1
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
2
|
Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM. A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother 2023; 165:115045. [PMID: 37379643 DOI: 10.1016/j.biopha.2023.115045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Gene knockout is a technique routinely used in basic experimental research, particularly in mouse skeletal and developmental studies. Tamoxifen-induced Cre/loxp system is known for its temporal and spatial precision and commonly utilized by researchers. However, tamoxifen has been shown its side effects on affecting the phenotype of mouse bone directly. This review aimed to optimize tamoxifen administration regimens including its dosage and duration, to identify an optimal induction strategy that minimizes potential side effects while maintaining recombination efficacy. This study will help researchers in designing gene knockout experiments in bone when using tamoxifen.
Collapse
Affiliation(s)
- Ming-Yang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fu-Lin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Lin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Ru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - De-Mao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li Z, Wang Y, Wang Z, Kong L, Liu L, Li L, Tang Y. Estradiol and raloxifene as adjunctive treatment for women with schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. Acta Psychiatr Scand 2023; 147:360-372. [PMID: 36585771 DOI: 10.1111/acps.13530] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We conducted a comprehensive meta-analysis of all available trials to evaluate the efficacy and safety of estrogen and selective estrogen receptor modulators as adjunctive treatment for women with schizophrenia. METHODS Multiple databases were searched from the inception until March 2022. Only randomized, double-blind, placebo-controlled studies (randomized controlled trials) were included. Mean differences (MDs) and their 95% confidence intervals (CIs) were calculated using random effects models. RESULTS The meta-analysis included six estradiol versus placebo studies (n = 724) and seven raloxifene versus placebo studies (n = 419), covering a total of 1143 patients. Adjunctive estradiol outperformed the placebo in terms of the Positive and Negative Syndrome Scale (PANSS) total score (MD = -7.29; 95% CI = -10.67 to -3.91; I2 = 59.1%; p < 0.001; k = 9; N = 858), positive symptom score (MD = -1.54; 95% CI = -3.04 to -0.72; I2 = 45.8%; p < 0.001; k = 7; N = 624), negative symptom score (MD = -1.9; 95% CI = -1.77 to -0.34; I2 = 37.6%; p < 0.05; k = 14; N = 1042), and general psychopathology score (MD = -4.27; 95% CI = -7.14 to -1.41; I2 = 76.3%; p < 0.005; k = 7; N = 624). Adjunctive raloxifene outperformed the placebo in terms of the PANSS total score (MD = -6.83; 95% CI = -11.69 to -1.97; I2 = 67.8%; p = 0.006; k = 8; N = 432) and general psychopathology score (MD = -3.82; 95% CI = -6.36 to -1.28; I2 = 65.3%; p < 0.005; k = 8; N = 432). CONCLUSIONS Our meta-analysis showed that estradiol and raloxifene are effective and safe adjunctive treatments that improve schizophrenia symptoms in women. Moreover, the effects of estradiol and raloxifene differed in terms of timing and dosage. Both are promising adjunctive treatments that merit further study.
Collapse
Affiliation(s)
- Zijia Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yucheng Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhe Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Linzi Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liu Li
- Shenyang Women's and Children's Hospital, Shenyang, People's Republic of China
| | - Yanqing Tang
- Department of Psychiatry and Geriatrics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Gani MA, Nurhan AD, Hadinar Putri BRK, Suyatno A, Khan SA, Ardianto C, Rantam FA, Khotib J. Computational approach in searching for dual action multitarget inhibitors for osteosarcoma. J Adv Pharm Technol Res 2023; 14:18-23. [PMID: 36950466 PMCID: PMC10026319 DOI: 10.4103/japtr.japtr_541_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 03/24/2023] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor that typically manifests in the second decade of life. This study aimed to identify osteogenic compounds that potentially serve as multitarget inhibitors for osteosarcoma. The study was a molecular docking study of nine Food and Drug Administration-approved compounds with osteogenic properties to the key membrane proteins of osteosarcoma. The ligands used were raloxifene, simvastatin, dexamethasone, risedronate, ibandronate, zoledronic acid, ascorbic acid, alendronate, and β-glycerophosphate, whereas the target proteins used were RET, fibroblast growth factor receptor 1, KIT, PDGFRA, VEGFR1, and VEGFR2. Chem3D version 15.0.0.106 was used for ligand preparation, and AutoDockTools version 1.5.6 was used for protein preparation, whereas molecular docking was conducted using AutoDock Vina. Raloxifene, simvastatin, and dexamethasone had the lowest binding activity to the target proteins. The binding affinity of raloxifene was from -8.4 to -10.0 kcal mol-1, that of simvastatin was -8.3 to -9.2 kcal mol-1, whereas dexamethasone ranged from -6.9 to -9.1 kcal mol-1. Most types of interactions were hydrophobically followed by hydrogen bonding. The current study suggests that raloxifene, simvastatin, and dexamethasone have the potential to act as multitarget inhibitors for osteosarcoma with the ability to induce bone remodeling.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Ahmad Dzulikri Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Andhi Suyatno
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Shakil Ahmed Khan
- Laboratorium of Virology and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Department of Molecular Medicine and Biopharmaceutical Science, School of Convergence Science, Seoul National University, Suwon, South Korea
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
6
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Гирш ЯВ, Карева МА, Маказан НП, Давыгора ЕН. [Early manifestation and progressive multicomponent current of McCune-Albright-Braitsev syndrome in a girl 9 years old: a clinical case and literature review]. PROBLEMY ENDOKRINOLOGII 2021; 68:72-89. [PMID: 35488759 PMCID: PMC9764275 DOI: 10.14341/probl12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
McCune-Albright-Braitsev Syndrome (MAB syndrome) is a very rare multisystem disease manifested by fibrous bone dysplasia, coffee-and-milk colored spots, hyperfunction of various endocrine glands and a number of pathologies of other body systems. We present a description of a clinical case of a severe progressive course of MAB Syndrome in a nine-year-old girl. With this diagnosis, the girl is observation of the girl began when she was 2.5 years old, when spots of coffee-and-milk, polyosseous fibrous dysplasia, peripheral premature sexual development against a backdrop of estrogen--secreting ovarian cysts, multinodular goiter were detected. In the process of dynamic observation, it was noted that the child's active growth stopped against a backdrop of deformities of the skeletal system with multiple repeated fractures of the extremities; progression of skull deformity with stenosis of the optic nerve canals and deterioration of visual acuity; development of STH hypersecretion, hypophosphatemic rickets, tachycardia. Appropriate suppressive / replacement therapy was prescribed for each of the endocrine dysfunctions. The article presents algorithms for examining a girl in dynamics, criteria for choosing a component-wise management tactics and a discussion of the features of the course of all manifestations of the Syndrome.
Collapse
Affiliation(s)
| | - М. А. Карева
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. П. Маказан
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
8
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Xie Z, McGrath C, Sankaran J, Styner M, Little-Letsinger S, Dudakovic A, van Wijnen AJ, Rubin J, Sen B. Low-Dose Tamoxifen Induces Significant Bone Formation in Mice. JBMR Plus 2021; 5:e10450. [PMID: 33778320 PMCID: PMC7990151 DOI: 10.1002/jbm4.10450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Use of the selective estrogen receptor modulator Tamoxifen (TAM) is a mainstay to induce conditional expression of Cre recombinase in transgenic laboratory mice. To excise β‐cateninfl/fl in 28‐day‐old male and female Prrx1‐CreER/β‐cateninfl/fl mice (C57BL/6), we utilized TAM at 150 mg/kg; despite β‐catenin knockout in MSC, we found a significant increase in trabecular and cortical bone volume in all genders. Because TAM was similarly anabolic in KO and control mice, we investigated a dose effect on bone formation by treating wild‐type mice (WT C57BL/6, 4 weeks) with TAM (total dose 0, 20, 40, 200 mg/kg via four injections). TAM increased bone in a dose‐dependent manner analyzed by micro–computed tomography (μCT), which showed that, compared to control, 20 mg/kg TAM increased femoral bone volume fraction (bone volume/total volume [BV/TV]) (21.6% ± 1.5% to 33% ± 2.5%; 153%, p < 0.005). With TAM 40 mg/kg and 200 mg/kg, BV/TV increased to 48.1% ± 4.4% (223%, p < 0.0005) and 58% ± 3.8% (269%, p < 0.0001) respectively, compared to control. Osteoblast markers increased with 200 mg/kg TAM: Dlx5 (224%, p < 0.0001), Alp (166%, p < 0.0001), Bglap (223%, p < 0.0001), and Sp7 (228%, p < 0.0001). Osteoclasts per bone surface (Oc#/BS) nearly doubled at the lowest TAM dose (20 mg/kg), but decreased to <20% control with 200 mg/kg TAM. Our data establish that use of TAM at even very low doses to excise a floxed target in postnatal mice has profound effects on trabecular and cortical bone formation. As such, TAM treatment is a major confounder in the interpretation of bone phenotypes in conditional gene knockout mouse models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Cody McGrath
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Jeyantt Sankaran
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Maya Styner
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | | | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Janet Rubin
- Department of Medicine University of North Carolina Chapel Hill NC USA
| | - Buer Sen
- Department of Medicine University of North Carolina Chapel Hill NC USA
| |
Collapse
|
10
|
Mavingire N, Campbell P, Wooten J, Aja J, Davis MB, Loaiza-Perez A, Brantley E. Cancer stem cells: Culprits in endocrine resistance and racial disparities in breast cancer outcomes. Cancer Lett 2020; 500:64-74. [PMID: 33309858 DOI: 10.1016/j.canlet.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt pathway regulation of BCSC activity and potential strategies to target these pathways to counteract endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene levels and reduced survival observed among African American women with basal-like breast cancer which lacks HR expression. Should future studies reveal a similar link for patients with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly effective in improving clinical outcomes among African American breast cancer patients.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Jonathan Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Joyce Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New York, NY, USA.
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin, 5481, C1417 DTB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA.
| |
Collapse
|
11
|
Pinkerton JV, Conner EA. Beyond estrogen: advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric 2020; 22:140-147. [PMID: 30895900 DOI: 10.1080/13697137.2019.1568403] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are synthetic non-steroidal agents which have variable estrogen agonist and antagonist activities in different target tissues. Tamoxifen is an anti-estrogen in the breast used for treatment and prevention of breast cancer, with estrogen agonist activity in the uterus. Raloxifene prevents and treats osteoporosis and prevents breast cancer, and can be safely combined with vaginal but not systemic estrogen. The tissue selective estrogen complex combines conjugated equine estrogens (CEE) with the SERM bazedoxifene (BZA). The five Selective Estrogen Menopause and Response to Therapy studies, with up to 2 years of data, demonstrated that CEE/BZA 0.45 mg/BZA 20 mg improved vasomotor symptoms and vulvovaginal atrophy, prevented bone loss, and was neutral on breast tenderness, breast density, with breast cancer incidence similar to placebo. Protection against estrogen-induced endometrial hyperplasia and cancer was found, with similar amenorrhea rates to placebo. Ospemifene is approved to treat dyspareunia, with potential benefits on bone and the breast, while lasofoxifene is being developed to treat resistant estrogen receptor-positive breast cancer in women. Estetrol is an estrogen synthesized exclusively during pregnancy by the human fetal liver and initially considered a weak estrogen, but it appears to have dual weak estrogenic/anti-estrogenic features.
Collapse
Affiliation(s)
- J V Pinkerton
- a Department of Obstetrics and Gynecology, Division of Midlife Health , University of Virginia Health System , Charlottesville , VA , USA
| | - E A Conner
- a Department of Obstetrics and Gynecology, Division of Midlife Health , University of Virginia Health System , Charlottesville , VA , USA
| |
Collapse
|
12
|
Plasma levels of Semaphorin 4D are decreased by adjuvant tamoxifen but not aromatase inhibitor therapy in breast cancer patients. J Bone Oncol 2019; 16:100237. [PMID: 31011525 PMCID: PMC6461588 DOI: 10.1016/j.jbo.2019.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
Background Semaphorin 4D (Sema4D) is a glycoprotein that inhibits bone formation and has been associated with cancer progression and the occurrence of bone metastases. Recently, Sema4D expression has been linked to estrogen signaling in breast cancer. Endocrine therapies like tamoxifen and aromatase inhibitors (AI) are a standard therapeutic approach in hormone receptor positive breast cancers. Tamoxifen exerts ER-agonistic effects on bone, whereas AI negatively affect bone health by increasing resorption and fracture risk. The effect of endocrine therapies on circulating Sema4D levels in breast cancer patients has not been investigated yet. Methods We measured circulating Sema4D plasma levels at primary diagnosis and in a follow-up sample 12 months after surgery in a cohort of 46 pre- and postmenopausal women with primary estrogen receptor positive breast cancer receiving adjuvant tamoxifen or AI. Results The mean baseline levels ± SD for Sema4D were 441.6 ± 143.4 pmol/l. No significant differences in total plasma Sema4D were observed when stratifying the patients according to age, menopausal status, tumor subtype, nodal and hormone receptor status, or tumor size. However, Sema4D levels were significantly reduced by 28% (p<0.001) in tamoxifen treated patients 12 months after surgery, whereas no alteration was observed in patients treated with AI. Conclusion This finding potentially represents an additional mechanism of the bone-protective properties of tamoxifen and further emphasizes a link between Sema4D and estrogen receptor signaling.
Collapse
|
13
|
Ospemifene's effects on lipids and coagulation factors: a post hoc analysis of phase 2 and 3 clinical trial data. Menopause 2018; 24:1167-1174. [PMID: 28509812 PMCID: PMC5617371 DOI: 10.1097/gme.0000000000000900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: To evaluate the effect of ospemifene 60 mg on the lipid and coagulation parameters of postmenopausal women using data from five phase 2 and 3 clinical trials. Methods: Data for lipids and coagulation factors for 2,166 postmenopausal women were pooled from five randomized, placebo-controlled studies. Lipid and coagulation parameters included in this analysis were total cholesterol, high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides, activated partial thromboplastin time (aPTT), fibrinogen, antithrombin antigen, protein C Ag, and protein S Ag free. Results: Mean percent changes in HDL and LDL were significantly greater with ospemifene versus placebo at month 3 (HDL: 4.4% vs 0.2%; LDL: −5.2% vs 2.4%), month 6 (HDL: 5.1% vs 1.5%; LDL: −6.7% vs 2.4%), and month 12 (HDL: 2.3% vs −1.9%; LDL: −7.0% vs −2.1%; P < 0.05, for all comparisons). Ospemifene significantly reduced total cholesterol at 6 months (−1.8% vs 1.6%; P = 0.0345 versus placebo), and changes in triglycerides with ospemifene were similar to placebo at all three time points. In subgroup analyses based on age, body mass index, and baseline triglyceride level, ospemifene increased HDL and decreased LDL, but had no significant effect on total cholesterol and triglycerides relative to placebo. Ospemifene significantly improved fibrinogen and protein C antigen levels relative to placebo at months 3 (−8.7% vs −0.8% and −2.7% vs 0.5%, respectively), 6 (−6.0% vs 6.7% and −3.6 vs 8.0%), and 12 (−8.7% vs 7.3% and −4.5% vs 6.6%; P < 0.01, for all). The levels of all coagulation factors remained within the normal range throughout the studies. Conclusion: Ospemifene 60 mg does not have a detrimental effect on lipid and coagulation parameters of postmenopausal women with up to 12 months of use.
Collapse
|
14
|
Adjuvant tamoxifen but not aromatase inhibitor therapy decreases serum levels of the Wnt inhibitor dickkopf-1 while not affecting sclerostin in breast cancer patients. Breast Cancer Res Treat 2017; 164:737-743. [PMID: 28526959 DOI: 10.1007/s10549-017-4296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Endocrine therapies, including tamoxifen or aromatase inhibitors, are indispensable for the treatment of patients with estrogen receptor (ER)- and/or progesterone-positive breast cancer. Whereas tamoxifen displays partial ER agonistic effects in bone, aromatase inhibitors increase bone resorption and fracture risk. The Wnt inhibitors dickkopf-1 (DKK-1) and sclerostin negatively impact bone formation and are considered targets for the treatment of bone disorders. However, the effect of endocrine therapies on serum DKK-1 and sclerostin levels in patients with primary breast cancer remains elusive. METHODS Serum DKK-1 and sclerostin levels were measured at primary diagnosis as well as 3-5 days and 12 months after surgery in a cohort of 45 pre- and postmenopausal women with primary estrogen receptor-positive breast cancer treated with adjuvant tamoxifen or aromatase inhibitors. RESULTS Mean baseline levels ±SD for DKK-1 and sclerostin were 29.7 ± 14.6 and 27.1 ± 16.2 pmol/l, respectively. A significant negative correlation of DKK-1 levels and age was observed (r = -0.32; p < 0.05), but not for sclerostin. Of note, DKK-1 levels were significantly lower in peri- and postmenopausal women compared to premenopausal patients (-47%; p < 0.05). In tamoxifen-treated patients, DKK-1 levels were reduced by 35% (p < 0.01) one year after surgery but remained unaltered in patients treated with aromatase inhibitors. No significant changes were observed for sclerostin. CONCLUSION DKK-1 serum levels were reduced in breast cancer patients receiving an adjuvant therapy with tamoxifen, possibly contributing to its bone-protective properties.
Collapse
|
15
|
Ospemifene's effect on vasomotor symptoms: a post hoc analysis of phase 2 and 3 clinical data. Menopause 2016; 23:957-64. [DOI: 10.1097/gme.0000000000000656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bondi C, Ferrero S, Scala C, Tafi E, Racca A, Venturini PL, Leone Roberti Maggiore U. Pharmacokinetics, pharmacodynamics and clinical efficacy of ospemifene for the treatment of dyspareunia and genitourinary syndrome of menopause. Expert Opin Drug Metab Toxicol 2016; 12:1233-46. [DOI: 10.1080/17425255.2016.1218847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chiara Bondi
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Carolina Scala
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Emanuela Tafi
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Annalisa Racca
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Pier Luigi Venturini
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Umberto Leone Roberti Maggiore
- Academic Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino – IST, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genova, Italy
| |
Collapse
|
17
|
Effects of ospemifene on bone parameters including clinical biomarkers in postmenopausal women. Menopause 2016; 23:638-44. [DOI: 10.1097/gme.0000000000000619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Effects of ospemifene on the female reproductive and urinary tracts: translation from preclinical models into clinical evidence. Menopause 2016; 22:786-96. [PMID: 25423325 PMCID: PMC4481022 DOI: 10.1097/gme.0000000000000365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective Treatment of menopausal symptoms by compounds with tissue-selective estrogen agonist/antagonist effects, often called selective estrogen receptor modulators, has been researched as an alternative to the use of estrogen therapy. These structurally diverse molecules elicit tissue-dependent responses in hormone-responsive tissues and organs, exhibiting variations in estrogenic activity in preclinical models of postmenopausal reproductive tissues that may improve postmenopausal women’s health (eg, prevention and treatment of breast cancer, osteoporosis, and vulvar and vaginal atrophy). Methods This literature review investigates whether preclinical data predicted the clinical effects of ospemifene on female reproductive and urinary tract tissues and compares these findings with the specific vaginal effects of other estrogen receptor agonists/antagonists (tamoxifen, raloxifene, and bazedoxifene) in preclinical and clinical studies. Lasofoxifene, although not currently available, is included because of its unique effects on vaginal tissue. Results The response of endometrial and vaginal tissues to estrogen receptor agonists/antagonists can be differentiated using transvaginal ultrasound, endometrial histopathology, cytologic examination of vaginal smears, assessment of physical changes in the vagina, and relief of symptoms associated with vulvar and vaginal atrophy (such as dyspareunia). Conclusions Available evidence indicates that ospemifene has unique effects on tissue, leading to a favorable long-term profile for the relief of vulvar and vaginal atrophy compared with other estrogen receptor agonists/antagonists (eg, tamoxifen, raloxifene, and bazedoxifene) with no short-term concerns about endometrial safety (based on endometrial hyperplasia, carcinoma, endometrial spotting, and endometrial bleeding).
Collapse
|
19
|
McHaffie SL, Hastie ND, Chau YY. Effects of CreERT2, 4-OH Tamoxifen, and Gender on CFU-F Assays. PLoS One 2016; 11:e0148105. [PMID: 26828722 PMCID: PMC4734617 DOI: 10.1371/journal.pone.0148105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/13/2016] [Indexed: 12/29/2022] Open
Abstract
Gene function in stem cell maintenance is often tested by inducing deletion via the Cre-loxP system. However, controls for Cre and other variables are frequently not included. Here we show that when cultured in the presence of 4-OH tamoxifen, bone and marrow cells containing the CreERT2 construct have a reduced colony forming ability. Inactive CreERT2 recombinase, however, has the opposite effect. Young female marrow cells containing the inactive CreERT2 construct grew more colonies than cells lacking the construct altogether. Young female control marrow cells (i.e., negative for CreERT2) also produced significantly greater colony numbers when cultured with 4-OH tamoxifen, compared with the ethanol vehicle control. In conclusion, we report that the use of the Cre-loxP system is inadvisable in combination with CFU-F assays, and that appropriate controls should be in place to extend the future use of Cre-loxP in alternate assays.
Collapse
Affiliation(s)
- Sophie L. McHaffie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Ellis AJ, Hendrick VM, Williams R, Komm BS. Selective estrogen receptor modulators in clinical practice: a safety overview. Expert Opin Drug Saf 2015; 14:921-34. [DOI: 10.1517/14740338.2015.1014799] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Filipović B, Šošić-Jurjević B, Ajdžanović V, Živanović J, Isenović E, Popovska-Perčinić F, Milošević V. Tamoxifen stimulates calcitonin-producing thyroid C-cells and prevents trabecular bone loss in a rat model of androgen deficiency. J Anat 2015; 226:489-96. [PMID: 25851663 DOI: 10.1111/joa.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 11/30/2022] Open
Abstract
Thyroid C-cells produce calcitonin (CT), a hypocalcemic hormone, that acts as an inhibitor of bone resorption. In this study, we investigated the effects of tamoxifen (TAM) as a selective estrogen receptor modulator on thyroid C-cells, trabecular bone and biochemical markers of bone metabolism in an animal model of androgen deficiency, represented by middle-aged orchidectomized (Orx) rats. Fifteen-month-old male Wistar rats were divided into: Orx and sham-operated (SO) groups. Rats from one Orx group were injected subcutaneously with TAM citrate (Orx + TAM; 0.3 mg kg(-1) b.w.), while the rats from SO and a second Orx group received vehicle alone, once a day for 3 weeks. The peroxidase-antiperoxidase method was applied for localization of CT in C-cells. Thyroid C-cells were morphometrically and ultrastructurally analyzed. An ImageJ image-processing program was used to measure bone histomorphometric parameters. Blood serum samples were analyzed for CT, osteocalcin (OC), calcium (Ca2+ ) and phosphorus (P). Urinary Ca2+ concentrations were measured. TAM treatment significantly increased thyroid C-cell volume (Vc ) and serum CT when compared with vehicle-treated Orx rats. Analysis of trabecular microarchitecture of the tibia showed that administration of TAM significantly increased cancellous bone area, trabecular thickness and trabecular number, whereas trabecular separation was significantly decreased compared with vehicle-treated Orx rats. Serum OC and urinary Ca2+ concentrations were significantly lower in comparison with the control Orx group. These results indicate that in our rat model of androgen deficiency, TAM stimulated calcitonin-producing thyroid C-cells and increased trabecular bone mass.
Collapse
Affiliation(s)
- Branko Filipović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanović
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| | - Esma Isenović
- Vinca Institute of Nuclear Science, Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Florina Popovska-Perčinić
- Faculty of Veterinary Medicine, ″Ss Cyril and Methodius″ University of Skopje, Skopje, FYR of Macedonia
| | - Verica Milošević
- Institute for Biological Research ″Siniša Stanković″, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Hermansen LL, Sørensen M, Barckman J, Bechtold JE, Søballe K, Baas J. Incorporation of raloxifene-impregnated allograft around orthopedic titanium implants impairs early fixation but improves new bone formation. Acta Orthop 2015; 86:127-33. [PMID: 25175661 PMCID: PMC4366660 DOI: 10.3109/17453674.2014.958808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The anti-osteoporotic drug raloxifene reduces the risk of vertebral fractures by increasing bone mass density. We investigated whether raloxifene offers any benefits in augmenting early fixation of orthopedic implants in the setting of impaction bone grafting. METHODS 24 non-weight-bearing grafted gap implants were inserted bilaterally into the tibia of 12 dogs. The 2.5-mm peri-implant gap was filled with either raloxifene-impregnated or untreated bone allograft. Implants were harvested after 28 days. Implant fixation was assessed by mechanical testing and histomorphometric evaluation. RESULTS Raloxifene-treated allograft reduced early implant fixation compared to untreated allograft, as measured by inferior maximum shear strength (p < 0.001) and apparent shear stiffness (p = 0.001). We found that the raloxifene group had more newly formed bone in the gap around the implant (p = 0.02), but also less allograft (p = 0.03). INTERPRETATION The accelerated allograft resorption in the raloxifene group explained the impaired early fixation, despite its stimulation of new bone formation. Our results with local and possible high-dose treatment are not consistent with current theory regarding the mechanism of how systemic raloxifene administration counteracts the decrease in BMD in postmenopausal women. Instead of being solely anti-resorptive as generally held, our results indicate a possible anabolic side of raloxifene.
Collapse
Affiliation(s)
- Lars L Hermansen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Sørensen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jeppe Barckman
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Joan E Bechtold
- Orthopedic Biomechanics Laboratory, Minneapolis Medical Research Foundation, University of Minnesota and Excelen Center for Bone and Joint Research and Education, Minneapolis, MN, USA
| | - Kjeld Søballe
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Baas
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
DeGregorio MW, Zerbe RL, Wurz GT. Ospemifene: a first-in-class, non-hormonal selective estrogen receptor modulator approved for the treatment of dyspareunia associated with vulvar and vaginal atrophy. Steroids 2014; 90:82-93. [PMID: 25087944 DOI: 10.1016/j.steroids.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ospemifene is a selective estrogen receptor modulator (SERM) approved for the treatment of dyspareunia associated with vulvar and vaginal atrophy (VVA) due to menopause. As the first non-hormonal treatment for this indication, the approval of ospemifene represents a significant milestone in postmenopausal women's health. Ospemifene is a triphenylethylene similar in chemical structure to tamoxifen and toremifene. Consistent with other SERMs such as tamoxifen, toremifene, and raloxifene, ospemifene possesses a distinctive mix of estrogenic and antiestrogenic tissue-specific effects in bone, breast tissue, serum lipids, and the vagina. Among the approved SERMs, ospemifene is the only agent with a nearly full estrogen agonist effect on the vaginal epithelium while having neutral to slight estrogenic effects in the endometrium, making ospemifene uniquely suited for the treatment of dyspareunia associated with VVA, also known as atrophic vaginitis, which affects up to 50% of postmenopausal women. This review begins with a brief history of the discovery of ospemifene, its mechanism of action, and its preclinical development, with an emphasis on its tissue-specific effects on bone, breast, uterus and endometrium, serum lipids and vagina. A brief discussion on the genotoxicity of ospemifene compared to tamoxifen and toremifene is included. The focus then shifts to the clinical development of ospemifene from Phase I through Phase III. We will close with the FDA approval of ospemifene and a justification of the future clinical evaluation of ospemifene as a potential breast cancer chemopreventive agent, where several preclinical studies in different rodent breast cancer models strongly suggest ospemifene is as effective as tamoxifen.
Collapse
Affiliation(s)
- Michael W DeGregorio
- University of California, Davis, Department of Internal Medicine, Division of Hematology and Oncology, 4501 X Street Suite 3016, Sacramento, CA 95817, USA.
| | - Robert L Zerbe
- QuatRx Pharmaceuticals, 777 East Eisenhower Parkway Suite 100, Ann Arbor, MI 48108, USA.
| | - Gregory T Wurz
- University of California, Davis, Department of Internal Medicine, Division of Hematology and Oncology, 4501 X Street Suite 3016, Sacramento, CA 95817, USA.
| |
Collapse
|
24
|
Komm BS, Mirkin S. An overview of current and emerging SERMs. J Steroid Biochem Mol Biol 2014; 143:207-22. [PMID: 24667357 DOI: 10.1016/j.jsbmb.2014.03.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/16/2023]
Abstract
Selective estrogen receptor modulators (SERMs) are compounds that exhibit tissue-specific estrogen receptor (ER) agonist or antagonist activity, and are used for various indications, including treatment of breast cancer, osteoporosis, and menopausal symptoms. Endometrial safety has been a key differentiator between SERMs in clinical practice. For example, tamoxifen exhibits ER agonist activity in the uterus, resulting in an increased risk of endometrial hyperplasia and malignancy, whereas raloxifene and bazedoxifene have neutral effects on the uterus. Based on their efficacy and long-term safety, SERMs are increasingly being prescribed for women who cannot tolerate other treatment options and for younger women at an increased risk of fracture who may remain on therapy for long periods of time. Continuing advances in the understanding of SERM mechanisms of action and structural interactions with the ER may lead to the development of new agents and combinations of agents to provide optimal treatments to meet the varying needs of postmenopausal women. One such example is the tissue selective estrogen complex, which partners a SERM with 1 or more estrogens, with the aim of blending the desired estrogen-receptor agonist activities of estrogens on vasomotor symptoms, vulvar-vaginal atrophy, and loss of bone mass with the tissue selectivity of a SERM.
Collapse
Affiliation(s)
- Barry S Komm
- Pfizer Inc, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | |
Collapse
|
25
|
Abstract
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases.
Collapse
|
26
|
Stokes G, Conboy JC. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation. J Am Chem Soc 2014; 136:1409-17. [PMID: 24410282 PMCID: PMC4004268 DOI: 10.1021/ja409250y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 12/29/2022]
Abstract
The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo.
Collapse
Affiliation(s)
- Grace
Y. Stokes
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
27
|
Kalder M, Hans D, Kyvernitakis I, Lamy O, Bauer M, Hadji P. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J Clin Densitom 2014; 17:66-71. [PMID: 23562130 DOI: 10.1016/j.jocd.2013.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24 mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.
Collapse
Affiliation(s)
- Matthias Kalder
- Department of Gynecology, Gynecological Endocrinology and Oncology, Philipps University of Marburg, Marburg, Germany.
| | - Didier Hans
- Center of Bone Diseases, Department of Bone and Joints, Lausanne University Hospital, Lausanne, Switzerland
| | - Ioannis Kyvernitakis
- Department of Gynecology, Gynecological Endocrinology and Oncology, Philipps University of Marburg, Marburg, Germany
| | - Olivier Lamy
- Center of Bone Diseases, Department of Bone and Joints, Lausanne University Hospital, Lausanne, Switzerland
| | - Martina Bauer
- Department of Gynecology, Gynecological Endocrinology and Oncology, Philipps University of Marburg, Marburg, Germany
| | - Peyman Hadji
- Department of Gynecology, Gynecological Endocrinology and Oncology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
28
|
Kangas L, Unkila M. Tissue selectivity of ospemifene: pharmacologic profile and clinical implications. Steroids 2013; 78:1273-80. [PMID: 24055829 DOI: 10.1016/j.steroids.2013.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/21/2022]
Abstract
The multifactorial consequences of menopausal estrogen deficiency affect numerous tissues throughout the body. Supplemental hormonal therapies carry the burden of a risk/benefit ratio that must be highly individualized. Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) agonist/antagonists designed to induce benefits comparable with estrogen while minimizing adverse effects. Here, we review the estrogen agonist/antagonist profile of ospemifene, a novel triphenylethylene derivative recently approved to treat dyspareunia, a symptom of vulvar and vaginal atrophy (VVA) due to menopause, both preclinically and clinically. Ospemifene binds ERα and ERβ with approximately equal affinities. In preclinical models, ospemifene increased vaginal and uterine epithelial thickness and mucification to the same extent as estrogen. Ospemifene did not induce endometrial hyperplasia in animal models; there also was no stimulatory effect on endometrial cells. In rat and human mammary cells in vitro, ospemifene evokes a dose-dependent inhibition on estrogen-induced cell responses and cell proliferation, supporting an antiestrogenic effect in breast. In contrast, ospemifene has an estrogenic effect on bone, as seen by improved bone mineral density, strength, mass, and histomorphometry in preclinical models, consistent with improvements in markers of bone resorption and formation in postmenopausal women. Based on the preclinical evidence, ospemifene has beneficial estrogen-like effects on the vaginal epithelium, preliminary evidence to support a neutral endometrial profile, antiproliferative effects in breast, and estrogenic effects in bone. Taken together, especially regarding estrogen-like effects on the vaginal epithelium, ospemifene presents a profile of tissue-specific effects that appear novel among available SERMs and well-suited for the treatment of VVA.
Collapse
|
29
|
Muzio LL, Santarelli A, Orsini G, Memè L, Mattioli-Belmonte M, De Florio I, Gatto R, Gallusi G, Nocini P, Bertossi D, Emanuelli M, Putignano A, Bambini F. MG63 and MC3T3-E1 Osteoblastic Cell Lines Response to Raloxifene. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone resorption in edentulous regions often results in inadequate ridge for implant osseointegration. In order to overcome this problem, the use of osteoconductive biomaterials has been proposed as a carrier for different types of pharmacological molecules. Since raloxifene, a drug used in osteoporosis therapy, inhibits the osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present work evaluated in vitro the effect of raloxifene on two different cell populations: the human osteoblast-like cells (MG63) and osteoblasts derived from rat calvaria (MC3T3-E1). The morpho-functional investigations carried out showed a different behavior of the two cell lines. Raloxifene showed a stimulatory effect towards MG63 cell proliferation with a significant increase in cell viability after 7 days of culture. On the contrary, MC3T3-E1 cells showed a significant reduction in cell viability, when compared with the same cells at 72 h, or with the control cell population. The predominantly proliferative effect of raloxifene on MG63 cells is partly confirmed by the reduction of alkaline phosphatase activity, an early marker of osteoblast differentiation. The different effect of raloxifene on osteoblastic population in relationship to the type and age of the cell is an issue that needs further investigation.
Collapse
Affiliation(s)
- L. Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - A. Santarelli
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
- Odontostomatologic Clinic, National Institute of Care and Research on Ageing, Ancona, Italy
| | - G. Orsini
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Memè
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - M. Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - I. De Florio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - R. Gatto
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - G. Gallusi
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - P.F. Nocini
- Department of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - D. Bertossi
- Department of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - M. Emanuelli
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - A. Putignano
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - F. Bambini
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
- Odontostomatologic Clinic, National Institute of Care and Research on Ageing, Ancona, Italy
| |
Collapse
|
30
|
|
31
|
Takeda S, Sakai S, Shiraishi A, Koike N, Mihara M, Endo K. Combination treatment with eldecalcitol (ED-71) and raloxifene improves bone mechanical strength by suppressing bone turnover and increasing bone mineral density in ovariectomized rats. Bone 2013; 53:167-73. [PMID: 23232307 DOI: 10.1016/j.bone.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the effect of combination treatment with eldecalcitol (ELD) and raloxifene (RAL) on bone turnover, bone mineral density (BMD), and bone strength. Eight-month-old rats were ovariectomized (OVX) or sham operated, and divided into five groups (Sham, OVX+vehicle, OVX+RAL, OVX+ELD and OVX+ELD+RAL). ELD (7.5 ng/kg) and RAL (0.3mg/kg) were orally administered alone or in combination daily. Urinary deoxypyridinoline (DPD) levels were measured after 4, 8, and 12 weeks of treatment. After 12 weeks of treatment, BMD and mechanical properties of the lumbar spine and femur were assessed, and bone histomorphometry was performed. Urinary DPD levels in all the treatment groups were significantly decreased compared with the OVX+vehicle group. At 4 weeks of treatment, urinary DPD level of the combination group was significantly lower than that of either monotherapy group. The reduction in the BMD of the lumbar spine and femur by OVX was significantly prevented in all the treatment groups, and the BMD in the combination group was significantly higher than that in either monotherapy group. The ultimate load and work to failure of the fifth lumbar vertebra were significantly improved only by the combination treatment. The femoral midshaft ultimate load was significantly increased in the OVX+ELD group and the combination group, and the femoral midshaft work to failure was increased only in the combination group. Bone histomorphometric analysis using the third lumbar vertebra revealed that osteoblast surface (Ob.S/BS), osteoclast surface (Oc.S/BS) and osteoclast number (N.Oc/BS) significantly decreased in all treatment groups, and osteoid surface (OS/BS) and bone formation rate (BFR/BS) significantly decreased in the ELD-treated and combination groups. The values of Ob.S/BS and OS/BS in the combination group were lower than those in either of the monotherapy groups. The bone formation parameters in the combination group were not reduced to below levels of the sham-operated control, suggesting that the combination therapy with ELD and RAL may not cause oversuppression of bone turnover. These results indicated that the combination treatment with ELD and RAL might be a beneficial therapy with respect to their combined effects of enhancing the mechanical properties of trabecular and cortical bone by suppressing bone turnover and increasing BMD more than either monotherapy.
Collapse
Affiliation(s)
- Satoshi Takeda
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Japan
| | | | | | | | | | | |
Collapse
|
32
|
In Vivo Study on the Pharmacological Interactions between a Chinese Herbal Formula ELP and Antiresorptive Drugs to Counteract Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:203732. [PMID: 23150739 PMCID: PMC3488414 DOI: 10.1155/2012/203732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 01/07/2023]
Abstract
Antiresorptive drugs, alendronate and raloxifene, are effective in lowering bone mineral density (BMD) loss in postmenopausal women. However, long-term treatment may be associated with serious side effects. Our research group has recently discovered that a Chinese herbal formula, ELP, could significantly reduce BMD loss in animal and human studies. Therefore, the present study aimed to investigate the potential synergistic bone-protective effects of different herb-drug combinations using ovariectomized rats. To assess the efficacy of different combinations, the total BMD was monitored biweekly in the 8-week course of daily oral treatment. Bone microarchitecture, bone strength, and deoxypyridinoline level were also determined after 8 weeks. From our results, coadministration of ELP and raloxifene increased the total tibial BMD by 5.26% (2.5 mg/kg/day of raloxifene; P = 0.014) and 5.94% (0.25 mg/kg/day of raloxifene; P = 0.026) when compared with the respective dosage groups with raloxifene alone. Similar synergistic effects were also observed in BMD increase at distal femur (0.25 mg/kg/day; P = 0.001) and reduction in urinary deoxypyridinoline crosslink excretion (2.5 and 0.25 mg/kg/day; both P = 0.02). However, such interactions could not be observed in all alendronate-treated groups. Our data provide first evidence that ELP could synergistically enhance the therapeutic effects of raloxifene, so that the clinical dosage of raloxifene could be reduced.
Collapse
|
33
|
Karsdal MA, Bay-Jensen AC, Henriksen K, Christiansen C. The pathogenesis of osteoarthritis involves bone, cartilage and synovial inflammation: may estrogen be a magic bullet? ACTA ACUST UNITED AC 2012; 18:139-46. [PMID: 23024184 DOI: 10.1258/mi.2012.012025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The female predominance of polyarticular osteoarthritis (OA), and in particular the marked increase of OA in women after the menopause points to a likely involvement of female sex hormones in the maintenance of cartilage homeostasis. This perception has inspired many research groups to investigate the role of estrogens in the modulation of cartilage homeostasis with the ultimate aim to clarify whether estrogen replacement therapy (ERT) could provide benefits in preventing the rapid rise in the prevalence of OA in postmenopausal women. The effects of ERT and selective estrogen-receptor modulators on the joint in various experimental models have been investigated. Clinically, the effects of estrogens have been evaluated by post hoc analysis in clinical trials using biochemical markers of cartilage and bone degradation. Lastly, the Women's Health Initiative trial (WHI) investigated the effects of estrogens on the joint and joint replacements. Even though the exact mode of action still needs to be elucidated, the effect involves both direct and indirect mechanisms on the whole joint pathophysiology. Several animal models have demonstrated structural benefits of estrogens, as well as significant effects on joint inflammation. This is in complete alignment with clinical data using biochemical markers of joint degradation which demonstrated approximately 50% inhibition of cartilage destruction. These finding were recently validated in WHI, where women taking estrogens had significantly less joint replacement. In conclusion, the pleiotropic effect of estrogens on several different tissues may match the complicated aetiology of OA in some important aspects.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
34
|
Schulman C, Irani J, Aapro M. Improving the management of patients with prostate cancer receiving long-term androgen deprivation therapy. BJU Int 2012; 109 Suppl 6:13-21. [DOI: 10.1111/j.1464-410x.2012.11216.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Costa-Rodrigues J, Fernandes A, Fernandes MH. Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors. J Cell Biochem 2012; 112:3704-13. [PMID: 21815187 DOI: 10.1002/jcb.23295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
36
|
Kulak CAM, Baz-Hecht M, Nieves J, Shen V, Lindsay R, Cosman F. Responses of urinary N-telopeptide and renal calcium handling to PTH infusion after treatment with estrogen, raloxifene, and tamoxifen. Calcif Tissue Int 2012; 90:263-71. [PMID: 22311517 DOI: 10.1007/s00223-012-9572-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
This prospective, randomized, placebo-controlled study investigated whether estrogen, tamoxifen, and raloxifene protect the skeleton from the acute catabolic effects of continuous PTH(1-34) infusion. It was infused over 24 h in 25 postmenopausal women both before and while on medication for 16-20 weeks (estrogen n = 7, raloxifene n = 5, tamoxifen n = 7, placebo n = 6). Blood and urine samples were collected at baseline and every 4 h during the PTH(1-34) infusion and analyzed for calcium homeostasis, bone remodeling, and specific cytokines. Data for the premedication PTH(1-34) infusions were pooled. During the premedication PTH(1-34) infusions, serum calcium and urine phosphorus increased, while serum phosphorus and urine calcium declined. Osteocalcin decreased (mean 18%), while urine NTX increased (mean 315%). Serum IL-6 increased 260%, but there were no other cytokine changes as a result of the PTH(1-34) infusion. On medication, the mean peak change in NTX with PTH(1-34) infusion was less (77, 59, and 31 nM/mM with raloxifene, tamoxifen, and estrogen, respectively). The reduction in urine calcium excretion was prolonged with each agent but only significantly with estrogen. There was no reduction in the IL-6 elevation induced by PTH(1-34) with any medication. The differential skeletal resorption response to PTH(1-34) infusion after the treatments may reflect different potencies of these agents or variability in interaction with the estrogen receptor. Renal calcium conservation and the blunted response of bone resorption to PTH(1-34) infusion may be mechanisms by which estrogen and estrogen agonist/antagonist agents preserve bone mass.
Collapse
Affiliation(s)
- Carolina A M Kulak
- Clinical Research/Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY 10993, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Luvizuto ER, Dias SSMD, Okamoto T, Dornelles RCM, Okamoto R. Raloxifene therapy inhibits osteoclastogenesis during the alveolar healing process in rats. Arch Oral Biol 2011; 56:984-90. [PMID: 21536255 DOI: 10.1016/j.archoralbio.2011.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/12/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the expression of OPG, RANKL and TRAP during alveolar healing process (7, 14, 21, 28 and 42 postoperative days) in ovariectomized rats treated with raloxifene or with oestrogen replacement therapy, using immunohistochemistry reaction approach. MATERIALS AND METHODS Wistar female rats (10 weeks age) were submitted to ovariectomy surgery (OVX) or sham surgery. The female rats were divided in four groups: (1) sham; (2) OVX/O (ovariectomy and oil); (3) OVX/E2 (ovariectomy and oestrogen replacement); (4) OVX/RLX (ovariectomy and raloxifene therapy). RESULTS It was observed high amount of OPG immunolabelling with predominance at 14 and 21 postoperative days on sham and OVX/RLX groups, respectively. At 7 postoperative days, there was no difference between the groups for TRAP protein. Otherwise, to the other periods, it was observed greater expression of TRAP and RANKL protein on OVX/O group compared to sham, OVX/E2 and OVX/RLX groups. It was also observed a discrete TRAP immunolabelling at 28 and 42 postoperative days on OVX/RLX group. CONCLUSIONS Oestrogen deficiency induces osteoclastogenesis in the alveolar healing process. Quantitative changes in the osteoclastic activity could be prevented through the raloxifene therapy.
Collapse
Affiliation(s)
- Eloá R Luvizuto
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, UNESP-Univ Estadual Paulista, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Costa-Rodrigues J, Teixeira CA, Fernandes MH. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important? Clin Exp Metastasis 2011; 28:505-14. [DOI: 10.1007/s10585-011-9387-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
|
39
|
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 2011; 32:31-63. [PMID: 20851921 DOI: 10.1210/er.2010-0006] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
Collapse
Affiliation(s)
- K Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
40
|
Alendronate and raloxifene affect the osteoprotegerin/RANKL system in human osteoblast primary cultures from patients with osteoporosis and osteoarthritis. Eur J Pharmacol 2011; 650:682-7. [DOI: 10.1016/j.ejphar.2010.10.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/06/2010] [Accepted: 10/16/2010] [Indexed: 01/06/2023]
|
41
|
|
42
|
Oligogalacturonic acid inhibit bone resorption and collagen degradation through its interaction with type I collagen. Biochem Pharmacol 2009; 78:1448-55. [DOI: 10.1016/j.bcp.2009.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/21/2022]
|
43
|
|
44
|
Gennari L, Merlotti D, Valleggi F, Nuti R. Ospemifene use in postmenopausal women. Expert Opin Investig Drugs 2009; 18:839-49. [DOI: 10.1517/13543780902953715] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Miki Y, Suzuki T, Nagasaki S, Hata S, Akahira JI, Sasano H. Comparative effects of raloxifene, tamoxifen and estradiol on human osteoblasts in vitro: estrogen receptor dependent or independent pathways of raloxifene. J Steroid Biochem Mol Biol 2009; 113:281-9. [PMID: 19429434 DOI: 10.1016/j.jsbmb.2009.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 11/17/2022]
Abstract
SERMs bind to both estrogen receptor (ER)alpha and beta, resulting in tissue dependent estrogen agonist or antagonist responses. Both raloxifene and tamoxifen are most frequently used SERMs and exert estrogen agonistic effects on human bone tissues, but the details of their possible direct effects on human bone cells have remained largely unknown. In our present study, we examined the comparative effects of raloxifene, tamoxifen, and native estrogen, estradiol on human osteoblast cell line, hFOB in vitro. Both the cell numbers and the ratio of the cells in S phase fraction were significantly increased by the treatment of raloxifene or tamoxifen as well as estradiol treatments in hFOB. Gene profile patterns following treatment with raloxifene, tamoxifen, and estradiol demonstrated similar patterns in a microarray/hierarchal clustering analysis. We also examined the expression levels of these genes detected by this analysis using quantitative RT-PCR. MAF gene was induced by raloxifene treatment alone. GAS6 gene was induced by raloxifene and tamoxifen as well as estradiol. An estrogen receptor blocker, ICI 18, 286, inhibited an increase of GAS6 gene expression but not the levels of MAF gene mRNA expression. Results of our present study demonstrated that raloxifene exerted direct protective effects on human osteoblasts in both estrogen receptor dependent and independent manners.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 2008; 56:935-41. [PMID: 18454751 DOI: 10.1111/j.1532-5415.2008.01764.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of the underlying mechanisms of osteoporosis in older adults has significantly advanced in recent years. There is an acute loss of bone mineral density in the peri-menopausal period, followed by a more gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow. This study reviews new evidence on the pathophysiology of senile osteoporosis, with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in elderly people that focus on the pathophysiology and potential reversal of the adipogenic shift in bone.
Collapse
Affiliation(s)
- Gustavo Duque
- Aging Bone Research Program, Nepean Clinical School, University of Sydney, Penrith, New South Wales, Australia
| | | |
Collapse
|
47
|
Namazi H. Raloxifene Can Reduce Giant Cell Tumor Recurrence: A New Adjuvant Therapy. Ann Surg Oncol 2007; 15:1783-4. [DOI: 10.1245/s10434-007-9741-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/14/2007] [Indexed: 11/18/2022]
|