1
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
2
|
Cherra SJ, Goncharov A, Boassa D, Ellisman M, Jin Y. C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. J Neurogenet 2020; 34:298-306. [PMID: 32366143 DOI: 10.1080/01677063.2020.1726915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Koranteng F, Cha N, Shin M, Shim J. The Role of Lozenge in Drosophila Hematopoiesis. Mol Cells 2020; 43:114-120. [PMID: 31992020 PMCID: PMC7057836 DOI: 10.14348/molcells.2019.0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023] Open
Abstract
Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.
Collapse
Affiliation(s)
| | - Nuri Cha
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Mingyu Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 0476, Korea
| |
Collapse
|
4
|
Arya R, Gyonjyan S, Harding K, Sarkissian T, Li Y, Zhou L, White K. A Cut/cohesin axis alters the chromatin landscape to facilitate neuroblast death. Development 2019; 146:dev166603. [PMID: 30952666 PMCID: PMC6526717 DOI: 10.1242/dev.166603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Precise control of cell death in the nervous system is essential for development. Spatial and temporal factors activate the death of Drosophila neural stem cells (neuroblasts) by controlling the transcription of multiple cell death genes through a shared enhancer. The activity of this enhancer is controlled by abdominal A and Notch, but additional inputs are needed for proper specificity. Here, we show that the Cut DNA binding protein is required for neuroblast death, regulating reaper and grim downstream of the shared enhancer and of abdominal A expression. The loss of cut accelerates the temporal progression of neuroblasts from a state of low overall levels of H3K27me3 to a higher H3K27me3 state. This is reflected in an increase in H3K27me3 modifications in the cell death gene locus in the CNS on Cut knockdown. We also show that cut regulates the expression of the cohesin subunit Stromalin. Stromalin and the cohesin regulatory subunit Nipped-B are required for neuroblast death, and knockdown of Stromalin increases H3K27me3 levels in neuroblasts. Thus, Cut and cohesin regulate apoptosis in the developing nervous system by altering the chromatin landscape.
Collapse
Affiliation(s)
- Richa Arya
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Seda Gyonjyan
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Harding
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Tatevik Sarkissian
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
5
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
6
|
Casas-Tintó S, Lolo FN, Moreno E. Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition. Nat Commun 2015; 6:10022. [DOI: 10.1038/ncomms10022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/27/2015] [Indexed: 12/23/2022] Open
|
7
|
Melo RMC, Martins YS, Luz RK, Rizzo E, Bazzoli N. PCNA and apoptosis during post-spawning ovarian remodeling in the teleost Oreochromis niloticus. Tissue Cell 2015; 47:541-9. [PMID: 26542933 DOI: 10.1016/j.tice.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023]
Abstract
The balance between cell proliferation and apoptosis is crucial for tissue development and homeostasis. The present study investigated the contribution of proliferating cell nuclear antigen (PCNA) and apoptosis during ovarian remodeling after spawning in the Nile tilapia Oreochromis niloticus. Breeding females were kept in controlled conditions and ovary samples were collected weekly for TUNEL assay, immunohistochemistry for PCNA and caspase-3 and morphometric analysis. During the follicular growth, PCNA labeled mainly the nuclei of oocytes and follicular cells in a high proportion of follicles especially in primary growth, while a low occurrence of apoptosis in follicular and theca cells was detected. At 0-3 days post-spawning, post-ovulatory follicles showed no proliferative activity, however the follicular cells exhibited high rates of apoptosis. At 7-10 days, PCNA labeled the thecal cells in a low proportion of post-ovulatory follicles, which showed follicular cells with lower rates of apoptosis. PCNA labeled mainly the theca in the advanced and late stages of atretic follicles, while the follicular cells exhibited a significant increase of apoptosis along follicular atresia. We concluded that PCNA and apoptosis work cooperatively to ensuring the success of follicle development and maintaining of tissue homeostasis during follicular growth. PCNA and apoptosis are also essential mechanisms in the follicular regression during post-spawning ovarian recovery in the Nile tilapia.
Collapse
Affiliation(s)
- Rafael M C Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yuri S Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronald K Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Djansugurova LB. Effect of nitric oxide on expression of apoptotic genes and HSP70 in drosophila. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Southerland B, Kulkarni-Datar K, Keoni C, Bricker R, Grunwald WC, Ketcha DM, Hern E, Cool DR, Brown TL. Q-VE-OPh, a Negative Control for O-Phenoxy-Conjugated Caspase Inhibitors. J Cell Death 2010. [DOI: 10.4137/jcd.s4455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The broad-spectrum apoptosis (caspase) inhibitor, Q-VD-OPh, has been shown to have no side effects and is effective at a much lower concentration than other FMK-type caspase inhibitors. However, an appropriate negative control to use with this inhibitor has not been available. In this study, we developed and analyzed a new compound, based on the Q-VD-OPh backbone, which acts as a cognate negative control. To create the negative control, we substituted a glutamate residue for the aspartate residue to create Q-VE-OPh, thereby retaining the identical charge and molecular properties with only the addition of an extra -CH2 group. The purity and quality were assessed by ion trap mass spectrometry and verified by nuclear magnetic resonance. We determined the effectiveness of Q-VE-OPh, in comparison to Q-VD-OPh, to prevent DNA fragmentation in human Jurkat T leukemia cells that were induced to undergo apoptosis. DNA fragmentation was analyzed by agarose gel electrophoresis for the presence of DNA laddering, the hallmark indicator of apoptosis. Our results indicate that apoptosis was potently inhibited by Q-VD-OPh. In stark contrast, Q-VE-OPh did not inhibit apoptosis at a similar dose but required at least 20 times greater concentration than Q-VD-OPh to have any inhibitory effect. Western blot analysis showed that Q-VE-OPh was similarly less effective at inhibiting the activation of the extrinsic (caspase 8) and intrinsic (caspase 9) initiator caspases. Cell proliferation and viability studies further demonstrate that Q-VE-OPh is non-toxic, even at high concentration. Our data indicate that the specificity, effectiveness, and absence of toxicity of Q-VE-OPh provides the appropriate and superior negative control for in vitro and in vivo studies when analyzing the effects of o-phenoxy caspase inhibitors.
Collapse
Affiliation(s)
| | | | - Chanel Keoni
- Department of Neuroscience, Cell Biology, and Physiology
| | | | - William C. Grunwald
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine. Dayton, Ohio, 45435
| | | | | | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine. Dayton, Ohio, 45435
- Apoptrol, LLC, Beavercreek, Ohio 45431
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology, and Physiology
- Apoptrol, LLC, Beavercreek, Ohio 45431
| |
Collapse
|
10
|
Usui-Aoki K, Matsumoto K, Koganezawa M, Kohatsu S, Isono K, Matsubayashi H, Yamamoto MT, Ueda R, Takahashi K, Saigo K, Mikoshiba K, Yamamoto D. TARGETED EXPRESSION OF IP3SPONGE AND IP3DSRNA IMPAIRES SUGAR TASTE SENSATION INDROSOPHILA. J Neurogenet 2009; 19:123-41. [PMID: 16540404 DOI: 10.1080/01677060600569713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We evaluated the role of IP(3) in sugar taste reception in Drosophila melanogaster by inactivating the IP(3) signaling using genetic tools. We used the "IP(3) sponge," composed of the modified ligand-binding domain from the mouse IP(3) receptor, which was designed to absorb IP(3) in competition with native IP(3) receptors. Another tool was a transgene that generates double-stranded RNA against IP(3) receptor mRNA. Both inhibitors diminished the sensitivity of flies to trehalose and sucrose, as estimated by behavioral assays and electrophysiological recordings from the sugar receptor cells. The result indicates that IP(3) signaling is indispensable for sugar reception in Drosophila.
Collapse
Affiliation(s)
- Kazue Usui-Aoki
- Waseda University, School of Science and Engineering, Nishi-Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Morphological changes and patterns of ecdysone receptor B1 immunolocalization in the anterior silk gland undergoing programmed cell death in the silkworm, Bombyx mori. Acta Histochem 2009; 111:25-34. [PMID: 18554690 DOI: 10.1016/j.acthis.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/24/2022]
Abstract
The silk gland is a specific larval tissue of Lepidopteran insects and begins to degenerate shortly before pupation. The steroid hormone ecdysone triggers the stage specific programmed cell death of the anterior silk glands during metamorphosis in the silkworm, Bombyx mori. The anterior silk gland expresses ecdysone receptors, which are involved in regulation processes in response to ecdysone. In this study, the morphological changes, immunohistochemical localization and protein levels of ecdysone receptor B1 (EcR-B1) in the anterior silk gland of B. mori were investigated during programmed cell death. Morphological changes observed during the degeneration process involve the appearance of large vacuoles, probably autophagic vacuoles, which increase in number in pupal anterior silk glands. No macrophages were found in the silk gland during the prepupal and pupal stage unlike in apoptosis, which strongly suggests that programmed cell death of the anterior silk gland is carried out by autophagy. Morphological changes of the silk glands were accompanied by changes in the immunolocalization and protein levels of EcR-B1. The differences in tissue distribution and protein levels of EcR-B1 during the programmed cell death indicate that the receptor plays a major role in the modulation and function of ecdysone activity in Bombyx anterior silk glands. Our results indicate that EcR-B1 expression may be important for the process of programmed cell death in the anterior silk glands.
Collapse
|
12
|
Eckelman BP, Drag M, Snipas SJ, Salvesen GS. The mechanism of peptide-binding specificity of IAP BIR domains. Cell Death Differ 2008; 15:920-8. [PMID: 18239672 DOI: 10.1038/cdd.2008.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe the peptide-binding specificity of the baculoviral IAP repeat (BIR) domains of the human inhibitor of apoptosis (IAP) proteins, X-linked IAP, cellular IAP1 and neuronal apoptosis inhibitory protein (NAIP). Synthetic peptide libraries were used to profile each domain, and we distinguish two types of binding specificity, which we refer to as type II and type III BIR domains. Both types have a dominant selectivity for Ala in the first position of the four N-terminal residues of the peptide ligands, which constitute a core recognition motif. Our analysis allows us to define the signature of type III BIRs that demonstrate a preference for Pro in the third residue of the ligand, resembling the classic IAP-binding motif (IBM). The signature of the type II BIRs was similar to type III, but with a striking absence of specificity for Pro in the third position, suggesting that the definition of an IBM must be modified depending on the type of BIR in question. These findings explain how subtle changes in the peptide-binding groove of IAP BIR domains can significantly alter the target protein selectivity. Our analysis allows for prediction of BIR domain protein-binding preferences, provides a context for understanding the mechanism of peptide selection and heightens our knowledge of the specificity of IAP antagonists that are being developed as cancer therapeutics.
Collapse
Affiliation(s)
- B P Eckelman
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
13
|
Santos HB, Sato Y, Moro L, Bazzoli N, Rizzo E. Relationship among follicular apoptosis, integrin β1 and collagen type IV during early ovarian regression in the teleost Prochilodus argenteus after induced spawning. Cell Tissue Res 2008; 332:159-70. [DOI: 10.1007/s00441-007-0540-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
14
|
Furukawa K, Aida T, Nonaka Y, Osoda S, Juarez C, Horigome T, Sugiyama S. BAF as a caspase-dependent mediator of nuclear apoptosis in Drosophila. J Struct Biol 2007; 160:125-34. [PMID: 17904382 DOI: 10.1016/j.jsb.2007.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/18/2007] [Accepted: 07/03/2007] [Indexed: 01/27/2023]
Abstract
BAF is a double-stranded DNA binding protein required for proper nuclear morphology and function in Drosophila development. Imaginal discs of Drosophila baf-null mutants were found to exist only in younger larvae as small degenerative tissues. Immunohistochemical analyses showed diffuse lamin distribution, DNA fragmentation, and activation of caspase drICE in these tissues, suggesting that apoptotic events can be induced by the loss of baf. We therefore investigated the fate of BAF after induction of the pro-apoptotic hid transgene, and found that the loss of DNA binding forms of BAF preceded that of non-DNA binding forms of BAF. Furthermore, the DNA binding forms of BAF disappeared from nuclei before DNA fragmentation and NPC clustering were detected, showing that the loss of BAF occurs at the initial stages of nuclear apoptosis. This BAF loss was not detected before drICE activation and was inhibited by Ac-DEVD-CHO caspase inhibitors. In summary, BAF disappears at an early stage due to caspase activity when apoptosis is induced by hid, and its depletion in mutants is sufficient in itself to induce cell death, suggesting it is an apoptotic mediator.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Development and homeostasis of the haematopoietic system is dependent upon stem cells that have the unique ability to both self-renew and to differentiate in all cell lineages of the blood. The crucial decision between haematopoietic stem cell (HSC) self-renewal and differentiation must be tightly controlled. Ultimately, this choice is regulated by the integration of intrinsic signals together with extrinsic cues provided by an exclusive microenvironment, the so-called haematopoietic niche. Although the haematopoietic system of vertebrates has been studied extensively for many decades, the specification of the HSC niche and its signals involved are poorly understood. Much of our current knowledge of how niches regulate long-term maintenance of stem cells is derived from studies on Drosophila germ cells. Now, two recently published studies by Mandal et al.1 and Krezmien et al.2 describe the Drosophila haematopoietic niche and signal transduction pathways that are involved in the maintenance of haematopoietic precursors. Both reports emphasize several features that are important for controlling stem cell behavior and show parallels to both the vertebrate haematopoietic niche as well as the Drosophila germline stem cell niches in ovary and testis. The findings of both papers shed new light on the specific interactions between haematopoietic progenitors and their microenvironment.
Collapse
Affiliation(s)
- Ute Koch
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédárale de Lausanne (EPFL), Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | |
Collapse
|
16
|
Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of follicular epithelium during the late developmental stages of oogenesis in the fruit flies Bactrocera oleae and Ceratitis capitata (Diptera, Tephritidae) is mediated by autophagy. Dev Growth Differ 2006; 48:189-98. [PMID: 16573736 DOI: 10.1111/j.1440-169x.2006.00856.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we describe the features of programmed cell death of ovarian follicle cells, occurring during the late developmental stages of oogenesis in the olive fruit fly, Bactrocera oleae and the medfly, Ceratitis capitata. During stage 14, the follicle cells contain autophagic vacuoles, and they do not exhibit caspase activity in all parts of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high- but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. These data argue for the presence of an autophagy-mediated cell death program in the ovarian follicle cell layer in both species. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. We strongly believe that during the termination of the above Dipteran oogenesis, an efficient mechanism of absorption of the degenerated follicle cells is selectively activated, in order to prevent the blockage of the ovarioles and thus robustly support the physiological completion of the ovulation process.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Panepistimiopolis 15784, Athens, Greece
| | | | | | | |
Collapse
|
17
|
Abstract
Cell death is a prominent feature of animal germline development. In Drosophila, the death of 15 nurse cells is linked to the development of each oocyte. In addition, females respond to poor environmental conditions by inducing egg chamber death prior to yolk uptake by the oocyte. To study these two forms of cell death, we analyzed caspase activity in the germline by expressing a transgene encoding a caspase cleavage site flanked by cyan fluorescent protein and yellow fluorescent protein. When expressed in ovaries undergoing starvation-induced apoptosis, this construct was an accurate reporter of caspase activity. However, dying nurse cells at the end of normal oogenesis showed no evidence of cytoplasmic caspase activity. Furthermore, although expression of the caspase inhibitors p35 or Drosophila inhibitor of apoptosis protein 1 blocked starvation-induced death, it did not affect normal nurse cell death or overall oogenesis in well-fed females. Our data suggest that caspases play no role in developmentally programmed nurse cell death.
Collapse
Affiliation(s)
- S Mazzalupo
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8005, USA
| | | |
Collapse
|
18
|
Juhász G, Sass M. Hid can induce, but is not required for autophagy in polyploid larval Drosophila tissues. Eur J Cell Biol 2005; 84:491-502. [PMID: 15900708 DOI: 10.1016/j.ejcb.2004.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The major cell death pathways are apoptosis and autophagy-type cell death in Drosophila. Overexpression of proapoptotic genes in developing imaginal tissues leads to the activation of caspases and apoptosis, but most of them show no effect on the polytenic cells of the fat body during the last larval stage. Surprisingly, overexpression of Hid induces caspase-independent autophagy in the fat body, as well as in most other larval tissues tested. Hid mutation results in inhibition of salivary gland cell death, but the disintegration of the larval midgut is not affected. Electron microscopy shows that autophagy is normally induced in fat body, midgut and salivary gland cells of homozygous mutant larvae, suggesting that Hid is not required for autophagy itself. Constitutive expression of the caspase inhibitor p35 produces identical phenotypes. Our results show that the large, post-mitotic larval cells do not react or activate autophagy in response to the same strong apoptotic stimuli that trigger apoptosis in small, mitotically active imaginal disc cells.
Collapse
Affiliation(s)
- Gábor Juhász
- Department of General Zoology, Eötvös Loránd University, H-1117 Pázmány sétány 1/C, Budapest, Hungary.
| | | |
Collapse
|
19
|
Abstract
The chronobiological system of Drosophila is considered from the perspective of rhythm-regulated genes. These factors are enumerated and discussed not so much in terms of how the gene products are thought to act on behalf of circadian-clock mechanisms, but with special emphasis on where these molecules are manufactured within the organism. Therefore, with respect to several such cell and tissue types in the fly head, what is the "systems meaning" of a given structure's function insofar as regulation of rest-activity cycles is concerned? (Systematic oscillation of daily behavior is the principal overt phenotype analyzed in studies of Drosophila chronobiology). In turn, how do the several separate sets of clock-gene-expressing cells interact--or in some cases act in parallel--such that intricacies of the fly's sleep-wake cycles are mediated? Studying Drosophila chrono-genetics as a system-based endeavor also encompasses the fact that rhythm-related genes generate their products in many tissues beyond neural ones and during all stages of the life cycle. What, then, is the meaning of these widespread gene-expression patterns? This question is addressed with regard to circadian rhythms outside the behavioral arena, by considering other kinds of temporally based behaviors, and by contemplating how broadly systemic expression of rhythm-related genes connects with even more pleiotropic features of Drosophila biology. Thus, chronobiologically connected factors functioning within this insect comprise an increasingly salient example of gene versatility--multi-faceted usages of, and complex interactions among, entities that set up an organism's overall wherewithal to form and function. A corollary is that studying Drosophila development and adult-fly actions, even when limited to analysis of rhythm-systems phenomena, involves many of the animal's tissues and phenotypic capacities. It follows that such chronobiological experiments are technically demanding, including the necessity for investigators to possess wide-ranging expertise. Therefore, this chapter includes several different kinds of Methods set-asides. These techniques primers necessarily lack comprehensiveness, but they include certain discursive passages about why a given method can or should be applied and concerning real-world applicability of the pertinent rhythm-related technologies.
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
20
|
Moreira MEC, Barcinski MA. Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems. AN ACAD BRAS CIENC 2004; 76:93-115. [PMID: 15048198 DOI: 10.1590/s0001-37652004000100009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Cell death by apoptosis is characterized by specific biochemical changes, including the exposure of multiple ligands, expected to tag the dying cell for prompt recognition by phagocytes. In non-pathological conditions, an efficient clearance is assured by the redundant interaction between apoptotic cell ligands and multiple receptor molecules present on the engulfing cell surface. This review concentrates on the molecular interactions operating in mammalian and non-mammalian systems for apoptotic cell recognition, as well as on the consequences of their signaling. Furthermore, some cellular models where the exposure of the phosphatidylserine (PS) phospholipid, a classical hallmark of the apoptotic phenotype, is not followed by cell death will be discussed.
Collapse
Affiliation(s)
- Maria Elisabete C Moreira
- Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro, RJ, 20231-050, Brasil.
| | | |
Collapse
|
21
|
Evans CJ, Hartenstein V, Banerjee U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell 2003; 5:673-90. [PMID: 14602069 DOI: 10.1016/s1534-5807(03)00335-6] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blood development in Drosophila melanogaster shares several interesting features with hematopoiesis in vertebrates, including spatiotemporal regulation as well as the use of similar transcriptional regulators and signaling pathways. In this review, we describe what is known about hematopoietic development in Drosophila and the various cell types generated and their functions. Additionally, the molecular genetic mechanisms of hematopoietic cell fate determination and commitment within Drosophila blood cell lineages are discussed and compared to vertebrate mechanisms.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
22
|
Chandrasekaran V, Beckendorf SK. senseless is necessary for the survival of embryonic salivary glands in Drosophila. Development 2003; 130:4719-28. [PMID: 12925597 DOI: 10.1242/dev.00677] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apoptosis in developing Drosophila embryos is rare and confined to specific groups of cells. We explain how one organ, salivary glands, of Drosophila embryos avoids apoptosis. senseless (sens), a Zn-finger transcription factor, is expressed in the salivary primordium and later in the differentiated salivary glands. The regulation of sens expression in the salivary placodes is more complex than observed in the embryonic PNS. We have shown that sens expression is initiated in the salivary placodes by fork head (fkh), a winged helix transcription factor. The expression of sens is maintained in the salivary glands by fkh and by daughterless (da), a bHLH family member. In this study, we have identified sage, a salivary-specific bHLH protein as a new heterodimeric partner for da protein in the salivary glands. In addition, our data suggest that sage RNAi embryos have a phenotype similar to sens and that sage is necessary to maintain expression of sens in the embryonic salivary glands. Furthermore, we show that in the salivary glands, sens acts as an anti-apoptotic protein by repressing reaper and possibly hid.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
23
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
24
|
Hunter AM, Kottachchi D, Lewis J, Duckett CS, Korneluk RG, Liston P. A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. J Biol Chem 2003; 278:7494-9. [PMID: 12511567 DOI: 10.1074/jbc.c200695200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smac/DIABLO is a mitochondrial protein that is proteolytically processed and released during apoptosis along with cytochrome c and other proapoptotic factors. Once in the cytosol, Smac protein binds to inhibitors of apoptosis (IAP) proteins and disrupts the ability of the IAPs to inhibit caspases 3, 7, and 9. The requirement for mitochondrial processing and release has complicated efforts to delineate the effect of Smac overexpression and IAP inhibition on cell death processes. In this report, we document a novel expression system using ubiquitin fusions to express mature, biologically active Smac in the cytosol of transfected cells. Processing of the ubiquitin-Smac fusions is rapid and complete and generates mature Smac protein initiating correctly with the Ala-Val-Pro-Ile tetrapeptide sequence that is required for proper function. The biological activity of this exogenous protein was demonstrated by its interaction with X-linked IAP, one of the most potent of the IAPs. The presence of mature Smac was not sufficient to trigger apoptosis of healthy cells. However, cells with excess Smac protein were greatly sensitized to apoptotic triggers such as etoposide exposure. Cancer cells typically display deregulated apoptotic pathways, including Bcl2 overexpression, thereby suppressing the release of cytochrome c and Smac. The ability to circumvent the requirement for mitochondrial processing and release is critical to developing Smac as a possible gene therapy payload in cancer chemosensitization.
Collapse
Affiliation(s)
- Allison M Hunter
- Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario, Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277:44236-43. [PMID: 12218061 DOI: 10.1074/jbc.m207578200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) interact with and inhibit caspases-3, -7, and -9. This interaction can be inhibited by Smac/DIABLO, a polypeptide released from mitochondria upon initiation of the apoptotic signaling process. Here we demonstrate that the first 4-8 N-terminal amino acids of Smac/DIABLO fused to the Drosophila antennapaedia penetratin sequence, a carrier peptide, enhance the induction of apoptosis and long term antiproliferative effects of diverse antineoplastic agents including paclitaxel, etoposide, 7-ethyl-10-hydroxycamptothecin (SN-38), and doxorubicin in MCF-7 breast cancer cells. Similar effects were observed in additional breast cancer and immortalized cholangiocyte cell lines. Further analysis demonstrated that the Smac-penetratin fusion peptide crossed the cellular membrane, bound XIAP and cIAP1, displaced caspase-3 from cytoplasmic aggregates, and enhanced drug-induced caspase action in situ. These studies demonstrate that inhibition of IAP proteins can modulate the efficacy of antineoplastic agents.
Collapse
Affiliation(s)
- Christina R Arnt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J 2002; 366:689-704. [PMID: 12061891 PMCID: PMC1222826 DOI: 10.1042/bj20020691] [Citation(s) in RCA: 491] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Revised: 06/05/2002] [Accepted: 06/13/2002] [Indexed: 11/17/2022]
Abstract
Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Collapse
Affiliation(s)
- Otilia V Vieira
- Programme in Cell Biology, Hospital for Sick Children and Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
27
|
Adam M, Levraud JP, Golstein P. Approches génétiques de la mort cellulaire programmée : succès et questions. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021889831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Kurtz J. Phagocytosis by invertebrate hemocytes: causes of individual variation in Panorpa vulgaris scorpionflies. Microsc Res Tech 2002; 57:456-68. [PMID: 12112428 DOI: 10.1002/jemt.10099] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An in vitro phagocytosis assay, adjusted to as little as 1 microL of insect hemolymph, enables the microscopic determination of phagocytosis for single individuals of small insects. Even repeated determination over the lifetime of individuals is possible. This method makes it feasible to study individual variation in invertebrate phagocytic capacity. Possible sources of such variation are reviewed in this article: genetic differences, development, aging, reproduction, presence of parasites, and diverse environmental influences are natural sources of individual variation in phagocytosis. However, the methods used for phagocytosis and microscopic evaluation are also (unwelcome) sources of variation. To optimize incubation time for in vitro phagocytosis, time courses were determined. Furthermore, the reliability of visual counting and image analysis for the microscopic quantification of phagocytosis are compared. The influences of larval development and adult aging on phagocytosis by Panorpa vulgaris hemocytes are subsequently demonstrated. During development, a decrease in hemocyte numbers but a simultaneous increase in the proportion of phagocytosing hemocytes was observed when larvae reached pupation. On the other hand, adults showed a dramatic decrease in phagocytic capacity with age, while cell numbers remained fairly constant. The results show that individual variation in phagocytosis can be determined accurately in small invertebrates and related to its causes. This might be especially interesting in the context of studies relating individual immunocompetence to ecology, life history variation, and behavior.
Collapse
Affiliation(s)
- Joachim Kurtz
- Institut für Evolutionsbiologie und Okologie, Rheinische Friedrich-Wilhelms-Universität, 53121 Bonn, Germany.
| |
Collapse
|
29
|
Abstract
The 'inhibitor of apoptosis' (IAP) gene family, which was discovered less than a decade ago, encodes a group of structurally related proteins that, in addition to their ability to suppress apoptotic cell death, are involved in an increasing number of seemingly unrelated cellular functions. Here, we review the functional and structural properties of this fascinating group of proteins, and of several recently identified IAP-binding factors that regulate IAP function.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
30
|
Gorski S, Marra M. Programmed cell death takes flight: genetic and genomic approaches to gene discovery in Drosophila. Physiol Genomics 2002; 9:59-69. [PMID: 12006672 DOI: 10.1152/physiolgenomics.00114.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.
Collapse
Affiliation(s)
- S Gorski
- Genome Sequence Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6.
| | | |
Collapse
|
31
|
Abstract
The reaper (rpr) and head involution defective (hid) genes mediate programmed cell death (PCD) during Drosophila development. We show that expression of either rpr or hid under control of a rhodopsin promoter induces rapid cell death of adult photoreceptor cells. Ultrastructural analysis revealed that the dying photoreceptor cells share morphological features with other cells undergoing PCD. The anti-apoptotic baculoviral P35 protein acts downstream of hid activity to suppress the photoreceptor cell death driven by rpr and hid. These results establish that the Drosophila photoreceptors are sensitive to the rpr- and hid-driven cell death pathways.
Collapse
Affiliation(s)
- Cheng Da Hsu
- Department of Biological Sciences, Galvin Life Science Building, University of Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
32
|
|
33
|
|