1
|
Phinney NZ, Huang X, Toombs JE, Brekken RA. Development of betabodies: The next generation of phosphatidylserine targeting agents. J Biol Chem 2024; 300:107681. [PMID: 39159812 PMCID: PMC11416255 DOI: 10.1016/j.jbc.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Externalized phosphatidylserine (PS) is a phospholipid and a selective marker of the tumor microenvironment (TME). It is exposed on the outer leaflet of the plasma membrane of tumor-associated endothelial cells, apoptotic tumor cells, and some viable tumor cells, where it functions in part to suppress immune responses by binding to PS receptors expressed on tumor-infiltrating myeloid cells. PS has been targeted with antibodies, such as bavituximab, that bind the phospholipid via a cofactor, β2-glycoprotein 1 (β2GP1); these antibodies showed excellent specificity for tumor vasculature and induce an immune stimulatory environment. We have advanced this concept by developing the next generation of PS targeting agent, a fusion protein (betabody) constructed by linking PS-binding domain V of β2GP1 to the Fc of an IgG2a. Betabodies bind to externalized PS with high affinity (∼1 nM), without the requirement of a co-factor and localize robustly to the TME. We demonstrate that betabodies are a direct PS-targeting agent that has the potential to be used as anti-tumor therapy, drug delivery vehicles, and tools for imaging the TME.
Collapse
Affiliation(s)
- Natalie Z Phinney
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xianming Huang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason E Toombs
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rolf A Brekken
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Voss OH, Moin I, Gaytan H, Ullah S, Sadik M, Azad AF, Rahman MS. Pathogenic rickettsiae utilize the phosphatidylserine binding receptor CD300f on macrophages for host invasion and pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593542. [PMID: 38766217 PMCID: PMC11100818 DOI: 10.1101/2024.05.10.593542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Upon entry, Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. In particular, MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding on how Rickettsia species modulate crucial cellular processes within MΦ, including phagocytosis, and host cell defenses, to establish an intracytosolic replication niche, remain poorly defined. In this study, we describe a previously unappreciated mechanism, in which pathogenic rickettsiae infection is mediated by the phosphatidylserine (PS)-binding receptor, CD300f. We found that CD300f -/- mice but not wild-type (WT) C57BL/6J mice were protected against R. typhi - or R. rickettsii [ Shelia Smith ]-induced fatal rickettsiosis. Adoptative transfer studies further revealed that CD300f-expressing bone marrow-derived macrophages (BMDMΦ) are important mediators to control rickettsiosis in WT mice. Mechanistical analysis, using WT or CD300f -/- BMDMΦ, showed that CD300f facilitates the engulfment of both pathogenic R. typhi and R. rickettsii species, likely via a PS-mediated mechanism. Furthermore, CD300f was involved in the intracytosolic replication of both pathogenic rickettsiae by differentially modulating the anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1β cytokine responses. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment and the intracellular survival of pathogenic rickettsiae within the host. Significance Statement Vector-borne diseases, which are transmitted by hematophagous arthropods, like ticks and fleas, present a perilous threat to public health. In fact, tick- and flea-borne rickettsial diseases are on the rise globally and our current inadequate understanding on how Rickettsia interacts with their mammalian host has significantly impaired the development of effective interventions against pathogenic rickettsial infections. Here, we identified the phosphatidylserine (PS)-receptor, CD300f, as an important mediator of pathogenic rickettsiae infection in vivo and in vitro . Specifically, we showed that CD300f-expressing macrophages facilitate rickettsial infection by differentially modulating anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1β cytokine responses. In sum, our data described CD300f as an important regulator of rickettsial infection and may present a target for therapeutic intervention.
Collapse
|
3
|
Leomil FC, Stephan M, Pramanik S, Riske KA, Dimova R. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4719-4731. [PMID: 38373285 PMCID: PMC10919074 DOI: 10.1021/acs.langmuir.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Transmembrane asymmetry is ubiquitous in cells, particularly with respect to lipids, where charged lipids are mainly restricted to one monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply the fluorescence quenching assay, which is often difficult to reproduce, and caution in handling the quencher is generally underestimated. We first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol by using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers but with ∼20% interleaflet mixing. To probe the stability of asymmetric versus symmetric membranes, we expose the GUVs to porating electric pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover or exhibit leakage or bursting/collapse. Residual oil destabilizes porated membranes, and destabilization is even more pronounced in asymmetrically charged membranes. This is corroborated by the measured pore edge tension, which is also found to decrease with increasing charge asymmetry. Using GUVs with imposed transmembrane pH asymmetry, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.
Collapse
Affiliation(s)
- Fernanda
S. C. Leomil
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Mareike Stephan
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Shreya Pramanik
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Karin A. Riske
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| |
Collapse
|
4
|
Albrecht M, Hummitzsch L, Rusch R, Eimer C, Rusch M, Heß K, Steinfath M, Cremer J, Fändrich F, Berndt R, Zitta K. Large extracellular vesicles derived from human regulatory macrophages (L-EV Mreg) attenuate CD3/CD28-induced T-cell activation in vitro. J Mol Med (Berl) 2023; 101:1437-1448. [PMID: 37725101 PMCID: PMC10663190 DOI: 10.1007/s00109-023-02374-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Macrophages belong to the innate immune system, and we have recently shown that in vitro differentiated human regulatory macrophages (Mreg) release large extracellular vesicles (L-EVMreg) with an average size of 7.5 μm which regulate wound healing and angiogenesis in vitro. The aim of this study was to investigate whether L-EVMreg also affect the CD3/CD28-mediated activation of T-cells. Mreg were differentiated using blood monocytes and L-EVMreg were isolated from culture supernatants by differential centrifugation. Activation of human T-cells was induced by CD3/CD28-coated beads in the absence or presence of Mreg or different concentrations of L-EVMreg. Inhibition of T-cell activation was quantified by flow cytometry and antibodies directed against the T-cell marker granzyme B. Phosphatidylserine (PS) exposure on the surface of Mreg and L-EVMreg was analyzed by fluorescence microscopy. Incubation of human lymphocytes with CD3/CD28 beads resulted in an increase of cell size, cell granularity, and number of granzyme B-positive cells (P < 0.05) which is indicative of T-cell activation. The presence of Mreg (0.5 × 106 Mreg/ml) led to a reduction of T-cell activation (number of granzyme B-positive cells; P < 0.001), and a similar but less pronounced effect was also observed when incubating activated T-cells with L-EVMreg (P < 0.05 for 3.2 × 106 L-EVMreg/ml). A differential analysis of the effects of Mreg and L-EVMreg on CD4+ and CD8+ T-cells showed an inhibition of CD4+ T-cells by Mreg (P < 0.01) and L-EVMreg (P < 0.05 for 1.6 × 106 L-EVMreg/ml; P < 0.01 for 3.2 × 106 L-EVMreg/ml). A moderate inhibition of CD8+ T-cells was observed by Mreg (P < 0.05) and by L-EVMreg (P < 0.01 for 1.6 × 106 L-EVMreg/ml and 3.2 × 106 L-EVMreg/ml). PS was restricted to confined regions of the Mreg surface, while L-EVMreg showed strong signals for PS in the exoplasmic leaflet. L-EVMreg attenuate CD3/CD28-mediated activation of CD4+ and CD8+ T-cells. L-EVMreg may have clinical relevance, particularly in the treatment of diseases associated with increased T-cell activity. KEY MESSAGES: Mreg release large extracellular vesicles (L-EVMreg) with an average size of 7.5 µm L-EVMreg exhibit phosphatidylserine positivity L-EVMreg suppress CD4+ and CD8+ T-cells L-EVMreg hold clinical potential in T-cell-related diseases.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christine Eimer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Melanie Rusch
- Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Agbani EO, Hers I, Poole AW. Platelet procoagulant membrane dynamics: a key distinction between thrombosis and hemostasis? Blood Adv 2023; 7:1615-1619. [PMID: 36574232 PMCID: PMC10173732 DOI: 10.1182/bloodadvances.2022008122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ejaife O. Agbani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:4002. [PMID: 36835413 PMCID: PMC9964711 DOI: 10.3390/ijms24044002] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Rea Bingula
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
8
|
In Vitro Cytotoxic Activity and Phytochemical Characterization (UPLC/T-TOF-MS/MS) of the Watermelon (Citrullus lanatus) Rind Extract. Molecules 2022; 27:molecules27082480. [PMID: 35458677 PMCID: PMC9024807 DOI: 10.3390/molecules27082480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Reusing food waste is becoming popular in pharmaceutical industries. Watermelon (Citrullus lanatus) rind is commonly discarded as a major solid waste. Here, the in vitro cytotoxic potential of watermelon rind extracts was screened against a panel of human cancer cell lines. Cell cycle analysis was used to determine the induction of cell death, whereas annexin V-FITC binding, caspase-3, BAX, and BCL-2 mRNA expression levels were used to determine the degree of apoptosis. VEGF-promoting angiogenesis and cell migration were also evaluated. Moreover, the identification of phytoconstituents in the rind extract was achieved using UPLC/T-TOF-MS/MS, and a total of 45 bioactive compounds were detected, including phenolic acids, flavonoids aglycones, and their glycoside derivatives. The tested watermelon rind extracts suppressed cell proliferation in seven cancer cell lines in a concentration-dependent manner. The cytotoxicity of the rind aqueous extract (RAE) was higher compared with that of the other extracts. In addition to a substantial inhibitory effect on cell migration, the RAE triggered apoptosis in HCT116 and Hep2 cells by driving the accumulation of cells in the S phase and elevating the activity of caspase-3 and the BAX/BCL-2 ratio. Thus, a complete phytochemical and cytotoxic investigation of the Citrullus lanatus rind extract may identify its potential potency as an anticancer agent.
Collapse
|
9
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
10
|
Correlating biological activity to thermo-structural analysis of the interaction of CTX with synthetic models of macrophage membranes. Sci Rep 2021; 11:23712. [PMID: 34887428 PMCID: PMC8660830 DOI: 10.1038/s41598-021-02552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.
Collapse
|
11
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence 2021; 12:195-216. [PMID: 33356849 PMCID: PMC7808437 DOI: 10.1080/21505594.2020.1869441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Lipids are complex organic compounds made up of carbon, oxygen, and hydrogen. These play a diverse and intricate role in cellular processes like membrane trafficking, protein sorting, signal transduction, and bacterial infections. Both Gram-positive bacteria (Staphylococcus sp., Listeria monocytogenes, etc.) and Gram-negative bacteria (Chlamydia sp., Salmonella sp., E. coli, etc.) can hijack the various host-lipids and utilize them structurally as well as functionally to mount a successful infection. The pathogens can deploy with various arsenals to exploit host membrane lipids and lipid-associated receptors as an attachment for toxins' landing or facilitate their entry into the host cellular niche. Bacterial species like Mycobacterium sp. can also modulate the host lipid metabolism to fetch its carbon source from the host. The sequential conversion of host membrane lipids into arachidonic acid and prostaglandin E2 due to increased activity of cPLA-2 and COX-2 upon bacterial infection creates immunosuppressive conditions and facilitates the intracellular growth and proliferation of bacteria. However, lipids' more debatable role is that they can also be a blessing in disguise. Certain host-lipids, especially sphingolipids, have been shown to play a crucial antibacterial role and help the host in combating the infections. This review shed light on the detailed role of host lipids in bacterial infections and the current understanding of the lipid in therapeutics. We have also discussed potential prospects and the need of the hour to help us cope in this race against deadly pathogens and their rapidly evolving stealthy virulence strategies.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Maas RR, Soukup K, Klemm F, Kornete M, Bowman RL, Bedel R, Marie DN, Álvarez-Prado ÁF, Labes D, Wilson A, Brouland JP, Daniel RT, Hegi ME, Joyce JA. An integrated pipeline for comprehensive analysis of immune cells in human brain tumor clinical samples. Nat Protoc 2021; 16:4692-4721. [PMID: 34462595 DOI: 10.1038/s41596-021-00594-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/21/2021] [Indexed: 11/08/2022]
Abstract
Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment.
Collapse
Affiliation(s)
- Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Florian Klemm
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mara Kornete
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Romain Bedel
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Damien N Marie
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ángel F Álvarez-Prado
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Danny Labes
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Anne Wilson
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Rivera-Correa J, Verdi J, Sherman J, Sternberg JM, Raper J, Rodriguez A. Autoimmunity to phosphatidylserine and anemia in African Trypanosome infections. PLoS Negl Trop Dis 2021; 15:e0009814. [PMID: 34587165 PMCID: PMC8505006 DOI: 10.1371/journal.pntd.0009814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Anemia caused by trypanosome infection is poorly understood. Autoimmunity during Trypanosoma brucei infection was proposed to have a role during anemia, but the mechanisms involved during this pathology have not been elucidated. In mouse models and human patients infected with malaria parasites, atypical B-cells promote anemia through the secretion of autoimmune anti-phosphatidylserine (anti-PS) antibodies that bind to uninfected erythrocytes and facilitate their clearance. Using mouse models of two trypanosome infections, Trypanosoma brucei and Trypanosoma cruzi, we assessed levels of autoantibodies and anemia. Our results indicate that acute T. brucei infection, but not T. cruzi, leads to early increased levels of plasma autoantibodies against different auto antigens tested (PS, DNA and erythrocyte lysate) and expansion of atypical B cells (ABCs) that secrete these autoantibodies. In vitro studies confirmed that a lysate of T. brucei, but not T. cruzi, could directly promote the expansion of these ABCs. PS exposure on erythrocyte plasma membrane seems to be an important contributor to anemia by delaying erythrocyte recovery since treatment with an agent that prevents binding to it (Annexin V) ameliorated anemia in T. brucei-infected mice. Analysis of the plasma of patients with human African trypanosomiasis (HAT) revealed high levels of anti-PS antibodies that correlated with anemia. Altogether these results suggest a relation between autoimmunity against PS and anemia in both mice and patients infected with T. brucei.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Jeremy M Sternberg
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jayne Raper
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| |
Collapse
|
14
|
Abás E, Bellés A, Rodríguez-Diéguez A, Laguna M, Grasa L. Selective cytotoxicity of cyclometalated gold(III) complexes on Caco-2 cells is mediated by G2/M cell cycle arrest. Metallomics 2021; 13:6296427. [PMID: 34114030 DOI: 10.1093/mtomcs/mfab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.
Collapse
Affiliation(s)
- Elisa Abás
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Mariano Laguna
- Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, Plaza S. Francisco s/n, 50009, Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
15
|
Pontejo SM, Murphy PM. Chemokines act as phosphatidylserine-bound "find-me" signals in apoptotic cell clearance. PLoS Biol 2021; 19:e3001259. [PMID: 34038417 PMCID: PMC8213124 DOI: 10.1371/journal.pbio.3001259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed "find-me" signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other "eat-me" signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein-coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Bode K, Bujupi F, Link C, Hein T, Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H, Krammer PH. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep 2020; 29:4435-4446.e9. [PMID: 31875551 DOI: 10.1016/j.celrep.2019.11.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Hein
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Diluka Peiris
- Attana AB, Greta Arwidssons v. 21, 11419 Stockholm, Sweden
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Naeini MB, Bianconi V, Pirro M, Sahebkar A. The role of phosphatidylserine recognition receptors in multiple biological functions. Cell Mol Biol Lett 2020; 25:23. [PMID: 32226456 PMCID: PMC7098104 DOI: 10.1186/s11658-020-00214-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cells are rapidly engulfed and degraded by phagocytes through efferocytosis. Efferocytosis is a highly regulated process. It is triggered upon the activation of caspase-dependent apoptosis, which in turn promotes the expression of "eat me" signals on the surface of dying cells and the release of soluble "find me" signals for the recruitment of phagocytes. To date, many "eat me" signals have been recognized, including phosphatidylserine (PS), intercellular adhesion molecule-3, carbohydrates (e.g., amino sugars, mannose) and calreticulin. Among them, PS is the most studied one. PS recognition receptors are different functionally active receptors expressed by phagocytes. Various PS recognition receptors with different structure, cell type expression, and ability to bind to PS have been recognized. Although PS recognition receptors do not fall into a single classification or family of proteins due to their structural differences, they all share the common ability to activate downstream signaling pathways leading to the production of anti-inflammatory mediators. In this review, available evidence regarding molecular mechanisms underlying PS recognition receptor-regulated clearance of apoptotic cells is discussed. In addition, some efferocytosis-independent biological functions of PS recognition receptors are reviewed.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran
| |
Collapse
|
18
|
Arienti S, Barth ND, Dorward DA, Rossi AG, Dransfield I. Regulation of Apoptotic Cell Clearance During Resolution of Inflammation. Front Pharmacol 2019; 10:891. [PMID: 31456686 PMCID: PMC6701246 DOI: 10.3389/fphar.2019.00891] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Programmed cell death (apoptosis) has an important role in the maintenance of tissue homeostasis as well as the progression and ultimate resolution of inflammation. During apoptosis, the cell undergoes morphological and biochemical changes [e.g., phosphatidylserine (PtdSer) exposure, caspase activation, changes in mitochondrial membrane potential and DNA cleavage] that act to shut down cellular function and mark the cell for phagocytic clearance. Tissue phagocytes bind and internalize apoptotic cells, bodies, and vesicles, providing a mechanism for the safe disposal of apoptotic material. Phagocytic removal of apoptotic cells before they undergo secondary necrosis reduces the potential for bystander damage to adjacent tissue and importantly initiates signaling pathways within the phagocytic cell that act to dampen inflammation. In a pathological context, excessive apoptosis or failure to clear apoptotic material results in secondary necrosis with the release of pro-inflammatory intracellular contents. In this review, we consider some of the mechanisms by which phagocytosis of apoptotic cells can be controlled. We suggest that matching apoptotic cell load with the capacity for apoptotic cell clearance within tissues may be important for therapeutic strategies that target the apoptotic process for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Simone Arienti
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Dorward
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Efficient engulfment of necroptotic and pyroptotic cells by nonprofessional and professional phagocytes. Cell Discov 2019; 5:39. [PMID: 31632688 PMCID: PMC6796833 DOI: 10.1038/s41421-019-0108-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
|
20
|
Mahajan N, Hoover B, Rajendram M, Shi HY, Kawasaki K, Weibel DB, Zhang M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis. FASEB J 2019; 33:6354-6364. [PMID: 30786218 PMCID: PMC6463914 DOI: 10.1096/fj.201802182r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
A central question in cell biology is how cells respond to stress signals and biochemically regulate apoptosis. One critical pathway involves the change of mitochondrial function and release of cytochrome c to initiate apoptosis. In response to apoptotic stimuli, we found that maspin-a noninhibitory member of the serine protease inhibitor superfamily-translocates from the cytosol to mitochondria and binds to cardiolipin in the inner mitochondrial membrane. Biolayer interferometry assay revealed that recombinant maspin binds cardiolipin with an apparent Kd,of ∼15.8 μM and competes with cytochrome c (apparent Kd of ∼1.31 μM) for binding to cardiolipin-enriched membranes. A hydrophobic, lysine-rich domain in maspin consists of 27 aa, is located at position 268-294, and is responsible for the interaction of this protein with cardiolipin. Depletion of cardiolipin in cells significantly prevents maspin binding to the inner mitochondrial membrane and decreases cytochrome c release and apoptosis. Alteration to maspin's cardiolipin binding domain changes its ability to bind cardiolipin, and tumor cells expressing this mutant have a low frequency of apoptosis. We propose a model of apoptosis in which maspin binds to cardiolipin, displaces cytochrome c from the membrane, and facilitates its release to the cytoplasm.-Mahajan, N., Hoover, B., Rajendram, M., Shi, H. Y., Kawasaki, K., Weibel, D. B., Zhang, M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis.
Collapse
Affiliation(s)
- Nitin Mahajan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brandon Hoover
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Manohary Rajendram
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Heidi Y. Shi
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyoto, Japan
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Chen H, Kasagi S, Chia C, Zhang D, Tu E, Wu R, Zanvit P, Goldberg N, Jin W, Chen W. Extracellular Vesicles from Apoptotic Cells Promote TGFβ Production in Macrophages and Suppress Experimental Colitis. Sci Rep 2019; 9:5875. [PMID: 30971739 PMCID: PMC6458171 DOI: 10.1038/s41598-019-42063-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
The clearance of apoptotic cells is an essential process to maintain homeostasis of immune system, which is regulated by immunoregulatory cytokines such as TGFβ. We show here that Extracellular Vesicles (EVs) were highly released from apoptotic cells, and contributed to macrophage production of TGFβ in vitro and in vivo. We further elucidated mechanistically that phosphatidylserine in EVs was a key triggering-factor, and transcription factor FOXO3 was a critical mediator for apoptotic EV-induced TGFβ in macrophages. Importantly, we found that macrophages pre-exposed to EVs exhibited an anti-inflammatory phenotype. More strikingly, administration of EVs in vivo promotes Tregs differentiation and suppresses Th1 cell response, and ameliorates experimental colitis. Thus, apoptotic-EV-based treatment might be a promising therapeutic approach for human autoimmune disease.
Collapse
Affiliation(s)
- Hua Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Shimpei Kasagi
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Cheryl Chia
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Eric Tu
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Ruiqing Wu
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Nathan Goldberg
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
A Comparison of [ 99mTc]Duramycin and [ 99mTc]Annexin V in SPECT/CT Imaging Atherosclerotic Plaques. Mol Imaging Biol 2019; 20:249-259. [PMID: 28785938 DOI: 10.1007/s11307-017-1111-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Apoptosis is a key factor in unstable plaques. The aim of this study is to evaluate the utility of visualizing atherosclerotic plaques with radiolabeled duramycin and Annexin V. PROCEDURES ApoE-/- mice were fed with a high-fat diet to develop atherosclerosis, C57 mice as a control. Using a routine conjugation protocol, highly pure [99mTc]duramycin and [99mTc]Annexin V were obtained, which were applied for in vitro cell assays of apoptosis and in vivo imaging of atherosclerotic plaques in the animal model. Oil Red O staining, TUNEL, hematoxylin-eosin (HE), and CD68 immunostaining were used to evaluate the deposition of lipids and presence of apoptotic macrophages in the lesions where focal intensity positively correlated with the uptake of both tracers. RESULTS [99mTc]duramycin and [99mTc]Annexin V with a high radiochemical purity (97.13 ± 1.52 and 94.94 ± 0.65 %, respectively) and a well stability at room temperature were used. Apoptotic cells binding activity to [99mTc]duramycin (Kd, 6.92 nM and Bmax, 56.04 mol/1019 cells) was significantly greater than [99mTc]Annexin V (Kd, 12.63 nM and Bmax, 31.55 mol/1019 cells). Compared with [99mTc]Annexin V, [99mTc]duramycin bound avidly to atherosclerotic lesions with a higher plaque-to-background ratio (P/B was 8.23 ± 0.91 and 5.45 ± 0.48 at 20 weeks, 15.02 ± 0.23 and 12.14 ± 0.22 at 30 weeks). No plaques were found in C57 control mice. Furthermore, Oil Red O staining showed lipid deposition areas were significantly increased in ApoE-/- mice at 20 and 30 weeks, and TUNEL and CD68 staining confirmed that the focal uptake of both tracers contained abundant apoptotic macrophages. CONCLUSIONS This stable, fast clearing, and highly specific [99mTc]duramycin, therefore, can be useful for the quantification of vulnerable atherosclerotic plaques.
Collapse
|
23
|
Characterization and lipid phase effect on the interaction of GBV-C E2-derived peptide, P6-2VIR576, with lipid membranes relating it with the HIV-1 FP inhibition. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Quan H, Kim Y, Park HC, Yang HC. Effects of phosphatidylserine-containing supported lipid bilayers on the polarization of macrophages. J Biomed Mater Res A 2018; 106:2625-2633. [PMID: 29781181 DOI: 10.1002/jbm.a.36454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
Placement of dental implants initiates inflammatory foreign body response, in which macrophages play a central role and affect the subsequent tissue healing process such as bone formation. The purpose of this study was to fabricate phosphatidylserine (PS)-containing supported lipid bilayers (SLBs) on a titanium surface to regulate the polarization of macrophages, a critical factor that affects following tissue healing and regeneration. The fluorescent recovery after photobleaching images showed that the percentage of PS had a critical influence on the fluidity, and 20% PS had the highest fluidity. Furthermore, more expanded and elongated cells were observed in the SLB-coated groups. transforming growth factor-β1 and vascular endothelial growth factor, the key cytokine markers of M2 macrophage polarization, were increased in the SLB-coated groups, especially in the 20% PS group. Consistently, cells cultured on the SLB-coated titanium exhibited the distribution of CD206+ , which is a M2 macrophage specific maker. The results of this study demonstrated M2 polarization of macrophages on PS-SLB-coated titanium discs, which suggests the application of PS-SLB as an immune-regulating coating material to improve tissue reactions to dental implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2625-2633, 2018.
Collapse
Affiliation(s)
- Hongxuan Quan
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hee Chul Park
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
25
|
Taruc K, Yin C, Wootton DG, Heit B. Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. J Vis Exp 2018. [PMID: 30176011 DOI: 10.3791/58149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studying the regulation of efferocytosis requires methods that are able to accurately quantify the uptake of apoptotic cells and to probe the signaling and cellular processes that control efferocytosis. This quantification can be difficult to perform as apoptotic cells are often efferocytosed piecemeal, thus necessitating methods which can accurately delineate between the efferocytosed portion of an apoptotic target versus residual unengulfed cellular fragments. The approach outlined herein utilizes dual-labeling approaches to accurately quantify the dynamics of efferocytosis and efferocytic capacity of efferocytes such as macrophages. The cytosol of the apoptotic cell is labeled with a cell-tracking dye to enable monitoring of all apoptotic cell-derived materials, while surface biotinylation of the apoptotic cell allows for differentiation between internalized and non-internalized apoptotic cell fractions. The efferocytic capacity of efferocytes is determined by taking fluorescent images of live or fixed cells and quantifying the amount of bound versus internalized targets, as differentiated by streptavidin staining. This approach offers several advantages over methods such as flow cytometry, namely the accurate delineation of non-efferocytosed versus efferocytosed apoptotic cell fractions, the ability to measure efferocytic dynamics by live-cell microscopy, and the capacity to perform studies of cellular signaling in cells expressing fluorescently-labeled transgenes. Combined, the methods outlined in this protocol serve as the basis for a flexible experimental approach that can be used to accurately quantify efferocytic activity and interrogate cellular signaling pathways active during efferocytosis.
Collapse
Affiliation(s)
- Kyle Taruc
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Charles Yin
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario
| | - Daniel G Wootton
- Institute of Infection and Global Health, University of Liverpool; Department of Respiratory Research, Aintree University Hospital NHS Foundation Trust
| | - Bryan Heit
- Department of Microbiology and Immunology and the Center for Human Immunology, University of Western Ontario;
| |
Collapse
|
26
|
Wang L, Habib AA, Mintz A, Li KC, Zhao D. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Mol Imaging 2018; 16:1536012117708722. [PMID: 28654387 PMCID: PMC5470144 DOI: 10.1177/1536012117708722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.
Collapse
Affiliation(s)
- Lulu Wang
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amyn A Habib
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| | - Akiva Mintz
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,5 Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - King C Li
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,6 Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dawen Zhao
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Belzile O, Huang X, Gong J, Carlson J, Schroit AJ, Brekken RA, Freimark BD. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer. Immunotargets Ther 2018; 7:1-14. [PMID: 29417044 PMCID: PMC5788995 DOI: 10.2147/itt.s134834] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer.
Collapse
Affiliation(s)
- Olivier Belzile
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xianming Huang
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Jian Gong
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Jay Carlson
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Alan J Schroit
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce D Freimark
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| |
Collapse
|
28
|
Teng O, Ang CKE, Guan XL. Macrophage-Bacteria Interactions-A Lipid-Centric Relationship. Front Immunol 2017; 8:1836. [PMID: 29326713 PMCID: PMC5742358 DOI: 10.3389/fimmu.2017.01836] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Macrophages are professional phagocytes at the front line of immune defenses against foreign bodies and microbial pathogens. Various bacteria, which are responsible for deadly diseases including tuberculosis and salmonellosis, are capable of hijacking this important immune cell type and thrive intracellularly, either in the cytoplasm or in specialized vacuoles. Tight regulation of cellular metabolism is critical in shaping the macrophage polarization states and immune functions. Lipids, besides being the bulk component of biological membranes, serve as energy sources as well as signaling molecules during infection and inflammation. With the advent of systems-scale analyses of genes, transcripts, proteins, and metabolites, in combination with classical biology, it is increasingly evident that macrophages undergo extensive lipid remodeling during activation and infection. Each bacterium species has evolved its own tactics to manipulate host metabolism toward its own advantage. Furthermore, modulation of host lipid metabolism affects disease susceptibility and outcome of infections, highlighting the critical roles of lipids in infectious diseases. Here, we will review the emerging roles of lipids in the complex host-pathogen relationship and discuss recent methodologies employed to probe these versatile metabolites during the infection process. An improved understanding of the lipid-centric nature of infections can lead to the identification of the Achilles' heel of the pathogens and host-directed targets for therapeutic interventions. Currently, lipid-moderating drugs are clinically available for a range of non-communicable diseases, which we anticipate can potentially be tapped into for various infections.
Collapse
Affiliation(s)
- Ooiean Teng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Candice Ke En Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
29
|
Phosphatidylserine save-me signals drive functional recovery of severed axons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E10196-E10205. [PMID: 29109263 PMCID: PMC5703272 DOI: 10.1073/pnas.1703807114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nervous system injury can cause lifelong disability, because repair rarely leads to reconnection with the target tissue. In the nematode Caenorhabditis elegans and in several other species, regeneration can proceed through a mechanism of axonal fusion, whereby regrowing axons reconnect and fuse with their own separated fragments, rapidly and efficiently restoring the original axonal tract. We have found that the process of axonal fusion restores full function to damaged neurons. In addition, we show that injury-induced changes to the axonal membrane that result in exposure of lipid “save-me” signals mediate the level of axonal fusion. Thus, our results establish axonal fusion as a complete regenerative mechanism that can be modulated by changing the level of save-me signals exposed after injury. Functional regeneration after axonal injury requires transected axons to regrow and reestablish connection with their original target tissue. The spontaneous regenerative mechanism known as axonal fusion provides a highly efficient means of achieving targeted reconnection, as a regrowing axon is able to recognize and fuse with its own detached axon segment, thereby rapidly reestablishing the original axonal tract. Here, we use behavioral assays and fluorescent reporters to show that axonal fusion enables full recovery of function after axotomy of Caenorhabditis elegans mechanosensory neurons. Furthermore, we reveal that the phospholipid phosphatidylserine, which becomes exposed on the damaged axon to function as a “save-me” signal, defines the level of axonal fusion. We also show that successful axonal fusion correlates with the regrowth potential and branching of the proximal fragment and with the retraction length and degeneration of the separated segment. Finally, we identify discrete axonal domains that vary in their propensity to regrow through fusion and show that the level of axonal fusion can be genetically modulated. Taken together, our results reveal that axonal fusion restores full function to injured neurons, is dependent on exposure of phospholipid signals, and is achieved through the balance between regenerative potential and level of degeneration.
Collapse
|
30
|
Batti L, Sundukova M, Murana E, Pimpinella S, De Castro Reis F, Pagani F, Wang H, Pellegrino E, Perlas E, Di Angelantonio S, Ragozzino D, Heppenstall PA. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Cell Rep 2017; 15:2608-15. [PMID: 27332874 PMCID: PMC4921873 DOI: 10.1016/j.celrep.2016.05.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 12/10/2015] [Accepted: 05/07/2016] [Indexed: 12/31/2022] Open
Abstract
Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain. Microglial TMEM16F channels are required for neuropathic pain development in mice TMEM16F-deficient microglia display deficits in process motility and phagocytosis Deleting TMEM16F spares injury-induced loss of spinal cord GABA immunoreactivity Microglial phagocytosis may contribute to neuropathic pain development
Collapse
Affiliation(s)
- Laura Batti
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy.
| | - Mayya Sundukova
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | - Emanuele Murana
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Sofia Pimpinella
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | | | - Francesca Pagani
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Hong Wang
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Eloisa Pellegrino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Emerald Perlas
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Davide Ragozzino
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy; IRCCS Neuromed, Via Atinese, Pozzilli 86077, Italy
| | - Paul A Heppenstall
- EMBL Mouse Biology Unit, Via Ramarini 32, Monterotondo 00015, Italy; Molecular Medicine Partnership Unit (MMPU), 69117 Heidelberg, Germany.
| |
Collapse
|
31
|
Oyler-Yaniv J, Oyler-Yaniv A, Shakiba M, Min NK, Chen YH, Cheng SY, Krichevsky O, Altan-Bonnet N, Altan-Bonnet G. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation. Mol Cell 2017; 66:635-647.e7. [PMID: 28575659 PMCID: PMC6611463 DOI: 10.1016/j.molcel.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways.
Collapse
MESH Headings
- Animals
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Computational Biology
- Computer Simulation
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Janus Kinases/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylserines/immunology
- Phosphatidylserines/metabolism
- Phosphorylation
- RAW 264.7 Cells
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Time Factors
- Transcription, Genetic
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mojdeh Shakiba
- Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nina K Min
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel; Ilse Kats Center for Nanoscience, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
32
|
Radiosynthesis and preliminary biological evaluation of 99mTc-labeled 2-methyl-2-pentylmalonic acid as an apoptosis imaging agent. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Klöditz K, Chen YZ, Xue D, Fadeel B. Programmed cell clearance: From nematodes to humans. Biochem Biophys Res Commun 2016; 482:491-497. [PMID: 27919685 DOI: 10.1016/j.bbrc.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Programmed cell clearance is a highly regulated physiological process of elimination of dying cells that occurs rapidly and efficiently in healthy organisms. It thus ensures proper development as well as homeostasis. Recent studies have disclosed a considerable degree of conservation of cell clearance pathways between nematodes and higher organisms. The externalization of the anionic phospholipid phosphatidylserine (PS) has emerged as an important "eat-me" signal for phagocytes and its exposition on apoptotic cells is controlled by phospholipid translocases and scramblases. However, there is mounting evidence that PS exposure occurs not only in apoptosis, but may also be actively expressed on the surface of cells undergoing other forms of cell death including necrosis; PS is also expressed on the surface of engulfing cells. Additionally, PS may act as a "save-me" signal during axonal regeneration. Here we discuss mechanisms of PS exposure and its recognition by phagocytes as well as the consequences of PS signaling in nematodes and in mammals.
Collapse
Affiliation(s)
- Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yu-Zen Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
34
|
Zimmerman JF, Parameswaran R, Murray G, Wang Y, Burke M, Tian B. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. SCIENCE ADVANCES 2016; 2:e1601039. [PMID: 28028534 PMCID: PMC5161427 DOI: 10.1126/sciadv.1601039] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/08/2016] [Indexed: 05/12/2023]
Abstract
The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active "burst-like" transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high-aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies.
Collapse
Affiliation(s)
- John F. Zimmerman
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Parameswaran
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Graeme Murray
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Yucai Wang
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Michael Burke
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author.
| |
Collapse
|
35
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
36
|
Bevers EM, Williamson PL. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane. Physiol Rev 2016; 96:605-45. [PMID: 26936867 DOI: 10.1152/physrev.00020.2015] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure.
Collapse
Affiliation(s)
- Edouard M Bevers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| | - Patrick L Williamson
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| |
Collapse
|
37
|
Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, Freimark B, Empig C, Mercer J, Schroit AJ, Schett G, Herrmann M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 2016; 23:962-78. [PMID: 26915293 PMCID: PMC4987730 DOI: 10.1038/cdd.2016.11] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics.
Collapse
Affiliation(s)
- R B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA
| | - S Boeltz
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany
| | - S Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA
| | - J Carlson
- Peregrine Pharmaceuticals, 14282 Franklin Avenue, Tustin, CA 92780, USA
| | - J Wanderley
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA
| | - M Barcinski
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - R A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, Dallas, TX 75390-8593, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - X Huang
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, Dallas, TX 75390-8593, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - J T Hutchins
- Peregrine Pharmaceuticals, 14282 Franklin Avenue, Tustin, CA 92780, USA
| | - B Freimark
- Peregrine Pharmaceuticals, 14282 Franklin Avenue, Tustin, CA 92780, USA
| | - C Empig
- Peregrine Pharmaceuticals, 14282 Franklin Avenue, Tustin, CA 92780, USA
| | - J Mercer
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - A J Schroit
- Simmons Cancer Center and the Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - G Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany
| | - M Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
38
|
Wang L, Hückelhoven A, Hong J, Jin N, Mani J, Chen BA, Schmitt M, Schmitt A. Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring-Development of an algorithm. Cytometry A 2016; 89:246-58. [DOI: 10.1002/cyto.a.22813] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/18/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Lei Wang
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Angela Hückelhoven
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Jian Hong
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Nan Jin
- Department of Hematology; Zhongda Hospital, Southeast University; Nanjing China
| | - Jiju Mani
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Bao-an Chen
- Department of Hematology; Zhongda Hospital, Southeast University; Nanjing China
| | - Michael Schmitt
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Anita Schmitt
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| |
Collapse
|
39
|
Herate C, Ramdani G, Grant NJ, Marion S, Gasman S, Niedergang F, Benichou S, Bouchet J. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages. PLoS One 2016; 11:e0145617. [PMID: 26745724 PMCID: PMC4712888 DOI: 10.1371/journal.pone.0145617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.
Collapse
Affiliation(s)
- Cecile Herate
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Ghania Ramdani
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Nancy J. Grant
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR3212, and Université de Strasbourg, Strasbourg, France
| | - Sabrina Marion
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Stephane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR3212, and Université de Strasbourg, Strasbourg, France
| | - Florence Niedergang
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
- * E-mail:
| | - Jerome Bouchet
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
40
|
Yu M, Cui FX, Jia HM, Zhou C, Yang Y, Zhang HW, Ding G, Zou ZM. Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics. J Pharm Biomed Anal 2015; 120:181-9. [PMID: 26744988 DOI: 10.1016/j.jpba.2015.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 12/30/2022]
Abstract
Asthma is a disease characterized by chronic relapsing airways, and its etiology remains incompletely understood. To better understand the metabolic phenotypes of asthma, we investigated a plasma metabolic signature associated with allergic asthma in ovalbumin (OVA)-sensitized mice by using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Sixteen metabolites were characterized as potential pathological biomarkers related to asthma. Among them, 6 (dodecanoic acid (P1), myristic acid (P2), phytosphingosine (P3), sphinganine (P4), inosine (P13) and taurocholic acid (P15)) were first reported to have potential relevance in the pathogenesis of experimental asthma. The identified potential biomarkers were involved in 6 metabolic pathways and achieved the most entire metabolome contributing to the formation of allergic asthma. Purine metabolism was the most prominently influenced in OVA-induced asthma mice according to the metabolic pathway analysis (MetPA), suggesting that significantly changes in inflammatory responses in the pathophysiologic process of asthma. The metabolites of purine metabolism, especially uric acid (P12) and inosine (P13), may denote their potential as targeted biomarkers related to experimental asthma. The decreased plasma uric acid (P12) suggested that inflammation responses of allergic asthma inhibited the activity of xanthine oxidase in purine metabolism, and manifested the severity of asthma exacerbation. The increased level of inosine (P13) suggests that inflammatory cells induce adenosine triphosphate (ATP) breakdown, resulting in excessive expression of adenosine deaminase (ADA) in the formation of allergic asthma. These findings provided a novel perspective on the metabolites signatures related to allergic asthma, which provided us with new insights into the pathogenesis of asthma, and the discovery of targets for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Feng-Xia Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Chao Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
41
|
Elvas F, Vangestel C, Rapic S, Verhaeghe J, Gray B, Pak K, Stroobants S, Staelens S, Wyffels L. Characterization of [(99m)Tc]Duramycin as a SPECT Imaging Agent for Early Assessment of Tumor Apoptosis. Mol Imaging Biol 2015; 17:838-47. [PMID: 25896815 PMCID: PMC4641155 DOI: 10.1007/s11307-015-0852-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE We investigated the usefulness of [(99m)Tc]duramycin for monitoring early response to cancer therapy in mice, with an eye towards clinical translation. PROCEDURES [(99m)Tc]Duramycin was injected in healthy CD1-/- mice to estimate human [(99m)Tc]duramycin radiation dose. [(99m)Tc]Duramycin single-photon emission computed tomography (SPECT) imaging of apoptosis was evaluated in a mouse model of colorectal cancer treated with irinotecan and validated ex vivo using autoradiography, cleaved caspase-3, and TdT-mediated dUTP nick-end labeling (TUNEL) histology of the tumors. RESULTS The mean effective dose was estimated to be 3.74 × 10(-3) ± 3.43 × 10(-4) mSv/MBq for non-purified and 3.19 × 10(-3) ± 2.16 × 10(-4) mSv/MBq for purified [(99m)Tc]duramycin. [(99m)Tc]Duramycin uptake in vivo following therapy increased significantly in apoptotic irinotecan-treated tumors (p = 0.008). Radioactivity in the tumors positively correlated with cleaved caspase-3 (r = 0.85, p < 0.001) and TUNEL (r = 0.92, p < 0.001) staining. CONCLUSION [(99m)Tc]Duramycin can be used to detect early chemotherapy-induced tumor cell death, and thus, may be a prospective candidate for clinical SPECT imaging of tumor response to therapy.
Collapse
Affiliation(s)
- Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Sara Rapic
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium.
| |
Collapse
|
42
|
Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI. [P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:3-12. [PMID: 26050466 DOI: 10.1134/s1068162015010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.
Collapse
|
43
|
Sarkar A, Sengupta D, Mandal S, Sen G, Dutta Chowdhury K, Chandra Sadhukhan G. Treatment with garlic restores membrane thiol content and ameliorates lead induced early death of erythrocytes in mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:396-410. [PMID: 23997012 DOI: 10.1002/tox.21901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Sequelae of chronic lead (Pb(2+) ) toxicity includes anemia that is partially due to early death of erythrocytes characterized by excess accumulation of ROS and downregulation of antioxidant system causing oxidative stress and externalization of phosphatidylserine. In this study, pathophysiological based therapeutic application of garlic was evaluated against erythrocyte death. Results suggest that garlic administration prevents oxidative stress, restored the antioxidant balance in erythrocytes of Pb(2+) exposed mice. Moreover, in vitro studies revealed that activity of both scramblase and aminophospholipid translocase could be changed by modifying the critical sulfhydryl groups in presence of dithiothreitol during Pb(2+) exposure. Data also indicated that garlic treatment in Pb(2+) exposed mice exhibited sharp decline in PS exposure and increase in erythrocyte membrane thiol group followed by increase in aminophospholipid translocase activity and decline in scramblase activity. Findings indicated that garlic has the ability to restore the lifespan of erythrocytes during Pb(2+) exposure.
Collapse
Affiliation(s)
- Avik Sarkar
- Genetics and Molecular Biology Laboratory, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata, 700006, India
| | | | | | | | | | | |
Collapse
|
44
|
Dewitte H, Vanderperren K, Haers H, Stock E, Duchateau L, Hesta M, Saunders JH, De Smedt SC, Lentacker I. Theranostic mRNA-loaded microbubbles in the lymphatics of dogs: implications for drug delivery. Theranostics 2015; 5:97-109. [PMID: 25553101 PMCID: PMC4265751 DOI: 10.7150/thno.10298] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
Microbubbles have shown potential as intralymphatic ultrasound contrast agents while nanoparticle-loaded microbubbles are increasingly investigated for ultrasound-triggered drug and gene delivery. To explore whether mRNA-nanoparticle loaded microbubbles could serve as theranostics for detection of and mRNA transfer to the lymph nodes, we investigate the behavior of unloaded and mRNA-loaded microbubbles using contrast-enhanced ultrasound imaging after subcutaneous injection in dogs. Our results indicate that both types of microbubbles are equally capable of rapidly entering the lymph vessels and nodes upon injection, and novel, valuable and detailed information on the lymphatic structure in the animals could be obtained. Furthermore, additional observations were made regarding the dynamics of microbubble lymph node uptake. Importantly, neither the microbubble migration distance within the lymphatics, nor the observed contrast signal intensity was influenced by mRNA-loading. Although further optimization of acoustic parameters will be needed, this could represent a first step towards ultrasound-guided, ultrasound-triggered intranodal mRNA delivery using these theranostic microbubbles.
Collapse
|
45
|
Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park CS, Park SW, Kwon SW. Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 2014; 13:3919-29. [PMID: 25040188 DOI: 10.1021/pr5002059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To better understand the respiratory lipid phenotypes of asthma, we developed a novel method for lipid profiling of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS with an internal spectral library and high-throughput lipid-identifying software. The method was applied to BALF from 38 asthmatic patients (18 patients with nonsteroid treated bronchial asthma [NSBA] and 20 patients with steroid treated bronchial asthma [SBA]) and 13 healthy subjects (NC). We identified 69 lipids, which were categorized into one of six lipid classes: lysophosphatidylcholine (LPC), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), sphingomyelin (SM) and triglyceride (TG). Compared with the NC group, the individual quantity levels of the six classes of lipids were significantly higher in the NSBA subjects. In the SBA subjects, the PC, PG, PS, SM, and TG levels were similar to the levels observed in the NC group. Using differentially expressed lipid species (p value < 0.05, FDR < 0.1 and VIP score of PLS-DA > 1), 34 lipid biomarker candidates with high prediction performance between asthmatics and controls were identified (AUROC > 0.9). These novel findings revealed specific characteristics of lipid phenotypes in asthmatic patients and suggested the importance of future research on the relationship between lipid levels and asthma.
Collapse
Affiliation(s)
- Yun Pyo Kang
- College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stevenson EV, Collins-McMillen D, Kim JH, Cieply SJ, Bentz GL, Yurochko AD. HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. Viruses 2014; 6:782-807. [PMID: 24531335 PMCID: PMC3939482 DOI: 10.3390/v6020782] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/14/2022] Open
Abstract
The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host.
Collapse
Affiliation(s)
- Emily V Stevenson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Jung Heon Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Stephen J Cieply
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gretchen L Bentz
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
47
|
Filardy AA, Costa-da-Silva AC, Koeller CM, Guimarães-Pinto K, Ribeiro-Gomes FL, Lopes MF, Heise N, Freire-de-Lima CG, Nunes MP, DosReis GA. Infection with Leishmania major induces a cellular stress response in macrophages. PLoS One 2014; 9:e85715. [PMID: 24416445 PMCID: PMC3887094 DOI: 10.1371/journal.pone.0085715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/30/2013] [Indexed: 12/25/2022] Open
Abstract
We investigated early cellular responses induced by infection with Leishmania major in macrophages from resistant C57/BL6 mice. Infection increased production of reactive oxygen species by resident, but not inflammatory peritoneal macrophages. In addition, infection increased activation of stress-activated protein kinases/c-Jun N-terminal kinases (SAPK/JNK) in resident, but not in inflammatory peritoneal macrophages. Infection also increased expression of membrane and soluble FasL, but infected macrophages remained viable after 48 h. Infection increased secretion of cytokines/chemokines TNF-α, IL-6, TIMP-1, IL-1RA, G-CSF, TREM, KC, MIP-1α, MIP-1β, MCP-1, and MIP-2 in resident macrophages. Addition of antioxidants deferoxamine and N-acetylcysteine reduced ROS generation and JNK activation. Addition of antioxidants or JNK inhibitor SP600125 reduced secretion of KC. Furthermore, treatment with antioxidants or JNK inhibitor also reduced intracellular parasite replication. These results indicated that infection triggers a rapid cellular stress response in resident macrophages which induces proinflammatory signals, but is also involved in parasite survival and replication in host macrophages.
Collapse
Affiliation(s)
- Alessandra A. Filardy
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carolina M. Koeller
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamila Guimarães-Pinto
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia L. Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcela F. Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio G. Freire-de-Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise P. Nunes
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - George A. DosReis
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
48
|
Abstract
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence.
Collapse
|
49
|
Oliveira A, Allegri A, Bidon-Chanal A, Knipp M, Roitberg AE, Abbruzzetti S, Viappiani C, Luque FJ. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1-3 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1711-21. [PMID: 23624263 DOI: 10.1016/j.bbapap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022]
Abstract
Nitrophorins (NPs) are nitric oxide (NO)-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. Though NP7 exhibits a large sequence resemblance with other NPs, two major differential features are the ability to interact with negatively charged cell surfaces and the presence of a specific N-terminus composed of three extra residues (Leu1-Pro2-Gly3). The aim of this study is to examine the influence of the N-terminus on the ligand binding, and the topological features of inner cavities in closed and open states of NP7, which can be associated to the protein structure at low and high pH, respectively. Laser flash photolysis measurements of the CO rebinding kinetics to NP7 and its variant NP7(Δ1-3), which lacks the three extra residues at the N-terminus, exhibit a similar pattern and support the existence of a common kinetic mechanism for ligand migration and binding. This is supported by the existence of a common topology of inner cavities, which consists of two docking sites in the heme pocket and a secondary site at the back of the protein. The ligand exchange between these cavities is facilitated by an additional site, which can be transiently occupied by the ligand in NP7, although it is absent in NP4. These features provide a basis to explain the enhanced internal gas hosting capacity found experimentally in NP7 and the absence of ligand rebinding from secondary sites in NP4. The current data allow us to speculate that the processes of docking to cell surfaces and NO release may be interconnected in NP7, thereby efficiently releasing NO into a target cell. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ana Oliveira
- Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lioi AB, Rodriguez ALR, Funderburg NT, Feng Z, Weinberg A, Sieg SF. Membrane damage and repair in primary monocytes exposed to human β-defensin-3. J Leukoc Biol 2012; 92:1083-91. [PMID: 22837529 DOI: 10.1189/jlb.0112046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interactions of AMPs with plasma membranes of primary human immune cells are poorly characterized. Analysis of PI exclusion as a measure of membrane integrity indicated that hBD-3 caused membrane perturbations in monocytes but not T or B cells at concentrations typically used to kill bacteria or to induce activation of APCs. Bleb-like structures were observed in monocytes exposed to hBD-3. These cells also increased surface expression of LAMP1, a membrane repair marker after exposure to hBD-3. Furthermore, cell death was enhanced by adding an inhibitor of membrane repair. Removal of cholesterol from membranes resulted in greater susceptibility of cells to hBD-3, but cholesterol content was not different between the cell types, as assessed by filipin staining. Freshly isolated monocytes expressed higher levels of the negatively charged phospholipid, PS, on their outer leaflet compared with B or T cells. Preincubation of monocytes with molecules that bind PS protected these cells from hBD-3-induced membrane damage, suggesting that outer-membrane PS expression can at least partially explain monocyte susceptibility to hBD-3. The potential for membrane disruption caused by AMPs should be evaluated in various cell types when considering these molecules for therapeutic applications in humans.
Collapse
Affiliation(s)
- Anthony B Lioi
- Department of Molecular Biology and Microbiology, Division of Infectious Diseases, Center for AIDS Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|