1
|
Osborne B, Patel RS, Krause-Hauch M, Lui A, Vidyarthi G, Patel NA. Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model. BIOLOGY 2024; 13:943. [PMID: 39596898 PMCID: PMC11591907 DOI: 10.3390/biology13110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Obesity promotes metabolic diseases such as type 2 diabetes and cardiovascular disease. PKCδI is a serine/threonine kinase which regulates cell growth, differentiation, and survival. Caspase-3 cleavage of PKCδI releases the C-terminal catalytic fragment (PKCδI_C), which promotes inflammation and apoptosis. We previously demonstrated an increase in PKCδI_C in human obese adipose tissue (AT) and adipocytes. Subsequently, we designed a small molecule drug called NP627 and demonstrated that NP627 specifically inhibited the release of PKCδI_C in vitro. Here, we evaluate the in vivo safety and efficacy of NP627 in a diet-induced obese (DIO) mouse model. The results demonstrate that NP627 treatment in DIO mice increased glucose uptake and inhibited the cleavage of PKCδI_C in the AT as well as in the kidney, spleen, and liver. Next, RNAseq analysis was performed on the AT from the NP627-treated DIO mice. The results show increases in ADIPOQ and CIDEC, upregulation of AMPK, PI3K-AKT, and insulin signaling pathways, while inflammatory pathways were decreased post-NP627 administration. Further, levels of lncRNAs associated with metabolic pathways were affected by NP627 treatment. In conclusion, the study demonstrates that NP627, a small-molecule inhibitor of PKCδI activity, is not toxic and that it improves the metabolic function of DIO mice in vivo.
Collapse
Affiliation(s)
- Brenna Osborne
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rekha S. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Meredith Krause-Hauch
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Ashley Lui
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Gitanjali Vidyarthi
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
| | - Niketa A. Patel
- Research Service, James A. Haley Veteran’s Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.O.); (R.S.P.); (M.K.-H.); (G.V.)
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
3
|
Moukova A, Malina L, Kolarova H, Bajgar R. Hyperoside as a UV Photoprotective or Photostimulating Compound-Evaluation of the Effect of UV Radiation with Selected UV-Absorbing Organic Compounds on Skin Cells. Int J Mol Sci 2023; 24:9910. [PMID: 37373060 DOI: 10.3390/ijms24129910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Ultraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation. Their protective effects on skin cell viability, ROS production, mitochondrial membrane potential, liposomal permeability, and DNA integrity were investigated. Only some of the compounds studied, such as trans-urocanic acid and hyperoside, had a significant effect on the examined hallmarks of UV-induced cell damage. This was also confirmed by an atomic force microscopy study of morphological changes in HaCaT cells or a study conducted on a 3D skin model. In conclusion, hyperoside was found to be a very effective UV-protective compound, especially against UVA radiation. Commonly used sunscreen compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 3-(4-methylbenzylidene)camphor turned out to be only physical UV filters, and pachypodol with a relatively high absorption in the UVA region was shown to be more phototoxic than photoprotective.
Collapse
Affiliation(s)
- Anna Moukova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Lukas Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
4
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
5
|
Kaplan N, Liu M, Wang J, Yang W, Fiolek E, Peng H, Lavker RM. Eph signaling is regulated by miRNA-210: Implications for corneal epithelial repair. FASEB J 2022; 36:e22076. [PMID: 34856019 PMCID: PMC8647904 DOI: 10.1096/fj.202101423r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023]
Abstract
A distinct boundary exists between the progenitor cells in the basal limbal epithelium and the more differentiated corneal epithelial basal cells. We have shown that reciprocal expression patterns of EphA2 and Ephrin-A1 are likely to contribute to normal limbal-corneal epithelial compartmentalization as well as play a role in response to injury. How this signaling axis is regulated remains unclear. We have demonstrated that microRNAs (miRNAs) play critical roles in corneal epithelial wound healing and several miRNAs (e.g. miR-210) have been predicted to target ephrins. Previous expression profiling experiments demonstrated that miR-210 is prominently expressed in corneal epithelial cells. RNA-seq data acquired from miR-210-depleted HCECs showed up-regulation of genes involved in cellular migration. In addition, miR-210 is decreased after corneal injury while EphA2 is increased. Moreover, antago-210-treated HCECs markedly enhanced wound closure in a scratch wound assay. Antago-210 treatment resulted in increased EphA2 protein levels as well as pS897-EphA2, the pro-migratory form of EphA2. As expected, Ephrin-A1 levels were reduced, while levels of a well-known target of miR-210, Ephrin-A3, were increased by antago-210 treatment. The increase in migration with antago-210 could be inhibited by Ephrin-A1 overexpression, Ephrin-A1-Fc treatment or siRNA depletion of EphA2. However, depletion of Ephrin-A3 did not have effects on the antago-210-induced increase in migration. In addition, Ephrin-A1 overexpression and siEphA2 dampened EGFR signaling, which is increased by antago-210. Our data clearly demonstrate a link between miR-210 and EphA2/Ephrin-A1 signaling that regulates, in part, corneal epithelial migration. This interaction might potentially control the limbal-corneal epithelial boundary.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Min Liu
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Junyi Wang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA,Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Elaina Fiolek
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA,Correspondence: Robert M. Lavker, Ph.D., Department of Dermatology, Northwestern University, 303 East Chicago Avenue, Ward 9-124, Chicago, IL 60611, USA;
| | - Robert M. Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA,Correspondence: Han Peng, Ph.D., Department of Dermatology, Northwestern University, 303 East Chicago Avenue, Ward 9-120, Chicago, IL 60611, USA;
| |
Collapse
|
6
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
7
|
Onohuean H, Adisa RA, Alagbonsi AI. Anti-apoptotic effect of Buchholzia coriacea Engl. stem back extracts on AsPC-1 and mechanisms of action. BMC Complement Med Ther 2021; 21:258. [PMID: 34627212 PMCID: PMC8501612 DOI: 10.1186/s12906-021-03433-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ethnopharmacological relevance Buchholzia coriacea Engl. is popularly called wonderful cola due to its wide ethnomedicinal use for the treatment of various ailments. We investigated the possible cytotoxic effect of its various fractions on human pancreatic cancer cell (AsPC-1) and also determined its mechanisms of action. Materials and methods The AsPC-1 cells were cultivated and separately treated with 5-fluorouracil (5-FU) or Buchholzia coriacea Engl. bark (BC) (ethanol, aqueous, chloroform or ethyl acetate extract) for 72 h. Cell viability, caspase 3 and mitochondrial membrane potential (ΔΨm) were determined in vitro after the treatment. Nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals’ scavenging property, ferric reducing power and lipid peroxidation assays were also done to examine the antioxidant effect of BC in vitro. Results Various extracts of BC, especially at 2500 μg/ml and 5000 μg/ml, increased the AsPC-1 viability while 5-FU decreased it. The activity of caspase 3 was increased by 5-FU but reduced by all concentrations of various extracts of BC. Incubation of AsPC-1 with 5-FU showed the majority of cells having the monomeric form of JC-1 dye (bright green fluorescence), which indicated de-energized mitochondria. However, fluorescence photomicrograph of cells incubated with different concentrations (20, 40 and 100 μg/ml) of BC extracts (aqueous, ethanol, chloroform and ethyl acetate) showed strong JC-1 aggregation (yellow), which indicated mitochondria with intact membrane potentials. BC extracts also scavenged NO and DPPH radicals, inhibited lipid peroxidation and increased ferric reduction, though not as much as ascorbic acid. Conclusion This study suggests that BC elicits anti-apoptotic activity in AsPC-1 by increasing cell viability, decreasing caspase 3 activity, stabilizing the ∆Ψm, and scavenging free radicals. Even though BC is used ethnomedicinally as anti-cancer agent, our findings in the present study suggest that it has pro-cancer potential in-vitro, especially on pancreatic cells. Its anti-apoptotic activity in AsPC-1 could be of clinical significance, especially to counteract the effect of apoptotic agents on pancreatic cells.
Collapse
Affiliation(s)
- Hope Onohuean
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, Kampala International University Western Campus, Ishaka-Bushenyi, Uganda. .,Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Rahmat Adetutu Adisa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Abdullateef Isiaka Alagbonsi
- Department of Clinical Biology (Physiology Unit), School of Medicine and Pharmacy, University of Rwanda College of Medicine and Health Sciences, Huye, Rwanda
| |
Collapse
|
8
|
Shoaib S, Tufail S, Sherwani MA, Yusuf N, Islam N. Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer Cells. Front Pharmacol 2021; 12:673103. [PMID: 34393773 PMCID: PMC8358204 DOI: 10.3389/fphar.2021.673103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023] Open
Abstract
The latest research shows that current chemotherapeutics are ineffective because of the development of resistance in cervical cancer cells, and hence, their scope of use is limited. The main concern of researchers at the moment is the discovery of safe and effective antiproliferative plant chemicals that can aid in the battle against cervical cancer. Previous studies have shown the possible anticancer potential of phenethyl isothiocyanate obtained from cruciferous plants for many cancers, which targets various signaling pathways to exercise chemopreventive and therapeutic effects. This provides the basis for studying phenethyl isothiocyanate's therapeutic potential against cervical cancer. In the present study, cervical cancer cells were treated with various doses of phenethyl isothiocyanate, alone and in combination with cisplatin. Phenethyl isothiocyanate alone was sufficient to cause nucleus condensation and fragmentation and induce apoptosis in cervical cancer cells, but evident synergistic effects were observed in combination with cisplatin. In addition, phenethyl isothiocyanate treatment increased the production of intracellular ROS in a dose-dependent manner in cervical cancer cells. Furthermore, investigation of phenethyl isothiocyanate induced mitochondrial reactive oxygen species production, and activation of caspases showed that phenethyl isothiocyanate significantly activated caspase-3.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Saba Tufail
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Najmul Islam
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Zamponi GW. SUMO wrestling in the cellular dohyō: crosstalk between phosphorylation and SUMOylation of PKCδ regulates oxidative cell damage. FEBS J 2021; 288:6406-6409. [PMID: 34212495 DOI: 10.1111/febs.16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
The novel PKCδ isoform has been shown to mediate a pro-apoptotic function in response to oxidative stressors. Siman Gao and colleagues performed an in-depth biochemical and molecular analysis of factors that regulate PKCδ function. They demonstrated convincingly that PKCδ is regulated by an interplay between SUMOylation and phosphorylation. They also showed that these events are critical for hydrogen peroxide induced apoptosis, thus identifying potentially novel mechanisms that may be harnessed for cell protection.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
10
|
Gao S, Zhao X, Hou L, Ma R, Zhou J, Zhu MX, Pan SJ, Li Y. The interplay between SUMOylation and phosphorylation of PKCδ facilitates oxidative stress-induced apoptosis. FEBS J 2021; 288:6447-6464. [PMID: 34089566 DOI: 10.1111/febs.16050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Although the increase in the number of identified posttranslational modifications (PTMs) has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that different types of PTMs can crosstalk and act in concert to exert important regulatory mechanisms for protein function has not gained much attention. Here, we show that protein kinase Cδ (PKCδ) is SUMOylated at lysine 473 in its C-terminal catalytic domain, and the SUMOylation increases PKCδ stability by repressing its ubiquitination. In addition, we uncover a functional interplay between the phosphorylation and SUMOylation of PKCδ, which can strengthen each other through recruiting SUMO E2/E3 ligases and the PKCδ kinase, respectively, to the PKCδ complexes. We identified PIAS2β as the SUMO E3 ligase of PKCδ. More importantly, by enhancing PKCδ protein stability and its phosphorylation through an interdependent interplay of the PTMs, the SUMOylation of PKCδ promotes apoptotic cell death induced by H2 O2 . We conclude that SUMOylation represents an important regulatory mechanism of PKCδ PTMs for the kinase's function in oxidative cell damage.
Collapse
Affiliation(s)
- Siman Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Lin Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Ruining Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
11
|
Bahar E, Kim JY, Kim DC, Kim HS, Yoon H. Combination of Niraparib, Cisplatin and Twist Knockdown in Cisplatin-Resistant Ovarian Cancer Cells Potentially Enhances Synthetic Lethality through ER-Stress Mediated Mitochondrial Apoptosis Pathway. Int J Mol Sci 2021; 22:ijms22083916. [PMID: 33920140 PMCID: PMC8070209 DOI: 10.3390/ijms22083916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 inhibitors (PARPi) are used to treat recurrent ovarian cancer (OC) patients due to greater survival benefits and minimal side effects, especially in those patients with complete or partial response to platinum-based chemotherapy. However, acquired resistance of platinum-based chemotherapy leads to the limited efficacy of PARPi monotherapy in most patients. Twist is recognized as a possible oncogene and contributes to acquired cisplatin resistance in OC cells. In this study, we show how Twist knockdown cisplatin-resistant (CisR) OC cells blocked DNA damage response (DDR) to sensitize these cells to a concurrent treatment of cisplatin as a platinum-based chemotherapy agent and niraparib as a PARPi on in vitro two-dimensional (2D) and three-dimensional (3D) cell culture. To investigate the lethality of PARPi and cisplatin on Twist knockdown CisR OC cells, two CisR cell lines (OV90 and SKOV3) were established using step-wise dose escalation method. In addition, in vitro 3D spheroidal cell model was generated using modified hanging drop and hydrogel scaffolds techniques on poly-2-hydroxylethly methacrylate (poly-HEMA) coated plates. Twist expression was strongly correlated with the expression of DDR proteins, PARP1 and XRCC1 and overexpression of both proteins was associated with cisplatin resistance in OC cells. Moreover, combination of cisplatin (Cis) and niraparib (Nira) produced lethality on Twist-knockdown CisR OC cells, according to combination index (CI). We found that Cis alone, Nira alone, or a combination of Cis+Nira therapy increased cell death by suppressing DDR proteins in 2D monolayer cell culture. Notably, the combination of Nira and Cis was considerably effective against 3D-cultures of Twist knockdown CisR OC cells in which Endoplasmic reticulum (ER) stress is upregulated, leading to initiation of mitochondrial-mediated cell death. In addition, immunohistochemically, Cis alone, Nira alone or Cis+Nira showed lower ki-67 (cell proliferative marker) expression and higher cleaved caspase-3 (apoptotic marker) immuno-reactivity. Hence, lethality of PARPi with the combination of Cis on Twist knockdown CisR OC cells may provide an effective way to expand the therapeutic potential to overcome platinum-based chemotherapy resistance and PARPi cross resistance in OC.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Ji-Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang 10380, Korea;
| | - Dong-Chul Kim
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52828, Korea;
| | - Hyun-Soo Kim
- Samsung Medical Center, Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (H.-S.K.); (H.Y.); Tel.: +82-2-3410-1243 (H.-S.K.); +82-55-772-2422 (H.Y.)
| |
Collapse
|
12
|
Ron-Doitch S, Frušić-Zlotkin M, Soroka Y, Duanis-Assaf D, Amar D, Kohen R, Steinberg D. eDNA-Mediated Cutaneous Protection Against UVB Damage Conferred by Staphylococcal Epidermal Colonization. Microorganisms 2021; 9:microorganisms9040788. [PMID: 33918948 PMCID: PMC8068790 DOI: 10.3390/microorganisms9040788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The human skin is a lush microbial habitat which is occupied by a wide array of microorganisms. Among the most common inhabitants are Staphylococcus spp., namely Staphylococcus epidermidis and, in ≈20% of healthy individuals, Staphylococcus aureus. Both bacteria have been associated with cutaneous maladies, where they mostly arrange in a biofilm, thus achieving improved surface adhesion and stability. Moreover, our skin is constantly exposed to numerous oxidative environmental stressors, such as UV-irradiation. Thus, skin cells are equipped with an important antioxidant defense mechanism, the Nrf2–Keap1 pathway. In this work, we aimed to explore the morphology of S. aureus and S. epidermidis as they adhered to healthy human skin and characterize their matrix composition. Furthermore, we hypothesized that the localization of both types of bacteria on a healthy skin surface may provide protective effects against oxidative stressors, such as UV-irradiation. Our results indicate for the first time that S. aureus and S. epidermidis assume a biofilm-like morphology as they adhere to ex vivo healthy human skin and that the cultures’ extracellular matrix (ECM) is composed of extracellular polysaccharides (EPS) and extracellular DNA (eDNA). Both bacterial cultures, as well as isolated S. aureus biofilm eDNA, conferred cutaneous protection against UVB-induced apoptosis. This work emphasized the importance of skin microbiota representatives in the maintenance of a healthy cutaneous redox balance by activating the skin’s natural defense mechanism.
Collapse
Affiliation(s)
- Sapir Ron-Doitch
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah, Jerusalem 91120, Israel; (S.R.-D.); (D.D.-A.)
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9103401, Israel; (M.F.-Z.); (Y.S.); (R.K.)
| | - Marina Frušić-Zlotkin
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9103401, Israel; (M.F.-Z.); (Y.S.); (R.K.)
| | - Yoram Soroka
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9103401, Israel; (M.F.-Z.); (Y.S.); (R.K.)
| | - Danielle Duanis-Assaf
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah, Jerusalem 91120, Israel; (S.R.-D.); (D.D.-A.)
| | - Dalit Amar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hebrew University of Jerusalem, Israel, Hadassah Medical Center, Jerusalem 9103401, Israel;
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9103401, Israel; (M.F.-Z.); (Y.S.); (R.K.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah, Jerusalem 91120, Israel; (S.R.-D.); (D.D.-A.)
- Correspondence:
| |
Collapse
|
13
|
Abstract
Melanogenesis is a highly regulated process through which the pigment melanin is produced in skin cells. Irregularities in the molecular events that govern the process of skin pigmentation can cause disorders like vitiligo. In order to understand the biology of disease progression, it is important to have an in depth understanding of intracellular events. Mathematical models provide an integrated view of intracellular signalling. There are very few models to date that incorporate intracellular processes relevant to melanogenesis and only one to our knowledge that simulates the dynamics of response to varying levels of input. Here, we report the formulation of the largest Boolean model (265 nodes) for melanogenesis to date. The model was built on the basis of a detailed interaction network graph published by Raghunath et al. Through additional manual curation of the reported interactions, we converted the graph into a set of Boolean rules, following the procedure of the first Boolean model (62 nodes) for melanogenesis published by Lee et al. Simulations show that the predicted response to varying UV levels for most of the nodes is similar to the predictions of the existing model. The greater complexity allows investigation of the sensitivity of melanin to additional nodes. We carried out perturbation analysis of the network through node deletion and constitutive activation to identify sensitivity of outcomes, and compared the nodes identified as sensitive to previous reports.
Collapse
Affiliation(s)
- Pooja Dnyane
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | | |
Collapse
|
14
|
Liu J, Wang H, Luo Q, Qiu S, He Z, Liu Z, Yang L, Liu X, Sun X. LingZhi oligopeptides amino acid sequence analysis and anticancer potency evaluation. RSC Adv 2020; 10:8377-8384. [PMID: 35497845 PMCID: PMC9049989 DOI: 10.1039/c9ra10400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
LingZhi (Ganoderma lucidum) has been used as a therapeutic agent for decades, but the antitumor potency of LingZhi oligopeptides (LZOs) was not well explored. In current study, ten novel LZO amino acid sequences were identified, and anticancer potency was evaluated. We found that LZO-3 [EGHGF] significantly triggered A549 cell apoptosis via mitochondrial dysregulation, as evidenced by caspases activation, mitochondrial membrane potential collapse, Bcl-2/Bax ratio alteration, and cytochrome c release. Further, the down-regulation of Trx/TrxR reductase and the improvement of the MDM2/p53 state also contributed to the LZO-3-induced cell apoptosis. Notably, our findings provide evidence for the novel potency of LZOs, which could be developed as promising chemotherapeutic agents against lung cancer. The LingZhi (Ganoderma lucidum) has been used as a therapeutic agent for decades, but the antitumor potency of LingZhi oligopeptides (LZOs) was not well explored. In current study, ten novel LZOs were amino acid sequence identified and anticancer potency evaluated.![]()
Collapse
Affiliation(s)
- Jie Liu
- The Third Affiliated Hospital of Shenzhen University, Shenzhen University Shenzhen 518020 China +86-0755-86671914 +86-0755-86671911
| | - Huailing Wang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen University Shenzhen 518020 China +86-0755-86671914 +86-0755-86671911
| | - Qiang Luo
- School of Medicine, Shenzhen University Shenzhen 518060 China +86-0755-86671905
| | - Shuqi Qiu
- Longgang ENT Hospital & Shenzhen ENT Institute Shenzhen 518172 China
| | - Zhendan He
- Department of Pharmacy, Shenzhen University Shenzhen 518060 China
| | - Zhigang Liu
- The Third Affiliated Hospital of Shenzhen University, Shenzhen University Shenzhen 518020 China +86-0755-86671914 +86-0755-86671911.,School of Medicine, Shenzhen University Shenzhen 518060 China +86-0755-86671905
| | - Liteng Yang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen University Shenzhen 518020 China +86-0755-86671914 +86-0755-86671911
| | - Xiaoyu Liu
- School of Medicine, Shenzhen University Shenzhen 518060 China +86-0755-86671905
| | - Xizhuo Sun
- The Third Affiliated Hospital of Shenzhen University, Shenzhen University Shenzhen 518020 China +86-0755-86671914 +86-0755-86671911
| |
Collapse
|
15
|
PARP1 Inhibition Augments UVB-Mediated Mitochondrial Changes-Implications for UV-Induced DNA Repair and Photocarcinogenesis. Cancers (Basel) 2019; 12:cancers12010005. [PMID: 31861350 PMCID: PMC7016756 DOI: 10.3390/cancers12010005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Keratinocytes provide the first line of defense of the human body against carcinogenic ultraviolet (UV) radiation. Acute and chronic UVB-mediated cellular responses were widely studied. However, little is known about the role of mitochondrial regulation in UVB-induced DNA damage. Here, we show that poly (ADP-ribose) polymerase 1 (PARP1) and ataxia-telangiectasia-mutated (ATM) kinase, two tumor suppressors, are important regulators in mitochondrial alterations induced by UVB. Our study demonstrates that PARP inhibition by ABT-888 upon UVB treatment exacerbated cyclobutane pyrimidine dimers (CPD) accumulation, cell cycle block and cell death and reduced cell proliferation in premalignant skin keratinocytes. Furthermore, in human keratinocytes UVB enhanced oxidative phosphorylation (OXPHOS) and autophagy which were further induced upon PARP inhibition. Immunoblot analysis showed that these cellular responses to PARP inhibition upon UVB irradiation strongly alter the phosphorylation level of ATM, adenosine monophosphate-activated kinase (AMPK), p53, protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins. Furthermore, chemical inhibition of ATM led to significant reduction in AMPK, p53, AKT, and mTOR activation suggesting the central role of ATM in the UVB-mediated mitochondrial changes. Our results suggest a possible link between UVB-induced DNA damage and metabolic adaptations of mitochondria and reveal the OXPHOS-regulating role of autophagy which is dependent on key metabolic and DNA damage regulators downstream of PARP1 and ATM.
Collapse
|
16
|
Kaplan N, Dong Y, Wang S, Yang W, Park JK, Wang J, Fiolek E, Perez White B, Chandel NS, Peng H, Lavker RM. FIH-1 engages novel binding partners to positively influence epithelial proliferation via p63. FASEB J 2019; 34:525-539. [PMID: 31914679 DOI: 10.1096/fj.201901512r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Whereas much is known about the genes regulated by ΔNp63α in keratinocytes, how ΔNp63α is regulated is less clear. During studies with the hydroxylase, factor inhibiting hypoxia-inducible factor 1 (FIH-1), we observed increases in epidermal ΔNp63α expression along with proliferative capacity in a conditional FIH-1 transgenic mouse. Conversely, loss of FIH-1 in vivo and in vitro attenuated ΔNp63α expression. To elucidate the FIH-1/p63 relationship, BioID proteomics assays identified FIH-1 binding partners that had the potential to regulate p63 expression. FIH-1 interacts with two previously unknown partners, Plectin1 and signal transducer and activator of transcription 1 (STAT1) leading to the regulation of ΔNp63α expression. Two known interactors of FIH-1, apoptosis-stimulating of P53 protein 2 (ASPP2) and histone deacetylase 1 (HDAC1), were also identified. Knockdown of ASPP2 upregulated ΔNp63α and reversed the decrease in ΔNp63α by FIH-1 depletion. Additionally, FIH-1 regulates growth arrest and DNA damage-45 alpha (GADD45α), a negative regulator of ΔNp63α by interacting with HDAC1. GADD45α knockdown rescued reduction in ΔNp63α by FIH-1 depletion. Collectively, our data reveal that FIH-1 positively regulates ΔNp63α in keratinocytes via variety of signaling partners: (a) Plectin1/STAT1, (b) ASPP2, and (c) HDAC1/GADD45α signaling pathways.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Sijia Wang
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Jong Kook Park
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Biomedical Science, College of Natural Sciences #8403, Hallym University, Chuncheon, Republic of Korea
| | - Junyi Wang
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Elaina Fiolek
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | | | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Sparks R, Lui A, Bader D, Patel R, Murr M, Guida W, Fratti R, Patel NA. A specific small-molecule inhibitor of protein kinase CδI activity improves metabolic dysfunction in human adipocytes from obese individuals. J Biol Chem 2019; 294:14896-14910. [PMID: 31413114 DOI: 10.1074/jbc.ra119.008777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals. Using a screening strategy of dual recognition of PKCδI isozymes and a caspase-3 binding site on the PKCδI hinge domain with Schrödinger software and molecular dynamics simulations, we identified NP627, an organic small-molecule inhibitor of PKCδI. Characterization of NP627 by surface plasmon resonance (SPR) revealed that PKCδI and NP627 interact with each other with high affinity and specificity, SPR kinetics revealed that NP627 disrupts caspase-3 binding to PKCδI, and in vitro kinase assays demonstrated that NP627 specifically inhibits PKCδI activity. The SPR results also indicated that NP627 affects macromolecular interactions between protein surfaces. Of note, release of the PKCδI catalytic fragment was sufficient to induce apoptosis and inflammation in adipocytes. NP627 treatment of adipocytes from obese individuals significantly inhibited PKCδI catalytic fragment release, decreased inflammation and apoptosis, and significantly improved mitochondrial metabolism. These results indicate that PKCδI is a robust candidate for targeted interventions to manage obesity-associated chronic inflammatory diseases. We propose that NP627 may also be used in other biological systems to better understand the impact of caspase-3-mediated activation of kinase activity.
Collapse
Affiliation(s)
- Robert Sparks
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Deena Bader
- James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Michel Murr
- Surgery Department, University of Central Florida, Orlando, Florida 32816.,Bariatric and Metabolic Institute, AdventHealth, Tampa, Florida 33612
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Rutilio Fratti
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 .,James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
18
|
Helfenberger KE, Castillo AF, Mele PG, Fiore A, Herrera L, Finocchietto P, Podestá EJ, Poderoso C. Angiotensin II stimulation promotes mitochondrial fusion as a novel mechanism involved in protein kinase compartmentalization and cholesterol transport in human adrenocortical cells. J Steroid Biochem Mol Biol 2019; 192:105413. [PMID: 31202858 DOI: 10.1016/j.jsbmb.2019.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
In steroid-producing cells, cholesterol transport from the outer to the inner mitochondrial membrane is the first and rate-limiting step for the synthesis of all steroid hormones. Cholesterol can be transported into mitochondria by specific mitochondrial protein carriers like the steroidogenic acute regulatory protein (StAR). StAR is phosphorylated by mitochondrial ERK in a cAMP-dependent transduction pathway to achieve maximal steroid production. Mitochondria are highly dynamic organelles that undergo replication, mitophagy and morphology changes, all processes allowed by mitochondrial fusion and fission, known as mitochondrial dynamics. Mitofusin (Mfn) 1 and 2 are GTPases involved in the regulation of fusion, while dynamin-related protein 1 (Drp1) is the major regulator of mitochondrial fission. Despite the role of mitochondrial dynamics in neurological and endocrine disorders, little is known about fusion/fission in steroidogenic tissues. In this context, the present work aimed to study the role of angiotensin II (Ang II) in protein subcellular compartmentalization, mitochondrial dynamics and the involvement of this process in the regulation of aldosterone synthesis. We demonstrate here that Ang II stimulation promoted the recruitment and activation of PKCε, ERK and its upstream kinase MEK to the mitochondria, all of them essential for steroid synthesis. Moreover, Ang II prompted a shift from punctate to tubular/elongated (fusion) mitochondrial shape, in line with the observation of hormone-dependent upregulation of Mfn2 levels. Concomitantly, mitochondrial Drp1 was diminished, driving mitochondria toward fusion. Moreover, Mfn2 expression is required for StAR, ERK and MEK mitochondrial localization and ultimately for aldosterone synthesis. Collectively, this study provides fresh insights into the importance of hormonal regulation in mitochondrial dynamics as a novel mechanism involved in aldosterone production.
Collapse
Affiliation(s)
- Katia E Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana F Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Pablo G Mele
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana Fiore
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Lucía Herrera
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Paola Finocchietto
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas "José de San Martín", Laboratorio del Metabolismo del Oxígeno, Av. Córdoba 2351, C1121ABJ, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Ciudad de Buenos Aires, Argentina
| | - Ernesto J Podestá
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
19
|
NilamberLal Das R, Muruhan S, Nagarajan RP, Balupillai A. Naringin prevents ultraviolet-B radiation-induced oxidative damage and inflammation through activation of peroxisome proliferator-activated receptor γ in mouse embryonic fibroblast (NIH-3T3) cells. J Biochem Mol Toxicol 2019; 33:e22263. [PMID: 30512238 DOI: 10.1002/jbt.22263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
The present study, we investigate the preventive role of naringin, a dietary flavonoid, against ultraviolet-B (UVB) radiation (280-320 nm) induced oxidative damage and inflammatory responses in mouse embryonic fibroblast cell lines (NIH-3T3). In this study, 20 mJ/cm 2 of UVB radiation induces cell cytotoxicity, reactive oxygen species (ROS) generation, DNA damage, and antioxidants depletion in NIH-3T3 cells. Treatment with naringin (60 µM) prior UVB exposure prevented the cell cytotoxicity, ROS generation, DNA damage, and antioxidants depletion in NIH-3T3 cells. Furthermore, naringin prevents UVB-induced mitogen-activated protein kinase families and nuclear factor-κB (NF-κB)-mediated activation of inflammatory factors, that is TNF-α, IL-6, IL-10, and COX-2 in NIH-3T3 cells. Peroxisome proliferator-activated receptor γ (PPARγ) is an anti-inflammatory agent and it suppressed the UVB-mediated oxidative and inflammatory responses. In this study, naringin activates PPARγ and prevents inflammatory biomarkers in NIH-3T3 cells. Thus, naringin prevents UVB-mediated inflammation and oxidative damage in NIH-3T3 cells probably over controlling NF-κB expression and activation of PPARγ.
Collapse
Affiliation(s)
| | - Sridevi Muruhan
- Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Salem, India
| | | | - Agilan Balupillai
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| |
Collapse
|
20
|
Hwang JY, Yadav AK, Jang BC, Kim YC. Antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract on UVA‑irradiated human dermal fibroblasts. Int J Mol Med 2019; 43:1497-1504. [PMID: 30628642 DOI: 10.3892/ijmm.2019.4048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
Stachys riederi is one of the largest genera in the flowering plant family Lamiaceae. The aqueous extract of Stachys riederi var. japonica is known for its anti‑allergic effect. In the present study, the antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract (SREE) on ultraviolet A (UVA)‑irradiated human dermal fibroblasts (HDFs) were evaluated. At 100 µg/ml, SREE significantly inhibited production of reactive oxygen species (ROS) in UVA‑irradiated HDFs. SREE at 100 µg/ml additionally markedly interfered with the loss of mitochondrial membrane potential (ΔΨm) in these cells. In addition, SREE at 100 µg/ml attenuated UVA‑induced DNA fragmentation and caspase‑3 activation in HDFs. SREE at 100 µg/ml additionally increased mRNA and protein expressions of Bcl‑2 and decreased those of Bax and cytochrome c in UVA‑irradiated HDFs. In summary, to the best of our knowledge, these results demonstrate for the first time that SREE exhibited antioxidant and cytoprotective effects on UVA‑irradiated HDFs, which may be mediated through suppression of ROS generation, inhibition of the loss of ΔΨm and inhibition of apoptosis.
Collapse
Affiliation(s)
- Ji Yeon Hwang
- Department of Research and Development, Research Center for Natural Ingredients and New Materials, Daepyung Co., Ltd., Sangju 37112, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Chul Kim
- Department of Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
21
|
Lei L, Muhammad S, Al-Obaidi M, Sebire N, Cheng IL, Eleftheriou D, Brogan P. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatr Rheumatol Online J 2018; 16:61. [PMID: 30257684 PMCID: PMC6158832 DOI: 10.1186/s12969-018-0278-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We previously described an endogamous Pakistani kindred in whom we identified a novel homozygous missense mutation in the PRKCD gene encoding for protein kinase C δ (PKCδ) as a cause of monogenic systemic lupus erythematosus (SLE). PKCδ has a role in the negative regulation of B cells. Given the nature of the disease, a logical targeted therapeutic approach in these patients is B cell depletion. Indeed, the 3 siblings all had a marked clinical response and resolution of symptoms with rituximab, although 2 of the siblings had severe reactions to rituximab thus precluding further treatment with this. We therefore describe the first successful use of ofatumumab for this rare form of monogenic SLE. CASE PRESENTATION All three affected siblings presented with SLE before the age of 3-years with lethargy, intermittent fever, thrombocytopenia, cutaneous involvement, alopecia, and hepatosplenomegaly. Tubulointerstitial nephritis was also present in 1 of the siblings. Homozygosity mapping followed by whole exome sequencing identified a homozygous missense mutation in PRKCD (p.Gly432Trp), subsequently confirmed by Sanger sequencing to be present in all 3 siblings. All 3 patients were initially treated with rituximab, however 2 of the siblings developed severe infusion-related reactions. For subsequent disease flare in these individuals we therefore used an alternative B cell depleting agent, ofatumumab (300 mg/1.73m2 on day 1; 700 mg/1.73m2 on day 15). This resulted in marked clinical improvement in both patients. To the best of our knowledge, this is the first report describing the successful use of ofatumumab for PKCδ deficiency. CONCLUSIONS PKCδ deficiency causes a monogenic form of SLE which responds well to B cell depletion. Ofatumumab is also likely to have a therapeutic role for sporadic juvenile SLE (jSLE) patients intolerant of rituximab.
Collapse
Affiliation(s)
| | - Sabina Muhammad
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Muthana Al-Obaidi
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Neil Sebire
- grid.420468.cDepartment of Paediatric Histopathology, Great Ormond Street Hospital, London, UK
| | - Iek Leng Cheng
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Despina Eleftheriou
- 0000000121901201grid.83440.3bInfection, Inflammation and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, UK ,ARUK centre for adolescent rheumatology, London, UK
| | - Paul Brogan
- 0000000121901201grid.83440.3bInfection, Inflammation and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
22
|
Martínez VR, Aguirre MV, Todaro JS, Piro OE, Echeverría GA, Ferrer EG, Williams PAM. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol In Vitro 2018; 48:205-220. [PMID: 29408668 DOI: 10.1016/j.tiv.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn2(azil)2(H2O)4]·2H2O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina.
| |
Collapse
|
23
|
Kaplan N, Ventrella R, Peng H, Pal-Ghosh S, Arvanitis C, Rappoport JZ, Mitchell BJ, Stepp MA, Lavker RM, Getsios S. EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling. Invest Ophthalmol Vis Sci 2018; 59:393-406. [PMID: 29351356 PMCID: PMC5774870 DOI: 10.1167/iovs.17-22941] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Rosa Ventrella
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, District of Columbia, United States
| | - Constadina Arvanitis
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Joshua Z Rappoport
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Brian J Mitchell
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, District of Columbia, United States
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
24
|
Ventrella R, Kaplan N, Hoover P, Perez White BE, Lavker RM, Getsios S. EphA2 Transmembrane Domain Is Uniquely Required for Keratinocyte Migration by Regulating Ephrin-A1 Levels. J Invest Dermatol 2018; 138:2133-2143. [PMID: 29705292 DOI: 10.1016/j.jid.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
EphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes. EphA2 transmembrane domain swapping with a shorter and molecularly distinct transmembrane domain of EphA1 resulted in decreased localization of this receptor tyrosine kinase at cell-cell junctions and increased expression of ephrin-A1, which is a negative regulator of keratinocyte migration. Accordingly, altered EphA2 membrane distribution at cell-cell contacts limited the ability of keratinocytes to seal linear scratch wounds in vitro in an ephrin-A1-dependent manner. Collectively, these studies highlight a key role for the EphA2 transmembrane domain in receptor-ligand membrane distribution at cell-cell contacts that modulates ephrin-A1 levels to allow for efficient keratinocyte migration with relevance for cutaneous wound healing.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Paul Hoover
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Bethany E Perez White
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
25
|
p66Shc Mediates Mitochondrial Dysfunction Dependent on PKC Activation in Airway Epithelial Cells Induced by Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5837123. [PMID: 29849902 PMCID: PMC5925171 DOI: 10.1155/2018/5837123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022]
Abstract
Airway epithelial mitochondrial injury plays a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The p66Shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction. However, little is known about the effect of p66Shc on airway epithelial damage in the development of COPD. The aim of the present study is to investigate the roles of p66Shc and its upstream regulators in the mitochondrial injury of airway epithelial cells (Beas-2b) induced by cigarette smoke extract (CSE). Our present study revealed that CSE increased p66Shc expression and its mitochondrial translocation in concentration and time-dependent manners in airway epithelial cells. And p66Shc siRNA significantly attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. The total and phosphorylated expression of PKCβ and PKCδ was significantly increased associated with mitochondrial dysfunction and cell injury when airway epithelial cells were exposed to 7.5% CSE. The pretreatments with pharmacological inhibitors of PKCβ and PKCδ could notably suppress p66Shc phosphorylation and its mitochondrial translocation and protect the mitochondria and cells against oxidative damage when airway epithelial cells were incubated with 7.5% CSE. These data suggest that a novel PKCβ/δ-p66Shc signaling pathway may be involved in the pathogenesis of COPD and other oxidative stress-associated pulmonary diseases and provide a potential therapeutic target for these diseases.
Collapse
|
26
|
Abstract
Mitochondrial energy metabolism declines during aging. PGC-1α is a transcription coactivator that plays a key role in the regulation of energetic metabolism and mitochondrial biogenesis in the cells. The aim of this study was to compare the PPARGC1A gene expression level in normal human dermal fibroblasts (NHDF) derived from young and old donors. A PGC-1α-derived peptide was then synthetized and its ability to affect the PPARGC1A gene expression and mitochondrial function was tested. We assessed changes in PPARGC1A gene expression using quantitative RT-PCR. The effect of the PGC-1α-derived peptide on energy production was determined using an ATP bioluminescent assay kit. We also studied changes in mitochondrial membrane potential using JC-1 fluorescent dye and the level of reactive oxygen species (ROS) using DCFH-DA dye in NHDF cells after UVA/B irradiation alone and in combination with a peptide treatment. The PPARGC1A gene expression decreased in an aged human dermal fibroblast. The PGC-1α-derived peptide was synthetized and increased the PPARGC1A gene expression and ATP levels in cells. Furthermore, the mitochondrial membrane potential in UVA/B irradiated cells treated with the tested PGC-1α-derived peptide was increased compared to irradiated controls. Moreover, the ROS levels in UVA/B irradiated cells treated with the PGC-1α-derived peptide decreased. On the basis of our results, PGC-1α emerges as an interesting target to combat decreasing energetic metabolism in aging skin cells. Indeed, the PGC-1α-derived peptide increasing the PPARGC1A gene expression improved the mitochondrial function and increased energy production in the cells.
Collapse
|
27
|
Cleavage Alters the Molecular Determinants of Protein Kinase C-δ Catalytic Activity. Mol Cell Biol 2017; 37:MCB.00324-17. [PMID: 28784722 DOI: 10.1128/mcb.00324-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023] Open
Abstract
Protein kinase C-δ (PKCδ) is an allosterically activated enzyme that acts much like other PKC isoforms to transduce growth factor-dependent signaling responses. However, PKCδ is unique in that activation loop (Thr507) phosphorylation is not required for catalytic activity. Since PKCδ can be proteolytically cleaved by caspase-3 during apoptosis, the prevailing assumption has been that the kinase domain fragment (δKD) freed from autoinhibitory constraints imposed by the regulatory domain is catalytically competent and that Thr507 phosphorylation is not required for δKD activity. This study provides a counternarrative showing that δKD activity is regulated through Thr507 phosphorylation. We show that Thr507-phosphorylated δKD is catalytically active and not phosphorylated at Ser359 in its ATP-positioning G-loop. In contrast, a δKD fragment that is not phosphorylated at Thr507 (which accumulates in doxorubicin-treated cardiomyocytes) displays decreased C-terminal tail priming-site phosphorylation, increased G-loop Ser359 phosphorylation, and defective kinase activity. δKD is not a substrate for Src, but Src phosphorylates δKD-T507A at Tyr334 (in the newly exposed δKD N terminus), and this (or an S359A substitution) rescues δKD-T507A catalytic activity. These results expose a unique role for δKD-Thr507 phosphorylation (that does not apply to full-length PKCδ) in structurally organizing diverse elements within the enzyme that critically regulate catalytic activity.
Collapse
|
28
|
Loss of p16 INK4A stimulates aberrant mitochondrial biogenesis through a CDK4/Rb-independent pathway. Oncotarget 2017; 8:55848-55862. [PMID: 28915557 PMCID: PMC5593528 DOI: 10.18632/oncotarget.19862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p16INK4A (p16) inhibits cell cycle progression through the CDK4/Rb pathway. We have previously shown that p16 regulates cellular oxidative stress, independent of its role in cell cycle control. We investigated whether loss of p16 had a direct impact on the mitochondria. We found that p16-null primary mouse fibroblasts (PMFs) displayed increased mitochondrial mass and expression of mitochondrial respiratory subunit proteins compared to wild-type (WT) PMFs. These findings in p16-null PMFs were associated with increased expression of the mitochondrial biogenesis transcription factors PRC and TFAM. On the other hand, p16-deficient PMFs demonstrated reduced mitochondrial respiration capacity consistent with electron microscopy findings showing that mitochondria in p16-deficient PMFs have abnormal morphology. Consistent with increased mitochondrial mass and reduced respiratory capacity, p16-deficient PMFs generated increased mitochondrial superoxide. One biological consequence of elevated ROS in p16-deficient PMFs was enhanced migration, which was reduced by the ROS scavenger N-acetylcysteine. Finally, p16-deficient PMFs displayed increased mitochondrial membrane potential, which was also required for their enhanced migration. The mitochondrial and migration phenotype was restored in p16-deficient PMFs by forced expression of p16. Similarly, over-expression of p16 in human melanocytes and A375 melanoma cells led to decreased expression of some mitochondrial respiratory proteins, enhanced respiration, and decreased migration. Inhibition of Rb phosphorylation in melanocytes and melanoma cells, either by addition of chemical CDK4 inhibitors or RNAi-mediated knockdown of CDK4, did not mimic the effects of p16 loss. These results suggest that p16 regulates mitochondrial biogenesis and function, which is independent of the canonical CDK4/Rb pathway.
Collapse
|
29
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
30
|
Haick JM, Brueggemann LI, Cribbs LL, Denning MF, Schwartz J, Byron KL. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L822-L834. [PMID: 28283479 DOI: 10.1152/ajplung.00567.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca2+ ([Ca2+]cyt). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction.
Collapse
Affiliation(s)
- Jennifer M Haick
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Leanne L Cribbs
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Mitchell F Denning
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois; and
| | - Jeffrey Schwartz
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois;
| |
Collapse
|
31
|
Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, Spohn G, Schäfer R, Seifried E, Henschler R. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy 2016; 19:61-74. [PMID: 27836573 DOI: 10.1016/j.jcyt.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS The biodistribution of human MSCs after systemic delivery is incompletely understood. We investigated the changes in cell size and cell surface markers of human MSCs after intravenous (IV) injection in immune competent mice. METHODS Male human MSCs were labeled with fluorescent vital dye PKH67 and tracked after IV administration in C57/BL6 mice. MSCs were tracked in blood and different murine tissues by human SRY gene quantitative polymerase chain reaction (qPCR) analysis, flow cytometry and fluorescence microscopy. Calibrated microbeads were used to track the size of transplanted MSCs. RESULTS The majority of injected MSCs were detected by qPCR in the lungs 5 min after transplantation, whereas <0.1% were detected in other tissues over 24 h. Flow cytometric and fluorescence microscopic analysis indicated that MSCs continuously decreased in size after transplantation and underwent fragmentation. The majority of PKH+ MSCs and their fragments were found in lungs and liver. PKH+ MSCs rapidly became positive for annexin V, propidium iodide and calreticulin, indicating loss of cell integrity. In addition, PKH+ fragments co-stained with antibodies against C3b, F4/80 and/or GR-1 indicating opsonization. Preincubation of MSCs in hyperosmolaric hydroxyethyl starch (HyperHAES) decreased MSCs size before transplantation, delayed the loss of viability markers and increased the frequency of traceable MSCs up to 24 h after transplantation. CONCLUSIONS PKH67 labeled MSCs are fragmented after IV injection in mice, acquire apoptotic and phagocytic cell markers and accumulate in the lungs and liver.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK.
| | - Katrin Dauber
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Sabrina Ehser
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Veronika Brixner
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Katarina Kollar
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Anja Vogel
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Gabi Spohn
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Richard Schäfer
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, UK; Blood Transfusion Services Zurich and Grisons, Swiss Red Cross, Switzerland
| |
Collapse
|
32
|
Meng S, De Vivo I, Liang L, Giovannucci E, Tang JY, Han J. Pre-diagnostic leukocyte mitochondrial DNA copy number and skin cancer risk. Carcinogenesis 2016; 37:897-903. [PMID: 27381830 DOI: 10.1093/carcin/bgw072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022] Open
Abstract
No previous study has examined the association between mitochondrial DNA copy number (mtCN) and skin cancer risk prospectively. We examined the associations between peripheral blood leukocytes mtCN level and the risks of skin cancers in a case-control study nested within the Nurses' Health Study of non-Hispanic White women, including 272 melanoma cases and 293 controls, 508 squamous cell carcinoma (SCC) cases and 550 controls, and 515 basal cell carcinoma (BCC) cases and 536 controls. Relative mtCN in peripheral blood leukocytes was measured by quantitative PCR-based assay. Unconditional logistic regression models were used to examine the associations between mtCN and skin cancer risks. Compared with those with high mtCN, the risk for melanoma was 1.06 [95% confidence interval (CI) = 0.70-1.62] in the median group and 1.19 (95% CI = 0.78-1.81) for the low group. There was suggestive evidence that increased risk for melanoma was apparent among low constitutional susceptibility group [odds ratio (OR)low versus high = 1.80, 95% CI = 0.95-3.39, P for trend = 0.07, P for interaction = 0.06]. The increased risk of melanoma was also apparent among high cumulative UV exposure group (ORlow versus high = 3.40, 95% CI = 1.46-7.92, P for trend = 0.004, P for interaction = 0.01). For non-melanoma skin cancers, compared with high-mtCN group, low-mtCN group had an increased risk for SCC (OR = 1.26, 95% CI = 0.93-1.71) and BCC (OR = 1.35; 95% CI = 1.00-1.82). Because some of the associations were marginally significant, the results only provided suggestive evidence. Further studies are warranted to replicate these findings and better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Shasha Meng
- Department of Epidemiology, Harvard School of Public Health , Boston, MA 02115 , USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health , Boston, MA 02115 , USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Nutrition, Harvard University School of Public Health, Boston, MA 02115, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine , Redwood City, CA 94305 , USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA and.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS One 2015; 10:e0125381. [PMID: 25927702 PMCID: PMC4415924 DOI: 10.1371/journal.pone.0125381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.
Collapse
|
34
|
Bosch R, Philips N, Suárez-Pérez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, González S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel) 2015; 4:248-68. [PMID: 26783703 PMCID: PMC4665475 DOI: 10.3390/antiox4020248] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
Photoaging and photocarcinogenesis are primarily due to solar ultraviolet (UV) radiation, which alters DNA, cellular antioxidant balance, signal transduction pathways, immunology, and the extracellular matrix (ECM). The DNA alterations include UV radiation induced thymine-thymine dimers and loss of tumor suppressor gene p53. UV radiation reduces cellular antioxidant status by generating reactive oxygen species (ROS), and the resultant oxidative stress alters signal transduction pathways such as the mitogen-activated protein kinase (MAPK), the nuclear factor-kappa beta (NF-κB)/p65, the janus kinase (JAK), signal transduction and activation of transcription (STAT) and the nuclear factor erythroid 2-related factor 2 (Nrf2). UV radiation induces pro-inflammatory genes and causes immunosuppression by depleting the number and activity of the epidermal Langerhans cells. Further, UV radiation remodels the ECM by increasing matrixmetalloproteinases (MMP) and reducing structural collagen and elastin. The photoprotective strategies to prevent/treat photoaging and photocarcinogenesis include oral or topical agents that act as sunscreens or counteract the effects of UV radiation on DNA, cellular antioxidant balance, signal transduction pathways, immunology and the ECM. Many of these agents are phytochemical derivatives and include polyphenols and non-polyphenols. The flavonoids are polyphenols and include catechins, isoflavones, proanthocyanidins, and anthocyanins, whereas the non-flavonoids comprise mono phenolic acids and stilbenes. The natural sources of polyphenols include tea, cocoa, grape/wine, soy, pomegranate, and Polypodium leucotomos. The non-phenolic phytochemicals include carotenoids, caffeine and sulphoraphance (SFN). In addition, there are other phytochemical derivatives or whole extracts such as baicalin, flavangenol, raspberry extract, and Photomorphe umbellata with photoprotective activity against UVB radiation, and thereby carcinogenesis.
Collapse
Affiliation(s)
- Ricardo Bosch
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | - Jorge A Suárez-Pérez
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Angeles Juarranz
- Biology Department, Universidad Autónoma de Madrid, Madrid 28903, Spain.
| | - Avani Devmurari
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | | | - Salvador González
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10022, USA.
- Ramon y Cajal Hospital, Alcala University, Madrid 28034, Spain.
| |
Collapse
|
35
|
Sikdar S, Kumar Saha S, Rahman Khuda-Bukhsh A. Relative Apoptosis-inducing Potential of Homeopa-thic Condurango 6C and 30C in H460 Lung Cancer Cells In vitro: -Apoptosis-induction by homeopathic Condurango in H460 cells. J Pharmacopuncture 2015; 17:59-69. [PMID: 25780691 PMCID: PMC4331988 DOI: 10.3831/kpi.2014.17.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES In homeopathy, it is claimed that more homeopathically-diluted potencies render more protective/curative effects against any disease condition. Potentized forms of Condurango are used successfully to treat digestive problems, as well as esophageal and stomach cancers. However, the comparative efficacies of Condurango 6C and 30C, one diluted below and one above Avogadro's limit (lacking original drug molecule), respectively, have not been critically analyzed for their cell-killing (apoptosis) efficacy against lung cancer cells in vitro, and signalling cascades have not been studied. Hence, the present study was undertaken. METHODS 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) assays were conducted on H460-non-small-cell lung cancer (NSCLC) cells by using a succussed ethyl alcohol vehicle (placebo) as a control. Studies on cellular morphology, cell cycle regulation, generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential (MMP), and DNA-damage were made, and expressions of related signaling markers were studied. The observations were done in a "blinded" manner. RESULTS Both Condurango 6C and 30C induced apoptosis via cell cycle arrest at subG0/G1 and altered expressions of certain apoptotic markers significantly in H460 cells. The drugs induced oxidative stress through ROS elevation and MMP depolarization at 18-24 hours. These events presumably activated a caspase-3-mediated signalling cascade, as evidenced by reverse transcriptase- polymerase chain reaction (RT-PCR), western blot and immunofluorescence studies at a late phase (48 hours) in which cells were pushed towards apoptosis. CONCLUSION Condurango 30C had greater apoptotic effect than Condurango 6C as claimed in the homeopathic doctrine.
Collapse
Affiliation(s)
- Sourav Sikdar
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India
| | - Santu Kumar Saha
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India
| |
Collapse
|
36
|
Zhang H, Lin Y, Mañas A, Zhao Y, Denning MF, Ma L, Xiang J. BaxΔ2 Promotes Apoptosis through Caspase-8 Activation in Microsatellite-Unstable Colon Cancer. Mol Cancer Res 2014; 12:1225-32. [DOI: 10.1158/1541-7786.mcr-14-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Shen B, He PJ, Shao CL. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 2013; 8:e84610. [PMID: 24367681 PMCID: PMC3868658 DOI: 10.1371/journal.pone.0084610] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/ time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5‘-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai, China
- * E-mail: (C-LS); (BS)
| | - Pei-Jie He
- Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chun-Lin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
- * E-mail: (C-LS); (BS)
| |
Collapse
|
38
|
PARK YUKYOUNG, JANG BYEONGCHURL. UVB-induced anti-survival and pro-apoptotic effects on HaCaT human keratinocytes via caspase- and PKC-dependent downregulation of PKB, HIAP-1, Mcl-1, XIAP and ER stress. Int J Mol Med 2013; 33:695-702. [DOI: 10.3892/ijmm.2013.1595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/12/2013] [Indexed: 11/05/2022] Open
|
39
|
Yuan Y, Peng C, Li K, Hussain M, Sikharam C, Guthikonda M, Ding Y. Ethanol reduces expression of apoptotic proteins after hypoxia/reoxygenation in a brain slice model. Neurol Res 2013; 34:373-8. [DOI: 10.1179/1743132812y.0000000030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Yu Yuan
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Changya Peng
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Kevin Li
- University of Michigan, Ann Arbor, USA
| | - Mohammed Hussain
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Chaitanya Sikharam
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Murali Guthikonda
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
40
|
Potassium channel in the mitochondria of human keratinocytes. J Invest Dermatol 2013; 134:764-772. [PMID: 24126847 DOI: 10.1038/jid.2013.422] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/08/2022]
Abstract
The activation of mitochondrial potassium channels induces cytoprotection in various cell types. Hence, the identification of ion channels present in the inner mitochondrial membrane of keratinocytes is important in distinguishing possible protective mechanisms in these cells. In this paper, inner membrane mitochondrial ion channels of the human keratinocyte HaCaT cell line were investigated using a patch-clamp technique. We observed potassium-selective channel activity with a conductance of 83 pS at positive voltages. The I-V curve indicates that the observed channel has rectifying properties. Moreover, the channel activity was inhibited by acidic pH and 1 mM lidocaine. Using reverse transcriptase-PCR, we found an mRNA transcript for the TASK-3 (tandem pore domain acid-sensitive K channels) channel. We observed co-localization of the TASK-3 protein and a mitochondrial marker in the mitochondria of HaCaT cells. Additionally, we showed that TASK-3 knockdown HaCaT cells markedly decreased viability after UVB radiation exposure compared with control cells. In summary, the single-channel activity and properties of a mitochondrial potassium channel in a keratinocyte HaCaT cell line have been described.
Collapse
|
41
|
Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags. J Proteomics 2013; 100:79-91. [PMID: 24060996 DOI: 10.1016/j.jprot.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/29/2013] [Accepted: 09/13/2013] [Indexed: 01/25/2023]
Abstract
UNLABELLED Proteolytic processing alters the structure and function of a wide range of proteins in the proteome. We describe a method for the absolute quantification of proteolysis that is compatible with existing quantitative proteomic applications and could be applied on a protein-family wide scale. A tryptic peptide spanning a cleavage site differentiates this intact form of the protein from the corresponding semi-tryptic peptides of a protease cleaved protein. We term such proteomic signatures of specific proteolytic events "proteolytic signature peptides" (PSPs). By quantifying both the tryptic and semi-tryptic PSPs simultaneously with proteotypic peptides common to all forms of the protein both the relative and the absolute amounts of the intact and cleaved protein can be determined. Using synthetic PSP standards of cleavage sites in intact and cleaved proteins the absolute amounts of each form of the protein can be determined. The technique was demonstrated by the simultaneous identification and quantification of matrix metalloproteinase zymogens and their proteolytically activated forms in parallel with conventional absolute quantification of their TIMP inhibitors. For quantification we synthesized a pair of isobaric mass tags, we term CLIP-TRAQ, using C(13) labeled reagents that when fragmented during CID generate signature ions at 113.1 or 114.1 respectively. As an expandable platform this allows for the simultaneous identification of multiple proteins and their proteolytic state in complex proteomes on a family-wide scale in parallel with conventional proteomic analysis. This article is part of a Special Issue entitled: CNPN 2013. BIOLOGICAL SIGNIFICANCE Proteolysis is key to various biological processes and the activity and function of many proteins are dictated by their proteolytic state. The development of methods to quantify protein abundance in conjunction to determining their proteolytic state and hence activity is essential for the complete understanding of the processes for which proteolysis is involved. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
|
42
|
Alinejad Y, Faucheux N, Soucy G. Preosteoblasts behavior in contact with single-walled carbon nanotubes synthesized by radio frequency induction thermal plasma using various catalysts. J Appl Toxicol 2013; 33:1143-55. [DOI: 10.1002/jat.2875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/01/2013] [Accepted: 02/15/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems Laboratory, Department of Chemical Engineering and Biotechnological Engineering; Université de Sherbrooke; 2500 boul. de l'Université; Sherbrooke; Québec; Canada; J1K 2R1
| | - Gervais Soucy
- Thermal Plasma and Nanomaterial Synthesis Laboratory, Department of Chemical Engineering and Biotechnological Engineering; Université de Sherbrooke; Sherbrooke, 2500 boul. de l'Université; Sherbrooke; Québec; Canada; J1K 2R1
| |
Collapse
|
43
|
Chuang SC, Chen JH. Photooxidation and antioxidant responses in the earthworm Amynthas gracilis exposed to environmental levels of ultraviolet B radiation. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:429-37. [DOI: 10.1016/j.cbpa.2012.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 01/03/2023]
|
44
|
Sikdar S, Mukherjee A, Boujedaini N, Khuda-Bukhsh AR. Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro. ACTA ACUST UNITED AC 2013. [DOI: 10.5667/tang.2012.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Canonico B, Luchetti F, Ambrogini P, Arcangeletti M, Betti M, Cesarini E, Lattanzi D, Ciuffoli S, Palma F, Cuppini R, Papa S. Pharmacological doses of melatonin induce alterations in mitochondrial mass and potential, bcl-2 levels and K+currents in UVB-exposed U937 cells. Cell Biol Int 2013; 37:213-26. [DOI: 10.1002/cbin.10030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Barbara Canonico
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Francesca Luchetti
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Patrizia Ambrogini
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Marcella Arcangeletti
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Michele Betti
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Erica Cesarini
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Davide Lattanzi
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Stefano Ciuffoli
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Fulvio Palma
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Riccardo Cuppini
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| | - Stefano Papa
- DiSTeVA, Department of Earth, Life and Environmental Sciences; University of Urbino ‘Carlo Bo’; Urbino; Italy
| |
Collapse
|
46
|
Abstract
EphA2 is a receptor tyrosine kinase (RTK) that triggers keratinocyte differentiation upon activation and subsequent downregulation by ephrin-A1 ligand. The objective of this study was to determine whether the EphA2/ephrin-A1 signaling axis was altered in psoriasis, an inflammatory skin condition in which keratinocyte differentiation is abnormal. Microarray analysis of skin biopsies from psoriasis patients revealed increased mRNA transcripts for several members of this RTK family in plaques, including the EphA1, EphA2, and EphA4 subtypes prominently expressed by keratinocytes. Of these, EphA2 showed the greatest upregulation, a finding that was confirmed by quantitative reverse-transcriptase-PCR, immunohistochemistry (IHC), and ELISA. In contrast, psoriatic lesions exhibited reduced ephrin-A ligand immunoreactivity. Exposure of primary keratinocytes induced to differentiate in high calcium or a three-dimensional (3D) raft culture of human epidermis to a combination of growth factors and cytokines elevated in psoriasis increased EphA2 mRNA and protein expression while inducing S100A7 and disrupting differentiation. Pharmacological delivery of a soluble ephrin-A1 peptidomimetic ligand led to a reduction in EphA2 expression and ameliorated proliferation and differentiation in raft cultures exposed to EGF and IL-1α. These findings suggest that ephrin-A1-mediated downregulation of EphA2 supports keratinocyte differentiation in the context of cytokine perturbation.
Collapse
|
47
|
Shoshan-Barmatz V, Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol 2012; 2:164. [PMID: 23233904 PMCID: PMC3516065 DOI: 10.3389/fonc.2012.00164] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to cancer. Found at the outer mitochondrial membrane, VDAC1 assumes a crucial position in the cell, controlling the metabolic cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC1 to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. As a metabolite transporter, VDAC1 contributes to the metabolic phenotype of cancer cells. This is reflected by VDAC1 over-expression in many cancer types, and by inhibition of tumor development upon silencing VDAC1 expression. Along with regulating cellular energy production and metabolism, VDAC1 is also a key protein in mitochondria-mediated apoptosis, participating in the release of apoptotic proteins and interacting with anti-apoptotic proteins. The involvement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space is discussed, as is VDAC1 oligomerization as an important step in apoptosis induction. VDAC also serves as an anchor point for mitochondria-interacting proteins, some of which are also highly expressed in many cancers, such as hexokinase (HK), Bcl2, and Bcl-xL. By binding to VDAC, HK provides both metabolic benefit and apoptosis-suppressive capacity that offers the cell a proliferative advantage and increases its resistance to chemotherapy. VDAC1-based peptides that bind specifically to HK, Bcl2, or Bcl-xL abolished the cell’s abilities to bypass the apoptotic pathway. Moreover, these peptides promote cell death in a panel of genetically characterized cell lines derived from different human cancers. These and other functions point to VDAC1 as a rational target for the development of a new generation of therapeutics.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel ; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | |
Collapse
|
48
|
Abstract
The protein kinase C (PKC) family of serine/threonine protein kinases is a heterogeneous group of enzymes receiving and integrating signals involved in both normal melanocyte biology and melanoma pathology. Alterations in PKC enzyme expression and activation contribute to the malignant phenotype of melanoma in both oncogenic and tumor suppressive roles. Delineating the diverse and often context-dependent functions of PKC enzymes in melanocyte/melanoma biology is key to capitalize on these kinases as drug targets. This review summarizes several of the diverse functions of PKC in melanocyte and melanoma biology with a focus on PKC enzyme regulation and function.
Collapse
Affiliation(s)
- Mitchell F Denning
- Department of Pathology and the Oncology Institute, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
49
|
Wu-Zhang AX, Murphy AN, Bachman M, Newton AC. Isozyme-specific interaction of protein kinase Cδ with mitochondria dissected using live cell fluorescence imaging. J Biol Chem 2012; 287:37891-906. [PMID: 22988234 DOI: 10.1074/jbc.m112.412635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PKCδ signaling to mitochondria has been implicated in both mitochondrial apoptosis and metabolism. However, the mechanism by which PKCδ interacts with mitochondria is not well understood. Using FRET-based imaging, we show that PKCδ interacts with mitochondria by a novel and isozyme-specific mechanism distinct from its canonical recruitment to other membranes such as the plasma membrane or Golgi. Specifically, we show that PKCδ interacts with mitochondria following stimulation with phorbol esters or, in L6 myocytes, with insulin via a mechanism that requires two steps. In the first step, PKCδ translocates acutely to mitochondria by a mechanism that requires its C1A and C1B domains and a Leu-Asn sequence in its turn motif. In the second step, PKCδ is retained at mitochondria by a mechanism that depends on its C2 domain, a unique Glu residue in its activation loop, intrinsic catalytic activity, and the mitochondrial membrane potential. In contrast, of these determinants, only the C1B domain is required for the phorbol ester-stimulated translocation of PKCδ to other membranes. PKCδ also basally localizes to mitochondria and increases mitochondrial respiration via many of the same determinants that promote its agonist-evoked interaction. PKCδ localized to mitochondria has robust activity, as revealed by a FRET reporter of PKCδ-specific activity (δCKAR). These data support a model in which multiple determinants unique to PKCδ drive a specific interaction with mitochondria that promotes mitochondrial respiration.
Collapse
Affiliation(s)
- Alyssa X Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
50
|
Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X, Wu X. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene 2012; 32:3019-27. [PMID: 22847611 DOI: 10.1038/onc.2012.323] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to define the roles of miR-181a in determining sensitivity of cervical cancer to radiation therapy, to explore the underlying mechanism and to evaluate the potential of miR-181a as a biomarker for predicting radio-sensitivity. Tumor specimens from 18 patients with a histological diagnosis of squamous cervical carcinoma (stage IIIB) were used in the micro-RNA profiling and comparison. These patients never received any chemotherapy before radiation therapy. Human cervical cancer cell lines, SiHa and Me180, were used in vitro (cell culture) and in vivo (animal) studies. Transfection of tumor cells with the mimic or inhibitor of miR-181a, and reporter gene assay, were performed to investigate the role of miR-181a in determining radio-sensitivity and the target gene. Higher expression of miR-181a was observed in human cervical cancer specimens and cell lines that were insensitive to radiation therapy, as compared with sensitive cancer specimens and the cell lines. We also found that miR-181a negatively regulated the expression of PRKCD, a pro-apoptotic protein kinase, via targeting its 3'-untranslated region (UTR), thereby inhibiting irradiation-induced apoptosis and decreasing G2/M block. The role of miR-181a in conferring cellular resistance to radiation treatment was validated both in cell culture models and in mouse tumor xenograft models. The effect of miR-181a on radio-resistance was mediated through targeting the 3'-UTR of PRKCD gene. Thus, the expression level of miR-181a in cervical cancer may serve as a biomarker for sensitivity to radiation therapy, and targeting miR-181a may represent a new approach to sensitizing cervical cancer to radiation treatment.
Collapse
Affiliation(s)
- G Ke
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|