguchi
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiya Hyogo Japan
| |
Collapse
|
26
|
Liao C, Chen L, Kannan K. Occurrence of parabens in foodstuffs from China and its implications for human dietary exposure. ENVIRONMENT INTERNATIONAL 2013; 57-58:68-74. [PMID: 23685225 DOI: 10.1016/j.envint.2013.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid and are used as antimicrobial preservatives in a range of consumer products, including cosmetics, pharmaceuticals, and foodstuffs. Despite their widespread use, prior to this study, paraben concentrations in foodstuffs from China and human dietary exposure to these chemicals have been unknown. In this study, concentrations of six parabens were determined in 13 categories of food samples (n=282), including cereals and cereal products, meat, fish and seafood, eggs, dairy products, bean products, fruits, vegetables, cookies, beverages, cooking oils, condiments, and others, collected from nine cities in China. Almost all (detection rate: 99%) food samples contained at least one of the parabens analyzed, and the total concentrations (ΣParabens; sum of six parabens) ranged from below limit of quantification (LOQ) to 2530ng/g fresh weight, with an overall mean value of 39.3ng/g. Methyl paraben (MeP), ethyl paraben (EtP), and propyl paraben (PrP) were the major paraben analogs found in foodstuffs, and these compounds accounted for 59%, 24%, and 10%, respectively, of ΣParaben concentrations. Although the mean concentrations of ΣParabens varied among different categories of food items (from 0.839ng/g in beverages to 100ng/g in vegetables), the concentrations were not statistically significant among the 13 food categories, including canned foodstuffs. Estimated daily intake (EDI) of parabens was based on the measured concentrations in foods and the corresponding daily food ingestion rates. The mean and 95th percentile values for EDI were 1010 and 3040ng/kg body weight (bw)/day for adult men and 1060 and 3170ng/kg bw/day for adult women, respectively.
Collapse
Affiliation(s)
- Chunyang Liao
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | | | | |
Collapse
|
27
|
Radulović NS, Zlatković DB, Randjelović PJ, Stojanović NM, Novaković SB, Akhlaghi H. Chemistry of spices: bornyl 4-methoxybenzoate from Ferula ovina (Boiss.) Boiss. (Apiaceae) induces hyperalgesia in mice. Food Funct 2013; 4:1751-8. [DOI: 10.1039/c3fo60319a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Abstract
BACKGROUND Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies. However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a sensor of noxious cold. Ideally, an effective analgesic compound would activate TRPM8 and inhibit TRPA1. RESULTS We screened essential oils and fragrance chemicals showing a high ratio of human TRPM8-activating ability versus human TRPA1-activating ability using a Ca2+-imaging method, and identified 1,8-cineole in eucalyptus oil as particularly effective. Patch-clamp experiments confirmed that 1,8-cineole evoked inward currents in HEK293T cells expressing human TRPM8, but not human TRPA1. In addition, 1,8-cineole inhibited human TRPA1 currents activated by allyl isothiocyanate, menthol, fulfenamic acid or octanol in a dose-dependent manner. Furthermore, in vivo sensory irritation tests showed that 1,8-cineole conferred an analgesic effect on sensory irritation produced by TRPA1 agonists octanol and menthol. Surprisingly, 1,4-cineole, which is structurally similar and also present in eucalyptus oil, activated both human TRPM8 and human TRPA1. CONCLUSIONS 1,8-cineole is a rare natural antagonist of human TRPA1 that has analgesic and anti-inflammatory effects possibly due to its inhibition of TRPA1.
Collapse
|
29
|
Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain 2012. [PMID: 23192000 PMCID: PMC3567430 DOI: 10.1186/1744-8069-8-86] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies. However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a sensor of noxious cold. Ideally, an effective analgesic compound would activate TRPM8 and inhibit TRPA1. Results We screened essential oils and fragrance chemicals showing a high ratio of human TRPM8-activating ability versus human TRPA1-activating ability using a Ca2+-imaging method, and identified 1,8-cineole in eucalyptus oil as particularly effective. Patch-clamp experiments confirmed that 1,8-cineole evoked inward currents in HEK293T cells expressing human TRPM8, but not human TRPA1. In addition, 1,8-cineole inhibited human TRPA1 currents activated by allyl isothiocyanate, menthol, fulfenamic acid or octanol in a dose-dependent manner. Furthermore, in vivo sensory irritation tests showed that 1,8-cineole conferred an analgesic effect on sensory irritation produced by TRPA1 agonists octanol and menthol. Surprisingly, 1,4-cineole, which is structurally similar and also present in eucalyptus oil, activated both human TRPM8 and human TRPA1. Conclusions 1,8-cineole is a rare natural antagonist of human TRPA1 that has analgesic and anti-inflammatory effects possibly due to its inhibition of TRPA1.
Collapse
Affiliation(s)
- Masayuki Takaishi
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
31
|
Komatsu T, Uchida K, Fujita F, Zhou Y, Tominaga M. Primary alcohols activate human TRPA1 channel in a carbon chain length-dependent manner. Pflugers Arch 2012; 463:549-59. [PMID: 22222967 DOI: 10.1007/s00424-011-1069-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is mainly expressed in primary nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent compounds such as mustard oil and cinnamaldehyde, and intracellular alkalization. Here, we show that primary alcohols, which have been reported to cause skin, eye or nasal irritation, activate human TRPA1 (hTRPA1). We measured intracellular Ca(2+) changes in HEK293 cells expressing hTRPA1 induced by 1 mM primary alcohols. Higher alcohols (1-butanol to 1-octanol) showed Ca(2+) increases proportional to the carbon chain length. In whole-cell patch-clamp recordings, higher alcohols (1-hexanol to 1-octanol) activated hTRPA1 and the potency increased with the carbon chain length. Higher alcohols evoked single-channel opening of hTRPA1 in an inside-out configuration. In addition, cysteine at 665 in the N terminus and histidine at 983 in the C terminus were important for hTRPA1 activation by primary alcohols. Furthermore, straight-chain secondary alcohols increased intracellular Ca(2+) concentrations in HEK293 cells expressing hTRPA1, and both primary and secondary alcohols showed hTRPA1 activation activities that correlated highly with their octanol/water partition coefficients. On the other hand, mouse TRPA1 did not show a strong response to 1-hexanol or 1-octanol, nor did these alcohols evoke significant pain in mice. We conclude that primary and secondary alcohols activate hTRPA1 in a carbon chain length-dependent manner. TRPA1 could be a sensor of alcohols inducing skin, eye and nasal irritation in human.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, Japan
| | | | | | | | | |
Collapse
|
32
|
Recent advances in the biology and medicinal chemistry of TRPA1. Future Med Chem 2011; 2:843-58. [PMID: 21426205 DOI: 10.4155/fmc.10.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is a nonselective cation channel that is highly expressed in small-diameter sensory neurons, where it functions as a polymodal receptor, responsible for detecting potentially harmful chemicals, mechanical forces and temperatures. TRPA1 is also activated and/or sensitized by multiple endogenous inflammatory mediators. As such, TRPA1 likely mediates the pain and neurogenic inflammation caused by exposure to reactive chemicals. In addition, it is also possible that this channel may mediate some of the symptoms of chronic inflammatory conditions such as asthma. We review recent advances in the biology of TRPA1 and summarize the evidence for TRPA1 as a therapeutic drug target. In addition, we provide an update on TRPA1 medicinal chemistry and the progress in the search for novel TRPA1 antagonists.
Collapse
|
33
|
Yoshida N, Kobayashi K, Yu L, Wang S, Na R, Yamamoto S, Noguchi K, Dai Y. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin. Mol Pain 2011; 7:41. [PMID: 21619614 PMCID: PMC3123585 DOI: 10.1186/1744-8069-7-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/27/2011] [Indexed: 01/10/2023] Open
Abstract
Background The transient receptor potential (TRP) channel subtype A1 (TRPA1) is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC). Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF) family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3), and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.
Collapse
Affiliation(s)
- Naoki Yoshida
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo 650-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
35
|
Nagatomo K, Ishii H, Yamamoto T, Nakajo K, Kubo Y. The Met268Pro mutation of mouse TRPA1 changes the effect of caffeine from activation to suppression. Biophys J 2011; 99:3609-18. [PMID: 21112285 DOI: 10.1016/j.bpj.2010.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 11/15/2022] Open
Abstract
The transient receptor potential A1 channel (TRPA1) is activated by various compounds, including isothiocyanates, menthol, and cinnamaldehyde. The sensitivities of the rodent and human isoforms of TRPA1 to menthol and the cysteine-attacking compound CMP1 differ, and the molecular determinants for these differences have been identified in the 5th transmembrane region (TM5) for menthol and TM6 for CMP1. We recently reported that caffeine activates mouse TRPA1 (mTRPA1) but suppresses human TRPA1 (hTRPA1). Here we aimed to identify the molecular determinant that is responsible for species-specific differences in the response to caffeine by analyzing the functional properties of various chimeras expressed in Xenopus oocytes. We initially found that the region between amino acids 231 and 287, in the distal N-terminal cytoplasmic region of mTRPA1, is critical. In a mutagenesis study of this region, we subsequently observed that introduction of a Met268Pro point mutation into mTRPA1 changed the effect of caffeine from activation to suppression. Because the region including Met-268 is different from other reported ligand-binding sites and from the EF-hand motif, these results suggest that the caffeine response is mediated by a unique mechanism, and confirm the importance of the distal N-terminal region for regulation of TRPA1 channel activity.
Collapse
Affiliation(s)
- Katsuhiro Nagatomo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Graduate University for Advanced Studies, Aichi, Japan
| | | | | | | | | |
Collapse
|
36
|
Mitrovic M, Shahbazian A, Bock E, Pabst MA, Holzer P. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels. Br J Pharmacol 2010; 160:1430-42. [PMID: 20590633 DOI: 10.1111/j.1476-5381.2010.00794.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modified by mild colitis, morphine or a TRPA1 channel blocker. EXPERIMENTAL APPROACH One hour after intracolonic administration of AITC to female mice, afferent signalling was visualized by expression of c-Fos in laminae I-II(o) of the spinal dorsal horn at sacral segment S1. Mild colitis was induced by dextran sulphate sodium (DSS) added to drinking water for 1 week. KEY RESULTS Relative to vehicle, AITC (2%) increased expression of c-Fos in the spinal cord. Following induction of mild colitis by DSS (2%), spinal c-Fos responses to AITC, but not vehicle, were augmented by 41%. Colonic inflammation was present (increased myeloperoxidase content and disease activity score), whereas colonic histology, locomotion, feeding and drinking remained unchanged. Morphine (10 mg.kg(-1)) or the TRPA1 channel blocker HC-030031 (300 mg.kg(-1)) inhibited the spinal c-Fos response to AITC, in control and DSS-pretreated animals, whereas the response to intracolonic capsaicin (5%) was blocked by morphine but not HC-030031. CONCLUSIONS AND IMPLICATIONS Activation of colonic TRPA1 channels is signalled to the spinal cord. Mild colitis enhanced this afferent input that, as it is sensitive to morphine, is most likely of a chemonociceptive nature. As several irritant chemicals can be present in chyme, TRPA1 channels may mediate several gastrointestinal pain conditions.
Collapse
Affiliation(s)
- Martina Mitrovic
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
37
|
Honma K, Kamachi M, Akamatsu Y, Yoshioka M, Yamashita N. Lidocaine spray 10 min prior to intubation: effects on postoperative sore throat. J Anesth 2010; 24:962-5. [DOI: 10.1007/s00540-010-1013-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
38
|
Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 2010; 53:5085-107. [PMID: 20356305 DOI: 10.1021/jm100062h] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, Ferrara University, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | |
Collapse
|
39
|
da Costa DSM, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 2010; 148:431-437. [DOI: 10.1016/j.pain.2009.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/15/2009] [Accepted: 12/01/2009] [Indexed: 12/21/2022]
|
40
|
Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, Undem BJ, Kollarik M, Chen ZF, Anderson DJ, Dong X. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 2009; 139:1353-65. [PMID: 20004959 PMCID: PMC2989405 DOI: 10.1016/j.cell.2009.11.034] [Citation(s) in RCA: 596] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 09/14/2009] [Accepted: 11/04/2009] [Indexed: 12/13/2022]
Abstract
The cellular and molecular mechanisms mediating histamine-independent itch in primary sensory neurons are largely unknown. Itch induced by chloroquine (CQ) is a common side effect of this widely used antimalarial drug. Here, we show that Mrgprs, a family of G protein-coupled receptors expressed exclusively in peripheral sensory neurons, function as itch receptors. Mice lacking a cluster of Mrgpr genes display significant deficits in itch induced by CQ but not histamine. CQ directly excites sensory neurons in an Mrgpr-dependent manner. CQ specifically activates mouse MrgprA3 and human MrgprX1. Loss- and gain-of-function studies demonstrate that MrgprA3 is required for CQ responsiveness in mice. Furthermore, MrgprA3-expressing neurons respond to histamine and coexpress gastrin-releasing peptide, a peptide involved in itch sensation, and MrgprC11. Activation of these neurons with the MrgprC11-specific agonist BAM8-22 induces itch in wild-type but not mutant mice. Therefore, Mrgprs may provide molecular access to itch-selective neurons and constitute novel targets for itch therapeutics.
Collapse
Affiliation(s)
- Qin Liu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Zongxiang Tang
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Lenka Surdenikova
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
- Department of Pathophysiology, Jessenius Medical School, Martin, Slovakia
| | - Seungil Kim
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine Pain Center, St. Louis, MO 63110
| | - Kush N. Patel
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Andrew Kim
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Fei Ru
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Yun Guan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Hao-Jui Weng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Yixun Geng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Bradley J. Undem
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Marian Kollarik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Zhou-Feng Chen
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine Pain Center, St. Louis, MO 63110
| | - David J. Anderson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
- Howard Hughes Medical Institute
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute
| |
Collapse
|
41
|
Iwasaki Y, Tanabe M, Kayama Y, Abe M, Kashio M, Koizumi K, Okumura Y, Morimitsu Y, Tominaga M, Ozawa Y, Watanabe T. Miogadial and miogatrial with α,β-unsaturated 1,4-dialdehyde moieties—Novel and potent TRPA1 agonists. Life Sci 2009; 85:60-9. [DOI: 10.1016/j.lfs.2009.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 02/12/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
42
|
Tavares RS, Martins FC, Oliveira PJ, Ramalho-Santos J, Peixoto FP. Parabens in male infertility—Is there a mitochondrial connection? Reprod Toxicol 2009; 27:1-7. [DOI: 10.1016/j.reprotox.2008.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 09/16/2008] [Accepted: 10/10/2008] [Indexed: 11/17/2022]
|
43
|
Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M. Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest 2008; 118:4049-57. [PMID: 19033673 DOI: 10.1172/jci35957] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022] Open
Abstract
Vertebrate cells require a very narrow pH range for survival. Cells accordingly possess sensory and defense mechanisms for situations where the pH deviates from the viable range. Although the monitoring of acidic pH by sensory neurons has been attributed to several ion channels, including transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs), the mechanisms by which these cells detect alkaline pH are not well understood. Here, using Ca2+ imaging and patch-clamp recording, we showed that alkaline pH activated transient receptor potential cation channel, subfamily A, member 1 (TRPA1) and that activation of this ion channel was involved in nociception. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration, indicating that alkaline pH activated TRPA1 from the inside. Analyses of mutants suggested that the two N-terminal cysteine residues in TRPA1 were involved in activation by intracellular alkalization. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors that were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1 and may provide a molecular explanation for some of the human alkaline pH-related sensory disorders whose mechanisms are largely unknown.
Collapse
Affiliation(s)
- Fumitaka Fujita
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute of Natural Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A 2008; 105:17373-8. [PMID: 18988737 DOI: 10.1073/pnas.0809769105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Ca(2+)(i) imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity.
Collapse
|
45
|
John Haynes W, Zhou XL, Su ZW, Loukin SH, Saimi Y, Kung C. Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS Lett 2008; 582:1514-8. [PMID: 18396169 DOI: 10.1016/j.febslet.2008.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 11/29/2022]
Abstract
The yeast TRPY1 (Yvc1p) channel is activated by membrane stretch to release vacuolar Ca2+ into the cytoplasm upon osmotic upshock. Exogenously added indole greatly enhances the upshock-induced Ca2+ release in vivo. Indole also reversibly activates the channels under patch clamp. A minimum of 10(-6)M Ca2+ is needed for membrane stretch force to open TPRY1, but indole activation appears to be Ca2+ independent. A deletion of 30 residues at the predicted cytoplasmic domain, 570-600Delta, renders TRPY1 insensitive to stretch force upto 10(-3)M Ca2+. Nonetheless, indole readily activates this mutant channel. Several other aromatic compounds, e.g. the antimicrobial parabens, also activate TRPY1. These compounds likely alter the innate forces in the lipid bilayer received by the channel.
Collapse
Affiliation(s)
- W John Haynes
- Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States
| | | | | | | | | | | |
Collapse
|
46
|
Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. ACTA ACUST UNITED AC 2008; 131:1241-51. [PMID: 18356188 DOI: 10.1093/brain/awn060] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bradykinin is an inflammatory mediator that plays a pivotal role in pain and hyperalgesia in inflamed tissues by exciting and/or sensitizing nociceptors. TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain. Here, using electrophysiological, immunocytochemical and behavioural analyses, we showed a functional interaction of these two inflammation-related molecules in both heterologous expressing systems and primary sensory neurons. We found that bradykinin increased the TRPA1 currents evoked by allyl isothiocyanate (AITC) or cinnamaldehyde in HEK293 cells expressing TRPA1 and bradykinin receptor 2 (B2R). This potentiation was inhibited by phospholipase C (PLC) inhibitor or protein kinase A (PKA) inhibitor, and mimicked by PLC or PKA activator. The functional interaction between B2R and TRPA1, as well as the modulation mechanism, was also observed in rat dorsal root ganglia neurons. In an occlusion experiment, the PLC activator could enhance AITC-induced TRPA1 current further even in saturated PKA-mediated potentiation, indicating the additive potentiating effects of the PLC and PKA pathways. These data for the first time indicate that a cAMP-PKA signalling is involved in the downstream from B2R in dorsal root ganglia neurons in addition to PLC. Finally, subcutaneous pre-injection of a sub-inflammatory dose of bradykinin into rat hind paw enhanced AITC-induced pain behaviours, which was consistent with the observations in vitro. Collectively, these results represent a novel mechanism through which bradykinin released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW. Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 2008; 153:1739-49. [PMID: 18334983 DOI: 10.1038/bjp.2008.85] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Thymol, a major component of thyme and oregano, has medical uses in oral care products as an astringent and antibiotic. Its distinctive sharp odour and pungent flavour are considered aversive properties. The molecular basis of these aversive properties is not well understood. EXPERIMENTAL APPROACH The ability of thymol to activate human transient receptor potential channel A1 (hTRPA1) expressed in stably transfected human embryonic kidney 293 (HEK293) cells was measured by membrane potential and calcium-sensitive dyes in a fluorescence-imaging plate reader (FLIPR) assay. Direct activation of hTRPA1 currents was measured by whole-cell voltage clamp recording. Intracellular calcium changes were measured using fura-2 dye. The FLIPR assay was also used to measure membrane potential changes elicited by thymol after pretreatment with camphor, a known TRPA1 inhibitor. The ability of related alkyl phenols to activate hTRPA1 was also determined. KEY RESULTS Thymol potently activated a membrane potential response and intracellular calcium increase in hTRPA1-expressing HEK293 cells in a concentration-dependent manner. Activation by thymol desensitized hTRPA1 to further exposure to thymol or the known ligand allyl isothiocyanate (AITC). The related phenols 2-tert-butyl-5-methylphenol, 2,6-diisopropylphenol (propofol) and carvacrol also activated hTRPA1. Phenols with less bulky carbon substitutions and lower logP values were less potent in general. The response to thymol was blocked by camphor. CONCLUSIONS AND IMPLICATIONS These results suggest a role for hTRPA1 activation in the reported pungent and aversive properties of some of these pharmaceutically important phenols.
Collapse
Affiliation(s)
- S P Lee
- Discovery Research, Redpoint Bio Corporation, Ewing, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Maher M, Ao H, Banke T, Nasser N, Wu NT, Breitenbucher JG, Chaplan SR, Wickenden AD. Activation of TRPA1 by Farnesyl Thiosalicylic Acid. Mol Pharmacol 2008; 73:1225-34. [DOI: 10.1124/mol.107.042663] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Bang S, Kim KY, Yoo S, Kim YG, Hwang SW. Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 2007; 26:2516-23. [PMID: 17970723 DOI: 10.1111/j.1460-9568.2007.05882.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six transient receptor potential (TRP) ion channels expressed in the sensory afferents play an important role as body thermosensors and also as peripheral pain detectors. It is known that a number of natural compounds specifically activate those sensory neuronal TRP channels, and a well-known example is cinnamaldehyde for TRPA1. Here we show that human and mouse TRPA1 are activated by acetaldehyde, an intermediate substance of ethanol metabolism, in the HEK293T cell heterologous expression system and in cultured mouse trigeminal neurons. Acetaldehyde failed to activate other temperature-sensitive TRP channels expressed in sensory neurons. TRPA1 antagonists camphor and gadolinium, and a general TRP blocker ruthenium red inhibited TRPA1 activation by acetaldehyde. Camphor, gadolinium and ruthenium red also suppressed the acute nociceptive behaviors induced by the intradermal administration of acetaldehyde into the mouse footpads. Intradermal co-application of prostaglandin E2 and acetaldehyde greatly potentiated the acetaldehyde-induced nociceptive responses, and this effect was reversed by treatment with the TRPA1 antagonist camphor. These results suggest that acetaldehyde causes nociception via TRPA1 activation. Our data may also help elucidate the mechanisms underlying acetaldehyde-related pathological symptoms such as hangover pain.
Collapse
Affiliation(s)
- Sangsu Bang
- Korea University Graduate School of Medicine, Seoul 136-705, Korea
| | | | | | | | | |
Collapse
|