1
|
Pacini ESA, de Paula Moro R, Godinho RO. Extracellular cAMP elicits contraction of rat vas deferens: Involvement of ecto-5'-nucleotidase and adenosine A 1 receptors. Toxicol Appl Pharmacol 2024; 491:117070. [PMID: 39151807 DOI: 10.1016/j.taap.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE Our data show that activation of β-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Raíssa de Paula Moro
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
2
|
Spinaci M, Blanco-Prieto O, Ortiz-Rodriguez JM, Bernardini C, Bucci D. Extracellular cAMP and MRP4 activity influence in vitro capacitation and fertilizing ability of pig spermatozoa. Res Vet Sci 2024; 170:105198. [PMID: 38422839 DOI: 10.1016/j.rvsc.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
cAMP has been reported to be an essential driver of sperm capacitation. In bovine sperm cAMP efflux through multidrug resistance-associated protein 4 (MRP4) has been suggested to maintain intracellular cAMP homeostasis and generate extracellular signaling able to regulate capacitation. The aim of this work was to determine whether extracellular cAMP may influence in vitro pig sperm capacitation and acquisition of fertilizing ability and to evaluate the role of MRP4. In vitro sperm capacitation and gamete coincubation were performed in Brackett and Oliphant's medium (BO) in presence of caffeine (Ctr+) or in BO without caffeine (Ctr-) supplemented with 0, 8, 9, 10 mM cAMP. Despite the percentage of capacitated sperm, assayed by immunolocalization of tyrosine-phosphorylated proteins, was significantly lower in Ctr- compared to Ctr+, it increased supplementing 10 mM cAMP to Ctr- reaching values similar to Ctr+. The absence of caffeine during gamete coincubation reduced the fertilization rate compared to Ctr+, while 10 mM cAMP supplementation to Ctr- increased the fertilization rate reaching values similar to Ctr + . The presence of MRP4 in pig spermatozoa was detected for the first time by western blot and immunohistochemistry assays. To evaluate MRP4 role on pig sperm capacitation, in vitro capacitation and gamete coincubation were performed in Ctr + in presence of MK571, a MRP4 selective inhibitor. MK571 reduced the percentage of capacitated cells and the fertilization rate, while cAMP addition fully reversed MRP4 blockade consequences. Present findings suggest that, under our in vitro conditions, extracellular cAMP and MRP4 activity influence pig sperm capacitating events.
Collapse
Affiliation(s)
- Marcella Spinaci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia-Bologna, Bologna, Italy.
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia-Bologna, Bologna, Italy
| | - Jose Manuel Ortiz-Rodriguez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia-Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia-Bologna, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia-Bologna, Bologna, Italy
| |
Collapse
|
3
|
Satori NA, Pacini ESA, Godinho RO. Impact of the cAMP efflux and extracellular cAMP-adenosine pathway on airway smooth muscle relaxation induced by formoterol and phosphodiesterase inhibitors. Chem Biol Interact 2023; 382:110630. [PMID: 37442289 DOI: 10.1016/j.cbi.2023.110630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
β2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by β2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that β2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by β2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only β2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.
Collapse
Affiliation(s)
- Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
5
|
Extracellular metabolism of 3',5'-cyclic AMP as a source of interstitial adenosine in the rat airways. Biochem Pharmacol 2021; 192:114713. [PMID: 34331910 DOI: 10.1016/j.bcp.2021.114713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that β2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.
Collapse
|
6
|
Jones C, Bisserier M, Bueno-Beti C, Bonnet G, Neves-Zaph S, Lee SY, Milara J, Dorfmüller P, Humbert M, Leopold JA, Hadri L, Hajjar RJ, Sassi Y. A novel secreted-cAMP pathway inhibits pulmonary hypertension via a feed-forward mechanism. Cardiovasc Res 2021; 116:1500-1513. [PMID: 31529026 DOI: 10.1093/cvr/cvz244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS Cyclic adenosine monophosphate (cAMP) is the predominant intracellular second messenger that transduces signals from Gs-coupled receptors. Intriguingly, there is evidence from various cell types that an extracellular cAMP pathway is active in the extracellular space. Herein, we investigated the role of extracellular cAMP in the lung and examined whether it may act on pulmonary vascular cell proliferation and pulmonary vasculature remodelling in the pathogenesis of pulmonary hypertension (PH). METHODS AND RESULTS The expression of cyclic AMP-metabolizing enzymes was increased in lungs from patients with PH as well as in rats treated with monocrotaline and mice exposed to Sugen/hypoxia. We report that inhibition of the endogenous extracellular cAMP pathway exacerbated Sugen/hypoxia-induced lung remodelling. We found that application of extracellular cAMP induced an increase in intracellular cAMP levels and inhibited proliferation and migration of pulmonary vascular cells in vitro. Extracellular cAMP infusion in two in vivo PH models prevented and reversed pulmonary and cardiac remodelling associated with PH. Using protein expression analysis along with luciferase assays, we found that extracellular cAMP acts via the A2R/PKA/CREB/p53/Cyclin D1 pathway. CONCLUSIONS Taken together, our data reveal the presence of an extracellular cAMP pathway in pulmonary arteries that attempts to protect the lung during PH, and suggest targeting of the extracellular cAMP signalling pathway to limit pulmonary vascular remodelling and PH.
Collapse
Affiliation(s)
- Carly Jones
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Carlos Bueno-Beti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Guillaume Bonnet
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Susana Neves-Zaph
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA.,Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA
| | - Sang-Yong Lee
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, Universität Bonn, Bonn, Germany
| | - Javier Milara
- Health Research Institute INCLIVA, Valencia, Spain.,Pharmacy Unit, University Clinic Hospital, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Peter Dorfmüller
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| |
Collapse
|
7
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
8
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
9
|
Fisher O, Benson RA, Imray CH. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomark Med 2019; 13:953-965. [PMID: 31321992 DOI: 10.2217/bmm-2019-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During periods of ischemia and hypoxia, intracellular adenosine triphosphate stores are rapidly depleted. Its metabolism results in release of purine nucleosides into the systemic circulation. While the potential of purine nucleosides as a biomarker of ischemia has long been recognized, this has been limited by their complex physiological role and inherent instability leading to problematic sampling and prolonged, complex analysis procedures. Purine release has been demonstrated from cerebral tissue in patients undergoing carotid endarterectomy and patients presenting to hospital with stroke and transient ischemic attack. Rises in purine nucleosides have also been demonstrated in patients with angina and myocardial infarction, during systemic hypoxia, exercise, in patients with peripheral arterial disease and during surgery. This article reviews purine nucleoside production in ischemia, the development of purine analysis technology and details results of the studies investigating purine nucleosides as a biomarker of ischemia with suggestions for areas of future research.
Collapse
Affiliation(s)
- Owain Fisher
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| | - Ruth A Benson
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Institute of Cancer & Genomic Sciences, University of Birmingham, B15 2SY, UK
| | - Christopher He Imray
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| |
Collapse
|
10
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Role of GPCR (mu-opioid)-receptor tyrosine kinase (epidermal growth factor) crosstalk in opioid-induced hyperalgesic priming (type II). Pain 2019; 159:864-875. [PMID: 29447132 DOI: 10.1097/j.pain.0000000000001155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repeated stimulation of mu-opioid receptors (MORs), by an MOR-selective agonist DAMGO induces type II priming, a form of nociceptor neuroplasticity, which has 2 components: opioid-induced hyperalgesia (OIH) and prolongation of prostaglandin-E2 (PGE2)-induced hyperalgesia. We report that intrathecal antisense knockdown of the MOR in nociceptors, prevented the induction of both components of type II priming. Type II priming was also eliminated by SSP-saporin, which destroys the peptidergic class of nociceptors. Because the epidermal growth factor receptor (EGFR) participates in MOR signaling, we tested its role in type II priming. The EGFR inhibitor, tyrphostin AG 1478, prevented the induction of prolonged PGE2-induced hyperalgesia, but not OIH, when tested out to 30 days after DAMGO. However, even when repeatedly injected, an EGFR agonist did not induce hyperalgesia or priming. A phosphopeptide, which blocks the interaction of Src, focal adhesion kinase (FAK), and EGFR, also prevented DAMGO-induced prolongation of PGE2 hyperalgesia, but only partially attenuated the induction of OIH. Inhibitors of Src and mitogen-activated protein kinase (MAPK) also only attenuated OIH. Inhibitors of matrix metalloproteinase, which cleaves EGF from membrane protein, markedly attenuated the expression, but did not prevent the induction, of prolongation of PGE2 hyperalgesia. Thus, although the induction of prolongation of PGE2-induced hyperalgesia at the peripheral terminal of peptidergic nociceptor is dependent on Src, FAK, EGFR, and MAPK signaling, Src, FAK, and MAPK signaling is only partially involved in the induction of OIH.
Collapse
|
12
|
Bernareggi A, Sciancalepore M, Lorenzon P. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle. Neuroscience 2019; 439:41-47. [PMID: 31121259 DOI: 10.1016/j.neuroscience.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Since the pioneering works of Ricardo Miledi, the neuromuscular junction represents the best example of a synapse where ACh is the neurotransmitter acting on nicotinic ACh receptors. ATP, co-released with ACh, is promptly degraded to Ado, which acts as a modulator of the cholinergic synaptic activity. Consequently, both ACh and adenosine play a crucial role in controlling the nerve-muscle communication. Apart from their role in the context of synaptic transmission, ACh and adenosine are autocrinally released by skeletal muscle cells, suggesting also a non nerve-driven function of these molecules. Indeed, the existence of cholinergic and adenosinergic systems has been widely described in many other non neuronal cell types. In this review, we will describe the two systems and their interplay in non-innervated differentiating skeletal muscle cells, and in innervated adult skeletal muscle fibers. We believe that the better comprehension of the interactions between the activity of nAChRs and adenosine could help the knowledge of skeletal muscle physiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| |
Collapse
|
13
|
Horenstein AL, Morandi F, Bracci C, Pistoia V, Malavasi F. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Immunol Lett 2018; 205:40-50. [PMID: 30447309 DOI: 10.1016/j.imlet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Human myeloma cells grow in a hypoxic acidic niche in the bone marrow. Cross talk among cellular components of this closed niche generates extracellular adenosine, which promotes tumor cell survival. This is achieved through the binding of adenosine to purinergic receptors into complexes that function as an autocrine/paracrine signal factor with immune regulatory activities that i) down-regulate the functions of most immune effector cells and ii) enhance the activity of cells that suppress anti-tumor immune responses, thus facilitating the escape of malignant myeloma cells from immune surveillance. Here we review recent findings confirming that the dominant phenotype for survival of tumor cells is that where the malignant cells have been metabolically reprogrammed for the generation of lactic acidosis in the bone marrow niche. Adenosine triphosphate and nicotinamide-adenine dinucleotide extruded from tumor cells, along with cyclic adenosine monophosphate, are the main intracellular energetic/messenger molecules that serve as leading substrates in the extracellular space for membrane-bound ectonucleotidases metabolizing purine nucleotides to signaling adenosine. Within this mechanistic framework, the adenosinergic substrate conversion can vary significantly according to the metabolic environment. Indeed, the neoplastic expansion of plasma cells exploits both enzymatic networks and hypoxic acidic conditions for migrating and homing to a protected niche and for evading the immune response. The expression of multiple specific adenosine receptors in the niche completes the profile of a complex regulatory framework whose signals modify multiple myeloma and host immune responses.
Collapse
Affiliation(s)
- A L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy.
| | - F Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - C Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| | - V Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Pacini ESA, Sanders-Silveira S, O Godinho R. The Extracellular cAMP-Adenosine Pathway in Airway Smooth Muscle. J Pharmacol Exp Ther 2018; 366:75-83. [PMID: 29685885 DOI: 10.1124/jpet.118.247734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
In the respiratory tract, intracellular cAMP has a key role in the smooth muscle relaxation induced by the β2-adrenoceptor/Gs protein/adenylyl cyclase axis. In other tissues, cAMP also works as an extracellular messenger, after its efflux and interstitial conversion to adenosine by ectoenzymes. The aim of this study was to identify cAMP efflux and the "extracellular cAMP-adenosine pathway" in the airway smooth muscle. First, we tested the ability of β2-adrenoceptor agonists formoterol or fenoterol to increase the extracellular cAMP in isolated tracheal rings from adult male Wistar rats. The effects of adenosine, cAMP, 8-Br-cAMP, fenoterol, or formoterol were also evaluated in the isometric contraction of control or carbachol (CCh) precontracted tracheas, normalized as the percentage of CCh-induced response. Fenoterol and formoterol induced 70%-80% relaxation and increased extracellular cAMP levels by up to 280%-450%. Although exogenous cAMP or adenosine evoked phasic contractions, the membrane-permeable cAMP analog 8-Br-cAMP induced relaxation of CCh-precontracted tracheas. The simultaneous inhibition of adenosine degradation/uptake with EHNA [erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride] plus uridine increased by 3-fold the maximum cAMP-induced contraction, whereas it was significantly reduced by AMPCP [adenosine 5'-(α,β-methylene)diphosphate; an ecto-5'-nucleotidase inhibitor], and by adenosine receptor antagonists CGS-15943 (nonselective) or DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (A1 selective). Finally, CGS-15943 shifted to the left the concentration-relaxation curve for fenoterol. In conclusion, our results show that airway smooth muscle expresses the extracellular cAMP-adenosine pathway associated with contracting effects mediated by A1 receptors. The cAMP efflux triggered by fenoterol/formoterol indicates that the extracellular cAMP-adenosine pathway may play a role in balancing the relaxant effects of β2-adrenoceptor agonists in airways, which may impact their bronchodilation effects.
Collapse
Affiliation(s)
- Enio S A Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Sarah Sanders-Silveira
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rosely O Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
15
|
Jackson EK. Discovery and Roles of 2',3'-cAMP in Biological Systems. Handb Exp Pharmacol 2017; 238:229-252. [PMID: 26721674 DOI: 10.1007/164_2015_40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2009, investigators using ultra-performance liquid chromatography-tandem mass spectrometry to measure, by selected reaction monitoring, 3',5'-cAMP in the renal venous perfusate from isolated, perfused kidneys detected a large signal at the same m/z transition (330 → 136) as 3',5'-cAMP but at a different retention time. Follow-up experiments demonstrated that this signal was due to a positional isomer of 3',5'-cAMP, namely, 2',3'-cAMP. Soon thereafter, investigative teams reported the detection of 2',3'-cAMP and other 2',3'-cNMPs (2',3'-cGMP, 2',3'-cCMP, and 2',3'-cUMP) in biological systems ranging from bacteria to plants to animals to humans. Injury appears to be the major stimulus for the release of these unique noncanonical cNMPs, which likely are formed by the breakdown of RNA. In mammalian cells in culture, in intact rat and mouse kidneys, and in mouse brains in vivo, 2',3'-cAMP is metabolized to 2'-AMP and 3'-AMP; and these AMPs are subsequently converted to adenosine. In rat and mouse kidneys and mouse brains, injury releases 2',3'-cAMP, 2'-AMP, and 3'-AMP into the extracellular compartment; and in humans, traumatic brain injury is associated with large increases in 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine in the cerebrospinal fluid. These findings motivate the extracellular 2',3'-cAMP-adenosine pathway hypothesis: intracellular production of 2',3'-cAMP → export of 2',3'-cAMP → extracellular metabolism of 2',3'-cAMP to 2'-AMP and 3'-AMP → extracellular metabolism of 2'-AMP and 3'-AMP to adenosine. Since 2',3'-cAMP has been shown to activate mitochondrial permeability transition pores (mPTPs) leading to apoptosis and necrosis and since adenosine is generally tissue protective, the extracellular 2',3'-cAMP-adenosine pathway may be a protective mechanism [i.e., removes 2',3'-cAMP (an intracellular toxin) and forms adenosine (a tissue protectant)]. This appears to be the case in the brain where deficiency in CNPase (the enzyme that metabolizes 2',3'-cAMP to 2-AMP) leads to increased susceptibility to brain injury and neurological diseases. Surprisingly, CNPase deficiency in the kidney actually protects against acute kidney injury, perhaps by preventing the formation of 2'-AMP (which turns out to be a renal vasoconstrictor) and by augmenting the mitophagy of damaged mitochondria. With regard to 2',3'-cNMPs and their downstream metabolites, there is no doubt much more to be discovered.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
17
|
Bellezza I, Minelli A. Adenosine in sperm physiology. Mol Aspects Med 2017; 55:102-109. [DOI: 10.1016/j.mam.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
18
|
Ibrahim A, Neinast M, Arany ZP. Myobolites: muscle-derived metabolites with paracrine and systemic effects. Curr Opin Pharmacol 2017; 34:15-20. [PMID: 28441626 PMCID: PMC5651206 DOI: 10.1016/j.coph.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023]
Abstract
Intracellular metabolism in skeletal muscle has been studied for more than a century and is the stuff of textbooks. In contrast, the extracellular secretion of metabolites by muscle cells, and their effects on non-muscle cells near or far, has been investigated much less extensively. Here, we describe a number of cases in which striated muscle secretes a metabolite that elicits complex responses in other cells or tissues, with involvements in normal physiology as well as obesity, type II diabetes, and cardiac remodeling. We focus on two recently identified secreted catabolic products of branched chain amino acid breakdown, β-aminoisobutyric acid and 3-hydroxyisobutyrate, and discuss common themes of inter-cellular signaling pathways driven by secreted metabolites.
Collapse
Affiliation(s)
- Ayon Ibrahim
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA
| | - Michael Neinast
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA
| | - Zoltan P Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA.
| |
Collapse
|
19
|
Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhães-Cardoso MT, Calejo I, Silva-Ramos M, Correia-de-Sá P. Inhibition of cholinergic neurotransmission by β 3-adrenoceptors depends on adenosine release and A 1-receptor activation in human and rat urinary bladders. Am J Physiol Renal Physiol 2017; 313:F388-F403. [PMID: 28446460 DOI: 10.1152/ajprenal.00392.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The direct detrusor relaxant effect of β3-adrenoceptor agonists as a primary mechanism to improve overactive bladder symptoms has been questioned. Among other targets, activation of β3-adrenoceptors downmodulate nerve-evoked acetylcholine (ACh) release, but there is insufficient evidence for the presence of these receptors on bladder cholinergic nerve terminals. Our hypothesis is that adenosine formed from the catabolism of cyclic AMP in the detrusor may act as a retrograde messenger via prejunctional A1 receptors to explain inhibition of cholinergic activity by β3-adrenoceptors. Isoprenaline (1 µM) decreased [3H]ACh release from stimulated (10 Hz, 200 pulses) human (-47 ± 5%) and rat (-38 ± 1%) detrusor strips. Mirabegron (0.1 µM, -53 ± 8%) and CL316,243 (1 µM, -37 ± 7%) mimicked isoprenaline (1 µM) inhibition, and their effects were prevented by blocking β3-adrenoceptors with L748,337 (30 nM) and SR59230A (100 nM), respectively, in human and rat detrusor. Mirabegron and isoprenaline increased extracellular adenosine in the detrusor. Blockage of A1 receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or the equilibrative nucleoside transporters (ENT) with dipyridamole (0.5 µM) prevented mirabegron and isoprenaline inhibitory effects. Dipyridamole prevented isoprenaline-induced adenosine outflow from the rat detrusor, and this effect was mimicked by the ENT1 inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI, 30 µM). Cystometry recordings in anesthetized rats demonstrated that SR59230A, DPCPX, dipyridamole, and NBTI reversed the decrease in the voiding frequency caused by isoprenaline (0.1-1,000 nM). Data suggest that inhibition of cholinergic neurotransmission by β3-adrenoceptors results from adenosine release via equilibrative nucleoside transporters and prejunctional A1-receptor stimulation in human and rat urinary bladder.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Ana Filipa Costa
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Sílvia Moreira
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Isabel Calejo
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal; .,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
20
|
Abstract
We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.
Collapse
|
21
|
Maréchal L, Guillemette C, Goupil S, Blondin P, Leclerc P, Richard FJ. Cyclic nucleotide phosphodiesterases in human spermatozoa and seminal fluid: Presence of an active PDE10A in human spermatozoa. Biochim Biophys Acta Gen Subj 2016; 1861:147-156. [PMID: 27836756 DOI: 10.1016/j.bbagen.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) plays a crucial role as a signaling molecule for sperm functions such as capacitation, motility and acrosome reaction. It is well known that cAMP degradation by phosphodiesterase (PDE) enzyme has a major impact on sperm functions. The present study was undertaken to characterize cAMP-PDE activity in human semen. METHODS cAMP-PDE activity was measured in human sperm and seminal plasma using family specific PDE inhibitors. Three sperm fractionation methods were applied to assess cAMP-PDE activity in spermatozoa. Western blots were used to validate the presence of specific family in sperm and seminal plasma. RESULTS Using three sperm fractionation methods, we demonstrated that in human sperm, the major cAMP-PDE activity is papaverine-sensitive and thus ascribed to PDE10. In seminal plasma, total cAMP-PDE activity was 1.14±0.39fmol of cAMP hydrolyzed per minute per μg of protein. Using specific inhibitors, we showed that the major cAMP-PDE activity found in human seminal plasma is ascribed to PDE4 and PDE11. Western blot analysis, immunoprecipitation with a specific monoclonal antibody, and mass spectrometry confirmed the presence of PDE10 in human spermatozoa. CONCLUSION This study provides the first demonstration of the presence of functional PDE10 in human spermatozoa and functional PDE4 and PDE11 in human seminal plasma. GENERAL SIGNIFICANCE Since the contribution of cyclic nucleotides in several sperm functions is well known, the finding that PDE10 is an active enzyme in human spermatozoa is novel and may lead to new insight into fertility.
Collapse
Affiliation(s)
- Loïze Maréchal
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - Christine Guillemette
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec G1V 0A6, Québec, Canada
| | - Serge Goupil
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - Patrick Blondin
- L'Alliance Boviteq Inc, 19320 Grand rang St-François, Saint-Hyacinthe, Québec J2T 5H1, Canada
| | - Pierre Leclerc
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec G1V 0A6, Québec, Canada.
| |
Collapse
|
22
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
23
|
Bergeron A, Aragon JP, Guillemette C, Hébert A, Sullivan R, Blondin P, Richard FJ. Characterization of cAMP-phosphodiesterase activity in bovine seminal plasma. Andrology 2016; 4:1123-1130. [PMID: 27565610 DOI: 10.1111/andr.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) has a central role in sperm physiology. Extracellular cAMP can be sequentially degraded into 5'AMP and adenosine by ecto-phosphodiesterases (ecto-PDE) and ecto-nucleotidases, a phenomenon called extracellular cAMP-adenosine pathway. As cAMP-adenosine pathway is involved in sperm capacitation, we hypothesize that extracellular PDEs are functionally present in seminal plasma. Exclusively measuring cAMP-PDE activity, total activity in bovine seminal plasma was 10.1 ± 1.5 fmoles/min/μg. Using different family-specific PDE inhibitors, we showed that in seminal plasma, the major cAMP-PDE activity was papaverine sensitive (47.5%). These data support the presence of PDE10 in bovine seminal plasma and was further confirmed by western blot. In epididymal fluid, total cAMP-PDE activity was 48.2 ± 14.8 fmoles/min/μg and we showed that the major cAMP-PDE activity was 3-isobutyl-methylxanthine insensitive and thus ascribed to PDE8 family. PDE10A mRNAs were found in the testis, epididymis, and seminal vesicles. cAMP-PDE activity is present in bovine seminal plasma and epididymal fluid. The results suggest a role for ecto-PDEs present in those fluids in the signaling pathways involved in sperm functions.
Collapse
Affiliation(s)
- A Bergeron
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - J P Aragon
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - C Guillemette
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - A Hébert
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| | - R Sullivan
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - P Blondin
- Boviteq, Saint-Hyacinthe, QC, Canada
| | - F J Richard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Université Laval, Québec, QC, Canada.,Département des Sciences Animales, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|
24
|
Belleville-Rolland T, Sassi Y, Decouture B, Dreano E, Hulot JS, Gaussem P, Bachelot-Loza C. MRP4 (ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacol Res 2016; 107:381-389. [PMID: 27063943 DOI: 10.1016/j.phrs.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 01/13/2023]
Abstract
This review focuses on multidrug resistance protein 4 (MRP4 or ABCC4) that has recently been shown to play a role in cAMP homeostasis, a key-pathway in vascular biology and in platelet functions. In vascular system, recent data provide evidence that inhibition of MRP4 prevents human coronary artery smooth muscle cell proliferation in vitro and in vivo, as well as human pulmonary artery smooth muscle cell proliferation in vitro and pulmonary hypertension in mice in vivo. In the heart, MRP4 silencing in adult rat ventricular myocytes results in an increase in intracellular cAMP levels leading to enhanced cardiomyocyte contractility. However, a prolonged inhibition of MRP4 can promote cardiac hypertrophy. In addition, secreted cAMP, through its metabolite adenosine, prevents adrenergically induced cardiac hypertrophy and fibrosis. Finally, MRP4 inhibition in platelets induces a moderate thrombopathy. The localization of MRP4 underlines the emerging concept of cAMP compartmentalization in platelets, which is a major regulatory mechanism in other cells. cAMP storage in platelet dense granules might limit the cAMP cytosolic concentration upon adenylate cyclase activation, a necessary step to induce platelet activation. In this review, we discuss the therapeutic potential of direct pharmacological inhibition of MRP4 in atherothrombotic disease, via its vasodilating and antiplatelet effects.
Collapse
Affiliation(s)
- Tiphaine Belleville-Rolland
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Decouture
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elise Dreano
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Sébastien Hulot
- AP-HP, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, F-75013 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, France
| | - Pascale Gaussem
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Christilla Bachelot-Loza
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
25
|
Jackson EK, Boison D, Schwarzschild MA, Kochanek PM. Purines: forgotten mediators in traumatic brain injury. J Neurochem 2016; 137:142-53. [PMID: 26809224 DOI: 10.1111/jnc.13551] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022]
Abstract
Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Michael A Schwarzschild
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Bernareggi A, Luin E, Pavan B, Parato G, Sciancalepore M, Urbani R, Lorenzon P. Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes. Acta Physiol (Oxf) 2015; 214:467-80. [PMID: 25683861 DOI: 10.1111/apha.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/23/2014] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Abstract
AIMS The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. METHODS Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. RESULTS The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. CONCLUSION We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A. Bernareggi
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - E. Luin
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - B. Pavan
- Department of Life Sciences and Biotechnology; University of Ferrara; Via L. Borsari 46 Ferrara I-44121 Italy
| | - G. Parato
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - M. Sciancalepore
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - R. Urbani
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
| | - P. Lorenzon
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| |
Collapse
|
27
|
Fulle S. Purinergic signalling during myogenesis: a role for adenosine and its receptors. Acta Physiol (Oxf) 2015; 214:436-9. [PMID: 26082066 DOI: 10.1111/apha.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- S. Fulle
- Department of Neuroscience Imaging and Clinical Sciences; Section of Physiology and Physiopathology; Interuniversity Institute of Myology; University “G.d'Annunzio” of Chieti-Pescara; Chieti Italy
| |
Collapse
|
28
|
Godinho RO, Duarte T, Pacini ESA. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front Pharmacol 2015; 6:58. [PMID: 25859216 PMCID: PMC4373373 DOI: 10.3389/fphar.2015.00058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs) mediate increases in intracellular cyclic AMP as consequence of activation of nine adenylyl cyclases , which differ considerably in their cellular distribution and activation mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling effectors such as protein kinase A and the exchange proteins activated by cAMP (Epacs). More recently, attention has been focused on the efflux of cAMP through a specific transport system named multidrug resistance proteins that belongs to the ATP-binding cassette transporter superfamily. Outside the cell, cAMP is metabolized into adenosine, which is able to activate four distinct subtypes of adenosine receptors, members of the GPCR family: A1, A2A, A2B, and A3. Taking into account that this phenomenon occurs in numerous cell types, as consequence of GsPCR activation and increment in intracellular cAMP levels, in this review, we will discuss the impact of cAMP efflux and the extracellular cAMP-adenosine pathway on the regulation of GsPCR-induced cell response.
Collapse
Affiliation(s)
- Rosely O Godinho
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Thiago Duarte
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Enio S A Pacini
- Disciplina Farmacologia Celular, Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
29
|
Sassi Y, Ahles A, Truong DJJ, Baqi Y, Lee SY, Husse B, Hulot JS, Foinquinos A, Thum T, Müller CE, Dendorfer A, Laggerbauer B, Engelhardt S. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J Clin Invest 2014; 124:5385-97. [PMID: 25401477 DOI: 10.1172/jci74349] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 10/14/2014] [Indexed: 01/04/2023] Open
Abstract
Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues.
Collapse
|
30
|
Hill SJ, May LT, Kellam B, Woolard J. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 2014; 171:1102-13. [PMID: 24024783 DOI: 10.1111/bph.12345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs -protein-coupled adenosine receptors (A2A and A2B ), or inhibit AC activity, in the case of Gi/o -coupled adenosine receptors (A1 and A3 ). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1 - and A3 -receptor allosteric modulators on in vivo pharmacology.
Collapse
Affiliation(s)
- Stephen J Hill
- Cell Signalling Research Group, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
31
|
Friebe D, Yang T, Schmidt T, Borg N, Steckel B, Ding Z, Schrader J. Purinergic signaling on leukocytes infiltrating the LPS-injured lung. PLoS One 2014; 9:e95382. [PMID: 24748324 PMCID: PMC3991673 DOI: 10.1371/journal.pone.0095382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/26/2014] [Indexed: 01/11/2023] Open
Abstract
Extracellular nucleotides and nucleosides have been implicated as important signaling molecules in the pathogenesis of acute lung injury (ALI). While adenosine is known to inhibit T cell activation, little information is available as to ATP and NAD degrading enzymes, the expression of ATP and adenosine receptors/transporters in different T cell subsets. ALI was induced by challenging mice with intra-tracheal instillation of 60 µl (3 µg/g) LPS. After 3 d and 7 d blood, lung tissue and bronchoalveolar lavage was collected and immune cells were analyzed using flow cytometry. The transcriptional phenotype of T helper cells, cytotoxic and regulatory T cells sorted by FACS was assessed by measuring the expression profile of 28 genes related to purinergic signaling using TaqMan Array Micro Fluidic Cards. Catabolism of ATP, NAD and cAMP by activated CD4+ T cells was evaluated by HPLC. CD73 was found to be highly abundant on lymphoid cells with little abundance on myeloid cells, while the opposite was true for CD39. After ALI, the abundance of CD39 and CD73 significantly increased on all T cell subsets derived from lung tissue and bronchoalveolar space. Expression analysis in T cell subsets of the lung revealed ATP (Cd39, Cd73) and NAD (Cd38, Cd157, Cd296, Pc-1) degrading enzymes. However, only transcription of Cd38, Cd39, Cd73, Ent1 and A2a receptor was significantly upregulated after ALI in T helper cells. CD4+ T cells from injured lung rapidly metabolized extracellular ATP to AMP and adenosine but not NAD or cAMP. These findings show that lung T cells – the dominant cell fraction in the later phase of ALI – exhibit a unique expression pattern of purinergic signaling molecules. Adenosine is formed by T cells at an enhanced rate from ATP but not from NAD and together with upregulated A2a receptor is likely to modulate the healing process after acute lung injury.
Collapse
Affiliation(s)
- Daniela Friebe
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tao Yang
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Timo Schmidt
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nadine Borg
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
32
|
Osycka-Salut C, Diez F, Burdet J, Gervasi MG, Franchi A, Bianciotti LG, Davio C, Perez-Martinez S. Cyclic AMP efflux, via MRPs and A1 adenosine receptors, is critical for bovine sperm capacitation. Mol Hum Reprod 2013; 20:89-99. [PMID: 23907162 DOI: 10.1093/molehr/gat053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high-affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the midpiece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated with bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.
Collapse
Affiliation(s)
- Claudia Osycka-Salut
- Lab. de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ross GA, Mihok ML, Murrant CL. Extracellular adenosine initiates rapid arteriolar vasodilation induced by a single skeletal muscle contraction in hamster cremaster muscle. Acta Physiol (Oxf) 2013; 208:74-87. [PMID: 23297742 DOI: 10.1111/apha.12060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
AIM Recent studies suggest that adenosine (ADO) can be produced extracellularly in response to skeletal muscle contraction. We tested the hypothesis that a single muscle contraction produces extracellular ADO rapidly enough and in physiologically relevant concentrations to be able to contribute to the rapid vasodilation that occurs at the onset of muscle contraction. METHODS We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction (stimulus frequencies: 4, 20 and 60 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of non-specific ADO membrane receptor antagonists 8-phenyltheophylline (8-PT, 10(-6) M) or xanthine amine congener (XAC, 10(-6) M) or an inhibitor of an extracellular source of ADO, ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AMPCP, 10(-5) M). RESULTS We observed that the dilatory event at 4 s following a single contraction was significantly inhibited at all stimulus frequencies by an average of 63.9 ± 2.6% by 8-PT. The 20-s dilatory event that occurred at 20 and 60 Hz was significantly inhibited by 53.6 ± 2.6 and 73.8 ± 2.3% by 8-PT and XAC respectively. Further, both the 4- and 20-s dilatory events were significantly inhibited by AMPCP by 78.6 ± 6.6 and 67.1 ± 1.5%, respectively, at each stimulus frequency tested. CONCLUSIONS Our data show that ADO is produced extracellularly during a single muscle contraction and that it is produced rapidly enough and in physiologically relevant concentrations to contribute to the rapid vasodilation in response to muscle contraction.
Collapse
Affiliation(s)
- G. A. Ross
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - M. L. Mihok
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - C. L. Murrant
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| |
Collapse
|
34
|
Ferrari LF, Levine E, Levine JD. Role of a novel nociceptor autocrine mechanism in chronic pain. Eur J Neurosci 2013; 37:1705-13. [PMID: 23379641 DOI: 10.1111/ejn.12145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
We have previously shown, in the rat, that neuropathic and inflammatory events produce a neuroplastic change in nociceptor function whereby a subsequent exposure to a proinflammatory mediator (e.g. prostaglandin E2 ; PGE2 ) produces markedly prolonged mechanical hyperalgesia. While the initial approximately 30 min of this prolonged PGE2 hyperalgesia remains PKA-dependent, it subsequently switches to become dependent on protein kinase C epsilon (PKCε). In this study we tested the hypothesis that the delayed onset, PKCε-mediated, component of PGE2 hyperalgesia is generated by the active release of a nucleotide from the peripheral terminal of the primed nociceptor and this nucleotide is then metabolized to produce adenosine, which acts on a Gi-coupled A1 adenosine receptor on the nociceptor to generate PKCε-dependent hyperalgesia. We report that inhibitors of ATP-binding cassette transporters, of ecto-5'-phosphodiesterase and ecto-5'nucleotidase (enzymes involved in the metabolism of cyclic nucleotides to adenosine) and of A1 adenosine receptors each eliminated the late, but not the early, phase of PGE2 -induced hyperalgesia in primed animals. A second model of chronic pain induced by transient attenuation of G-protein-coupled receptor kinase 2, in which the prolongation of PGE2 hyperalgesia is not PKCε-dependent, was not attenuated by inhibitors of any of these mechanisms. Based on these results we propose a contribution of an autocrine mechanism, in the peripheral terminal of the nociceptor, in the hyperalgesic priming model of chronic pain.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Division of Neuroscience, Departments of Medicine and Oral Surgery, University of California, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|
35
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
36
|
Prado S, Villamarín A, Ibarguren I. SIMULTANEOUS DETERMINATION OF ADENOSINE AND RELATED PURINES IN TISSUES AND HEMOLYMPH OF MUSSEL BY HPLC. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.660723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sonia Prado
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| | - Antonio Villamarín
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| | - Izaskun Ibarguren
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| |
Collapse
|
37
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 784] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
38
|
Duarte T, Menezes-Rodrigues FS, Godinho RO. Contribution of the extracellular cAMP-adenosine pathway to dual coupling of β2-adrenoceptors to Gs and Gi proteins in mouse skeletal muscle. J Pharmacol Exp Ther 2012; 341:820-8. [PMID: 22438472 DOI: 10.1124/jpet.112.192997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
β(2)-Adrenoceptor (β(2)-AR) agonists increase skeletal muscle contractile force via activation of G(s) protein/adenylyl cyclases (AC) and increased generation of cAMP. Herein, we evaluated the possible dual coupling of β(2)-AR to G(s) and G(i) proteins and the influence of the β(2)-AR/G(s)-G(i)/cAMP signaling cascade on skeletal muscle contraction. Assuming that the increment of intracellular cAMP is followed by cAMP efflux and extracellular generation of adenosine, the contribution of the extracellular cAMP-adenosine pathway on the β(2)-AR inotropic response was also addressed. The effects of clenbuterol/fenoterol (β(2)-AR agonists), forskolin (AC activator), cAMP/8-bromo-cAMP, and adenosine were evaluated on isometric contractility of mouse diaphragm muscle induced by supramaximal direct electrical stimulation (0.1 Hz, 2 ms duration). Clenbuterol/fenoterol (10-1000 μM), 1 μM forskolin, and 20 μM rolipram induced transient positive inotropic effects that peaked 30 min after stimulation onset, declining to 10 to 20% of peak levels in 30 min. The late descending phase of the β(2)-AR agonist inotropic effect was mimicked by either cAMP or adenosine and abolished by preincubation of diaphragm with pertussis toxin (PTX) (G(i) signaling inhibitor) or the organic anion transporter inhibitor probenecid, indicating a delayed coupling of β(2)-AR to G(i) protein which depends on cAMP efflux. Remarkably, the PTX-sensitive β(2)-AR inotropic effect was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine and ecto-5'-phosphodiesterase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt, indicating that β(2)-AR coupling to G(i) is indirect and dependent on A(1) receptor activation. The involvement of the extracellular cAMP-adenosine pathway in β(2)-AR signaling would provide a negative feedback loop that may limit stimulatory G protein-coupled receptor positive inotropism and potential deleterious effects of excessive contractile response.
Collapse
Affiliation(s)
- Thiago Duarte
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 São Paulo, SP Brazil 04044-020
| | | | | |
Collapse
|
39
|
Jackson EK. The 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 2011; 301:F1160-7. [PMID: 21937608 PMCID: PMC3233866 DOI: 10.1152/ajprenal.00450.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/15/2011] [Indexed: 01/11/2023] Open
Abstract
Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2',3'-cAMP, a positional isomer of the second messenger 3',5'-cAMP. To our knowledge, this represents the first detection of 2',3'-cAMP in any cell/tissue/organ/organism. Nuclear magnetic resonance experiments with isolated RNases and experiments in isolated, perfused kidneys suggest that 2',3'-cAMP likely arises from RNase-mediated transphosphorylation of mRNA. Both in vitro and in vivo kidney experiments demonstrate that extracellular 2',3'-cAMP is efficiently metabolized to 2'-AMP and 3'-AMP, both of which can be further metabolized to adenosine. This sequence of reactions is called the 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine). Experiments in rat and mouse kidneys show that metabolic poisons increase extracellular levels of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine; however, little is known regarding the pharmacology of 2',3'-cAMP, 2'-AMP, and 3'-AMP. What is known is that 2',3'-cAMP facilitates activation of mitochondrial permeability transition pores, a process that can lead to apoptosis and necrosis, and inhibits proliferation of vascular smooth muscle cells and glomerular mesangial cells. In summary, there is mounting evidence that at least some types of cellular injury, by triggering mRNA degradation, engage the 2',3'-cAMP-adenosine pathway, and therefore this pathway should be added to the list of biochemical pathways that produce adenosine. Although speculative, it is possible that the 2',3'-cAMP-adenosine pathway may protect against some forms of acute organ injury, for example acute kidney injury, by both removing an intracellular toxin (2',3'-cAMP) and increasing an extracellular renoprotectant (adenosine).
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
40
|
Bergantin LB, Figueiredo LB, Godinho RO. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes. J Appl Physiol (1985) 2011; 111:1710-8. [PMID: 21921242 DOI: 10.1152/japplphysiol.00586.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Div. of Cellular Pharmacology, Dept. of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, São Paulo, SP, Brazil
| | | | | |
Collapse
|
41
|
Verrier JD, Exo JL, Jackson TC, Ren J, Gillespie DG, Dubey RK, Kochanek PM, Jackson EK. Expression of the 2',3'-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem 2011; 118:979-87. [PMID: 21777245 PMCID: PMC3166383 DOI: 10.1111/j.1471-4159.2011.07392.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.
Collapse
Affiliation(s)
- Jonathan D. Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jennifer L. Exo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jin Ren
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raghvendra K. Dubey
- Department of Obstetrics & Gynecology, University Hospital Zurich, Switzerland
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Jackson EK, Ren J, Cheng D, Mi Z. Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 2011; 301:F565-73. [PMID: 21653635 PMCID: PMC3174555 DOI: 10.1152/ajprenal.00094.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/31/2011] [Indexed: 01/22/2023] Open
Abstract
The renal extracellular 2',3'-cAMP-adenosine and 3',5'-cAMP-adenosine pathways (extracellular cAMPs→AMPs→adenosine) may contribute to renal adenosine production. Because mouse kidneys provide opportunities to investigate renal adenosine production in genetically modified kidneys, it is important to determine whether mouse kidneys express these cAMP-adenosine pathways. We administered (renal artery) 2',3'-cAMP and 3',5'-cAMP to isolated, perfused mouse kidneys and measured renal venous secretion rates of 2',3'-cAMP, 3',5'-cAMP, 2'-AMP, 3'-AMP, 5'-AMP, adenosine, and inosine. Arterial infusions of 2',3'-cAMP increased (P < 0.0001) the mean venous secretion of 2'-AMP (390-fold), 3'-AMP (497-fold), adenosine (18-fold), and inosine (adenosine metabolite; 7-fold), but they did not alter 5'-AMP secretion. Infusions of 3',5'-cAMP did not affect venous secretion of 2'-AMP or 3'-AMP, but they increased (P < 0.0001) secretion of 5'-AMP (5-fold), adenosine (17-fold), and inosine (6-fold). Energy depletion (metabolic inhibitors) increased the secretion of 2',3'-cAMP (8-fold, P = 0.0081), 2'-AMP (4-fold, P = 0.0028), 3'-AMP (4-fold, P = 0.0270), 5'-AMP (3-fold, P = 0.0662), adenosine (2-fold, P = 0.0317), and inosine (7-fold, P = 0.0071), but it did not increase 3',5'-cAMP secretion. The 2',3'-cAMP-adenosine pathway was quantitatively similar in CD73 -/- vs. +/+ kidneys. However, 3',5'-cAMP induced a 6.7-fold greater increase in 5'-AMP, an attenuated increase (61% reduction) in inosine and a similar increase in adenosine in CD73 -/- vs. CD73 +/+ kidneys. In mouse kidneys, 1) 2',3'-cAMP and 3',5'-cAMP are metabolized to their corresponding AMPs, which are subsequently metabolized to adenosine; 2) energy depletion activates the 2',3'-cAMP-adenosine, but not the 3',5'-cAMP-adenosine, pathway; and 3) although CD73 is involved in the 3',5'-AMP-adenosine pathway, alternative pathways of 5'-AMP metabolism and reduced metabolism of adenosine to inosine compensate for life-long deficiency of CD73.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, Univ. of Pittsburgh School of Medicine, PA 15219, USA.
| | | | | | | |
Collapse
|
43
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
44
|
Jackson EK, Ren J, Gillespie DG. 2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 2011; 301:H391-401. [PMID: 21622827 DOI: 10.1152/ajpheart.00336.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2',3'-cAMP to 2'-AMP and 3'-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A(2B) receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2',3'-cAMP concentration-dependently increased levels of 2'-AMP and 3'-AMP in the medium, with a similar absolute increase in 2'-AMP vs. 3'-AMP. In contrast, in human coronary VSMCs, 2',3'-cAMP increased 2'-AMP levels yet had little effect on 3'-AMP levels. In all cell types, 2',3'-cAMP increased levels of adenosine, but not 5'-AMP, and 2',3'-AMP inhibited cell proliferation. Antagonism of A(2B) receptors (MRS-1754), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the antiproliferative effects of 2',3'-cAMP. In all cell types, 2'-AMP, 3'-AMP, and 5'-AMP increased adenosine levels, and inhibition of ecto-5'-nucleotidase blocked this effect of 5'-AMP but not that of 2'-AMP nor 3'-AMP. Also, 2'-AMP, 3'-AMP, and 5'-AMP, like 2',3'-cAMP, exerted antiproliferative effects that were abolished by antagonism of A(2B) receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2',3'-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2'-AMP and 3'-AMP are involved in this process, whereas, in human coronary VSMCs, 2',3'-cAMP is mainly converted to 2'-AMP. Because adenosine inhibits VSMC proliferation via A(2B) receptors, local vascular production of 2',3'-cAMP may protect conduit arteries from atherosclerosis.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, Univ. of Pittsburgh School of Medicine, 100 Technology Drive, Rm. 514, Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
45
|
Functional characterization of heterotrimeric G-proteins in rat diaphragm muscle. Respir Physiol Neurobiol 2010; 175:212-9. [PMID: 21084061 DOI: 10.1016/j.resp.2010.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/06/2010] [Accepted: 11/09/2010] [Indexed: 01/05/2023]
Abstract
Seven-transmembrane receptors mediate diverse skeletal muscle responses for a wide variety of stimuli, via activation of heterotrimeric G-proteins. Herein we evaluate the expression and activation of rat diaphragm or cultured skeletal muscle G-proteins using [(35)S]GTPγS. Total membrane Gα subunit content was 4-7 times higher in rat primary cultured myotubes and L6 cell line than in diaphragm (32.6±1.2fmol/mg protein) and 7-27% of them were in the active conformational state. Immunoprecipitation assay showed equal expression of diaphragm Gαs, Gαq and Gαi/o. Addition of GDP allowed the measurement of G-protein activation by different GPCR, including adrenoceptor, adenosine, melatonin and muscarinic receptors. Diaphragm denervation resulted in a marked increase in both total and active state G-protein levels. Together, the results show that [(35)S]GTPγS binding assay is a sensitive and valuable method to evaluate GPCR activity in skeletal muscle cells, which is of particular interest for pharmacological analysis of drugs with potential use in the management of respiratory muscle failure.
Collapse
|
46
|
Ham M, Mizumori M, Watanabe C, Wang JH, Inoue T, Nakano T, Guth PH, Engel E, Kaunitz JD, Akiba Y. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J Pharmacol Exp Ther 2010; 335:607-13. [PMID: 20805305 DOI: 10.1124/jpet.110.171520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Luminal ATP increases duodenal bicarbonate secretion (DBS) via brush border P2Y receptors. Because ATP is sequentially dephosphorylated to adenosine (ADO) and the brush border highly expresses adenosine deaminase (ADA), we hypothesized that luminal [ADO] regulators and sensors, including P1 receptors, ADA, and nucleoside transporters (NTs) regulate DBS. We measured DBS with pH and CO(2) electrodes, perfusing ADO ± adenosine receptor agonists or antagonists or the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)-172 on DBS. Furthermore, we examined the effect of inhibitors of ADA or NT on DBS. Perfusion of AMP or ADO (0.1 mM) uniformly increased DBS, whereas inosine had no effect. The A(1/2) receptor agonist 5'-(N-ethylcarboxamido)-adenosine (0.1 mM) increased DBS, whereas ADO-augmented DBS was inhibited by the potent A(2B) receptor antagonist N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide (MRS1754) (10 μM). Other selective adenosine receptor agonists or antagonists had no effect. The A(2B) receptor was immunolocalized to the brush border membrane of duodenal villi, whereas the A(2A) receptor was immunolocalized primarily to the vascular endothelium. Furthermore, ADO-induced DBS was enhanced by 2'-deoxycoformycin (1 μM) and formycin B (0.1 mM), but not by S-(4-nitrobenzyl)-6-thioinosine (0.1 mM), and it was abolished by CFTR(inh)-172 pretreatment (1 mg/kg i.p). Moreover, ATP (0.1 mM)-induced DBS was partially reduced by (1R,2S,4S,5S)-4-2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500) or 8-[4-[4-(4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) and abolished by both, suggesting that ATP is sequentially degraded to ADO. Luminal ADO stimulates DBS via A(2B) receptors and CFTR. ATP release, ecto-phosphohydrolases, ADA, and concentrative NT may coordinately regulate luminal surface ADO concentration to modulate ADO-P1 receptor signaling in rat duodenum.
Collapse
Affiliation(s)
- Maggie Ham
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Paraoxon Down Regulates ATP-binding Cassette Transporter A1 Expression and Decreases Cholesterol Efflux Through Cyclic AMP Signaling Pathway in RAW 264.7 Macrophage-derived Foam Cells*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Biondi C, Ferretti ME, Lunghi L, Medici S, Cervellati F, Pavan B, Vesce F, Morano D, Adinolfi E, Bertoni F, Abelli L. cAMP efflux from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1 transporter. Mol Hum Reprod 2010; 16:481-91. [PMID: 20231161 DOI: 10.1093/molehr/gaq023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclic adenosine 3'-5'-monophosphate (cAMP) is a second messenger, which exerts an important role in the control of human first-trimester trophoblast functions. In the present study we demonstrate the existence of a mechanism that is able to extrude cAMP from trophoblast-derived cell lines, and show evidence indicating the involvement of multidrug resistance protein (MRP) 1, a transporter belonging to the ATP-binding cassette family, in cAMP egress. MRP1 is expressed in trophoblast cell lines and cAMP efflux is highly reduced by the MRP1 inhibitor, MK-571. In addition, interleukin-1beta and estrone are able to enhance MRP1 gene expression and influence extracellular cAMP concentration. The occurrence of a MRP1-dependent cAMP efflux is also shown in human first-trimester placenta explants. Extracellular cAMP could represent a source for adenosine formation, which in turn could regulate cAMP-dependent responses in placental tissue. Evidence is provided that adenosine receptor subtypes are present and functional in human trophoblast-derived cells. A role for cAMP egress mechanism in the fine modulation of the nucleotide homeostasis is therefore suggested.
Collapse
Affiliation(s)
- C Biondi
- Department of Biology and Evolution, Section of General Physiology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dubey RK, Rosselli M, Gillespie DG, Mi Z, Jackson EK. Extracellular 3',5'-cAMP-adenosine pathway inhibits glomerular mesangial cell growth. J Pharmacol Exp Ther 2010; 333:808-15. [PMID: 20194527 DOI: 10.1124/jpet.110.166371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abnormal growth of glomerular mesangial cells (GMCs) contributes to the pathophysiology of many types of nephropathy. Because adenosine is an autocrine/paracrine factor that potentially could regulate GMC proliferation and because the extracellular 3',5'-cAMP-adenosine pathway (i.e., the conversion of extracellular 3',5'-cAMP to 5'-AMP and adenosine on the cell surface) could generate adenosine in the biophase of GMC receptors, we investigated the role of the 3',5'-cAMP-adenosine pathway in modulating growth [cell proliferation, DNA synthesis ([(3)H]thymidine incorporation), collagen synthesis ([(3)H]proline incorporation), and mitogen-activated protein kinase activity] of GMCs. The addition of exogenous 3',5'-cAMP to human GMCs increased extracellular levels of 5'-AMP, adenosine, and inosine, and 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor), 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), and alpha,beta-methylene-adenosine-5'-diphosphate (ecto-5'-nucleotidase inhibitor) attenuated the increases in adenosine and inosine. Forskolin augmented extracellular 3',5'-cAMP and adenosine concentrations, and 2',5'-dideoxyadenosine (adenylyl cyclase inhibitor) blocked these increases. Exogenous 3',5'-cAMP and forskolin inhibited all indices of cell growth, and antagonism of A(2) [(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine, KF17837] or A(1)/A(2) (1,3-dipropyl-8-p-sulfophenylxanthine, DPSPX), but not A(1) (8-cyclopentyl-1,3-dipropylxanthine), or A(3){N-(2-methoxyphenyl)-N'-[2-(3-pyridinyl)-4-quinazolinyl]-urea, VUF5574}, adenosine receptors blocked the growth-inhibitory actions of exogenous 3',5'-cAMP, but not the effects of 8-bromo-3',5'-cAMP (stable 3',5'-cAMP analog). Erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor) plus 5-iodotubercidin (adenosine kinase inhibitor) enhanced the growth inhibition by exogenous 3',5'-cAMP and forskolin, and A(2) receptor antagonism blocked this effect. In rat GMCs, down-regulation of A(2B) receptors with antisense, but not sense or scrambled, oligonucleotides abrogated the inhibitory effects of 3',5'-cAMP and forskolin on cell growth. The extracellular 3',5'-cAMP-adenosine pathway exists in GMCs and attenuates cell growth via A(2B) receptors. Pharmacological augmentation of this pathway could abate pathological glomerular remodeling.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219-3130, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
We discovered that renal injury releases 2',3'-cAMP (positional isomer of 3',5'-cAMP) into the interstitium. This finding motivated a novel hypothesis: renal injury leads to activation of an extracellular 2',3'-cAMP-adenosine pathway (i.e. metabolism of extracellular 2',3'-cAMP to 3'-AMP and 2'-AMP, which are metabolized to adenosine, a retaliatory metabolite). In isolated rat kidneys, arterial infusions of 2',3'-cAMP (30 mumol/liter) increased the mean venous secretion of 3'-AMP (3,400-fold), 2'-AMP (26,000-fold), adenosine (53-fold), and inosine (adenosine metabolite, 30-fold). Renal injury with metabolic inhibitors increased the mean secretion of 2',3'-cAMP (29-fold), 3'-AMP (16-fold), 2'-AMP (10-fold), adenosine (4.2-fold), and inosine (6.1-fold) while slightly increasing 5'-AMP (2.4-fold). Arterial infusions of 2'-AMP and 3'-AMP increased secretion of adenosine and inosine similar to that achieved by 5'-AMP. Renal artery infusions of 2',3'-cAMP in vivo increased urinary excretion of 2'-AMP, 3'-AMP and adenosine, and infusions of 2'-AMP and 3'-AMP increased urinary excretion of adenosine as efficiently as 5'-AMP. The implications are that 1) in intact organs, 2'-AMP and 3'-AMP are converted to adenosine as efficiently as 5'-AMP (previously considered the most important adenosine precursor) and 2) because 2',3'-cAMP opens mitochondrial permeability transition pores, a pro-apoptotic/pro-necrotic process, conversion of 2',3'-cAMP to adenosine by the extracellular 2',3'-cAMP-adenosine pathway would protect tissues by reducing a pro-death factor (2',3'-cAMP) while increasing a retaliatory metabolite (adenosine).
Collapse
Affiliation(s)
- Edwin K Jackson
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA.
| | | | | |
Collapse
|