1
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
3
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
4
|
Guo S, Zhong A, Zhang D, Gao J, Ni Y, Zhao R, Ma W. ATP2B3 Inhibition Alleviates Erastin-Induced Ferroptosis in HT-22 Cells through the P62-KEAP1-NRF2-HO-1 Pathway. Int J Mol Sci 2023; 24:ijms24119199. [PMID: 37298147 DOI: 10.3390/ijms24119199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ferroptosis participates in the occurrence and development of neurological disorders. Modulating ferroptosis may have therapeutic potential in nervous system diseases. Therefore, TMTbased proteomic analysis in HT-22 cells was performed to identify erastin-induced differentially expressed proteins. The calcium-transporting ATP2B3 (ATP2B3) was screened as a target protein. ATP2B3 knockdown markedly alleviated the erastin-induced decrease in cell viability and elevated ROS (p < 0.01) and reversed the up-regulation of oxidative stress-related proteins polyubiquitin-binding protein p62 (P62), nuclear factor erythroid 2-related factor2 (NRF2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase-1 (NQO1) protein expression (p < 0.05 or p < 0.01) and the down-regulation of Kelch-like ECH-associated protein 1(KEAP1) protein expression (p < 0.01). Moreover, NRF2 knockdown, P62 inhibition, or KEAP1 overexpression rescued the erastin-induced decrease in cell viability (p < 0.05) and increase in ROS production (p < 0.01) in HT-22 cells, while simultaneous overexpression of NRF2 and P62 and knockdown of KEAP1 partially offset the relief effect of ATP2B3 inhibition. In addition, knockdown of ATP2B3, NRF2, and P62 and overexpression of KEAP1 significantly down-regulated erastin-induced high expression of the HO-1 protein, while HO-1 overexpression reversed the alleviating effects of ATP2B3 inhibition on the erastin-induced decrease in cell viability (p < 0.01) and increase in ROS production (p < 0.01) in HT-22 cells. Taken together, ATP2B3 inhibition mediates the alleviation of erastin-induced ferroptosis in HT-22 cells through the P62-KEAP1-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiying Zhong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiang Gao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
6
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
7
|
Temporal Characterization of Behavioral and Hippocampal Dysfunction in the YAC128 Mouse Model of Huntington’s Disease. Biomedicines 2022; 10:biomedicines10061433. [PMID: 35740454 PMCID: PMC9219853 DOI: 10.3390/biomedicines10061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a genetic neurodegenerative disease characterized by motor, psychiatric, and cognitive symptoms. Emerging evidence suggests that emotional and cognitive deficits seen in HD may be related to hippocampal dysfunction. We used the YAC128 HD mouse model to perform a temporal characterization of the behavioral and hippocampal dysfunctions. Early and late symptomatic YAC128 mice exhibited depressive-like behavior, as demonstrated by increased immobility times in the Tail Suspension Test. In addition, YAC128 mice exhibited cognitive deficits in the Swimming T-maze Test during the late symptomatic stage. Except for a reduction in basal mitochondrial respiration, no significant deficits in the mitochondrial respiratory rates were observed in the hippocampus of late symptomatic YAC128 mice. In agreement, YAC128 animals did not present robust alterations in mitochondrial ultrastructural morphology. However, light and electron microscopy analysis revealed the presence of dark neurons characterized by the intense staining of granule cell bodies and shrunken nuclei and cytoplasm in the hippocampal dentate gyrus (DG) of late symptomatic YAC128 mice. Furthermore, structural alterations in the rough endoplasmic reticulum and Golgi apparatus were detected in the hippocampal DG of YAC128 mice by electron microscopy. These results clearly show a degenerative process in the hippocampal DG in late symptomatic YAC128 animals.
Collapse
|
8
|
Lučiūnaitė A, Dalgėdienė I, Žilionis R, Mašalaitė K, Norkienė M, Šinkūnas A, Gedvilaitė A, Kučinskaitė-Kodzė I, Žvirblienė A. Activation of NLRP3 Inflammasome by Virus-Like Particles of Human Polyomaviruses in Macrophages. Front Immunol 2022; 13:831815. [PMID: 35355981 PMCID: PMC8959312 DOI: 10.3389/fimmu.2022.831815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Viral antigens can activate phagocytes, inducing inflammation, but the mechanisms are barely explored. The aim of this study is to investigate how viral oligomeric proteins of different structures induce inflammatory response in macrophages. Human THP-1 cell line was used to prepare macrophages that were treated with filamentous nucleocapsid-like particles (NLPs) of paramyxoviruses and spherical virus-like particles (VLPs) of human polyomaviruses. The effects of viral proteins on cell viability, pro-inflammatory cytokines’ production, and NLRP3 inflammasome activation were investigated. Filamentous NLPs did not induce inflammation while spherical VLPs mediated inflammatory response followed by NLRP3 inflammasome activation. Inhibitors of cathepsins and K+ efflux decreased IL-1β release and cell death, indicating a complex inflammasome activation process. A similar activation pattern was observed in primary human macrophages. Single-cell RNAseq analysis of THP-1 cells revealed several cell activation states different in inflammation-related genes. This study provides new insights into the interaction of viral proteins with immune cells and suggests that structural properties of oligomeric proteins may define cell activation pathways.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rapolas Žilionis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,R&D Department, Droplet Genomics, Vilnius, Lithuania
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Wilhelmus MMM, Chouchane O, Loos M, Jongenelen CAM, Brevé JJP, Jonker A, Bol JGJM, Smit AB, Drukarch B. Absence of tissue transglutaminase reduces amyloid-beta pathology in APP23 mice. Neuropathol Appl Neurobiol 2022; 48:e12796. [PMID: 35141929 PMCID: PMC9304226 DOI: 10.1111/nan.12796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
Aims Alzheimer's disease (AD) is characterised by amyloid‐beta (Aβ) aggregates in the brain. Targeting Aβ aggregates is a major approach for AD therapies, although attempts have had little to no success so far. A novel treatment option is to focus on blocking the actual formation of Aβ multimers. The enzyme tissue transglutaminase (TG2) is abundantly expressed in the human brain and plays a key role in post‐translational modifications in Aβ resulting in covalently cross‐linked, stable and neurotoxic Aβ oligomers. In vivo absence of TG2 in the APP23 mouse model may provide evidence that TG2 plays a key role in development and/or progression of Aβ‐related pathology. Methods Here, we compared the effects on Aβ pathology in the presence or absence of TG2 using 12‐month‐old wild type, APP23 and a crossbreed of the TG2−/− mouse model and APP23 mice (APP23/TG2−/−). Results Using immunohistochemistry, we found that the number of Aβ deposits was significantly reduced in the absence of TG2 compared with age‐matched APP23 mice. To pinpoint possible TG2‐associated mechanisms involved in this observation, we analysed soluble brain Aβ1–40, Aβ1–42 and/or Aβ40/42 ratio, and mRNA levels of human APP and TG2 family members present in brain of the various mouse models. In addition, using immunohistochemistry, both beta‐pleated sheet formation in Aβ deposits and the presence of reactive astrocytes associated with Aβ deposits were analysed. Conclusions We found that absence of TG2 reduces the formation of Aβ pathology in the APP23 mouse model, suggesting that TG2 may be a suitable therapeutic target for reducing Aβ deposition in AD.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Osoul Chouchane
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Cornelis A M Jongenelen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J P Brevé
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Allert Jonker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, VU University Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Zhu J, Shao Y, Chen K, Zhang W, Li C. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy. FISH & SHELLFISH IMMUNOLOGY 2021; 119:602-612. [PMID: 34742899 DOI: 10.1016/j.fsi.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminases (TGases) are widely known to play critical roles in innate immunity, in particular, TGase2, which involves in autophagy process to help degrade protein aggregates under stressful conditions in mammals. Nevertheless, the function of the TGase2 counterpart whether involves in invertebrate autophagy is largely unknown. In this study, a novel TGase2-like homologous gene from the sea cucumber Apostichopus japonicus (named as AjTGase2-like) was cloned using RACE technology and its biological functions were also investigated. The AjTGase2-like gene encoded a peptide of 750 amino acids with the representative domains of Transglut_N domain, TGc domain, and two Transglut_C domains, which exhibited highly conservative with vertebrate TGase2. Multiple sequence alignments and phylogenetic analysis both supported that AjTGase2-like belonged to a new member of TGase2 subfamily. AjTGase2-like was pervasively expressed in all examined tissues, with the largest transcription in muscle, followed by respiratory trees, and intestine. After immersion infection with Vibrio splendidus, the mRNA and protein levels of AjTGase2-like were both significantly induced and reached the highest levels at 24 h, indicating AjTGase2-like plays a key role in immune response. Further functional analysis showed that the ubiquitinated protein level was significantly increased by 1.65-fold (p < 0.01) after silencing of AjTGase2-like, and the protein levels of AjLC3-II/I and AjBeclin1 were both obviously decreased by 0.49-fold (p < 0.01) and 0.64-fold (p < 0.01) at the same time, while the authophagy receptor of Ajp62 was signally up-regulated by 1.40-fold (p < 0.01) under same condition. Moreover, the immunofluorescence signals of AjLC3 and Ajp62 were consistent with their protein levels, suggesting knockdown of AjTGase2-like causes a blockage in autophagy. More importantly, the AjLC3 positive signal was not increased after adding with chloroquine in the case of AjTGase2-like interference, indicating AjTGase2-like might play pivotal role in the early step of autophagosome formation. Besides, our results showed that the fluorescence signal of AjTGase2-like was largely co-localized with Ajp62 around the cytoplasm in vivo, and rAjp62 could directly combine with rAjTGase2-like in vitro, indicating AjTGase2-like interacts with Ajp62 during autophagy. Overall, our findings supported that AjTGase2-like served as a positive regulator in sea cucumber authophay.
Collapse
Affiliation(s)
- Jiaqian Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| | - Kaiyu Chen
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
11
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
12
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
13
|
Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 Is Colocalized and Interacts with Mutant Huntingtin in Huntington Disease Rodent Animal Models. Int J Mol Sci 2021; 22:8914. [PMID: 34445621 PMCID: PMC8396294 DOI: 10.3390/ijms22168914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Judith Stemick
- Department of Molecular Neurology, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Julia Harrer
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joan S. Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| |
Collapse
|
14
|
Probing tissue transglutaminase mediated vascular smooth muscle cell aging using a novel transamidation-deficient Tgm2-C277S mouse model. Cell Death Discov 2021; 7:197. [PMID: 34326316 PMCID: PMC8322091 DOI: 10.1038/s41420-021-00543-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue transglutaminase (TG2), a multifunctional protein of the transglutaminase family, has putative transamidation-independent functions in aging-associated vascular stiffening and dysfunction. Developing preclinical models will be critical to fully understand the physiologic relevance of TG2's transamidation-independent activity and to identify the specific function of TG2 for therapeutic targeting. Therefore, in this study, we harnessed CRISPR-Cas9 gene editing technology to introduce a mutation at cysteine 277 in the active site of the mouse Tgm2 gene. Heterozygous and homozygous Tgm2-C277S mice were phenotypically normal and were born at the expected Mendelian frequency. TG2 protein was ubiquitously expressed in the Tgm2-C277S mice at levels similar to those of wild-type (WT) mice. In the Tgm2-C277S mice, TG2 transglutaminase function was successfully obliterated, but the transamidation-independent functions ascribed to GTP, fibronectin, and integrin binding were preserved. In vitro, a remodeling stimulus led to the significant loss of vascular compliance in WT mice, but not in the Tgm2-C277S or TG2-/- mice. Vascular stiffness increased with age in WT mice, as measured by pulse-wave velocity and tensile testing. Tgm2-C277S mice were protected from age-associated vascular stiffening, and TG2 knockout yielded further protection. Together, these studies show that TG2 contributes significantly to overall vascular modulus and vasoreactivity independent of its transamidation function, but that transamidation activity is a significant cause of vascular matrix stiffening during aging. Finally, the Tgm2-C277S mice can be used for in vivo studies to explore the transamidation-independent roles of TG2 in physiology and pathophysiology.
Collapse
|
15
|
Rroji O, Kumar A, Karuppagounder SS, Ratan RR. Epigenetic regulators of neuronal ferroptosis identify novel therapeutics for neurological diseases: HDACs, transglutaminases, and HIF prolyl hydroxylases. Neurobiol Dis 2020; 147:105145. [PMID: 33127469 DOI: 10.1016/j.nbd.2020.105145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
A major thrust of our laboratory has been to identify how physiological stress is transduced into transcriptional responses that feed back to overcome the inciting stress or its consequences, thereby fostering survival and repair. To this end, we have adopted the use of an in vitro model of ferroptosis, a caspase-independent, but iron-dependent form of cell death (Dixon et al., 2012; Ratan, 2020). In this review, we highlight three distinct epigenetic targets that have evolved from our studies and which have been validated in vivo studies. In the first section, we discuss our studies of broad, pan-selective histone deacetylase (HDAC) inhibitors in ferroptosis and how these studies led to the validation of HDAC inhibitors as candidate therapeutics in a host of disease models. In the second section, we discuss our studies that revealed a role for transglutaminase as an epigenetic modulator of proferroptotic pathways and how these studies set the stage for recent elucidation of monoamines as post-translation modifiers of histone function. In the final section, we discuss our studies of iron-, 2-oxoglutarate-, and oxygen-dependent dioxygenases and the role of one family of these enzymes, the HIF prolyl hydroxylases, in mediating transcriptional events necessary for ferroptosis in vitro and for dysfunction in a host of neurological conditions. Overall, our studies highlight the importance of epigenetic proteins in mediating prodeath and prosurvival responses to ferroptosis. Pharmacological agents that target these epigenetic proteins are showing robust beneficial effects in diverse rodent models of stroke, Parkinson's disease, Huntington's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Orjon Rroji
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Amit Kumar
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA.
| |
Collapse
|
16
|
Klus NJ, Kapadia K, McDonald P, Roy A, Frankowski KJ, Muma NA, Aubé J. Discovery of sultam-containing small-molecule disruptors of the huntingtin-calmodulin protein-protein interaction. Med Chem Res 2020; 29:1187-1198. [PMID: 33642842 PMCID: PMC7906539 DOI: 10.1007/s00044-020-02583-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 11/26/2022]
Abstract
The aberrant protein-protein interaction between calmodulin and mutant huntingtin protein in Huntington's disease patients has been found to contribute to Huntington's disease progression. A high-throughput screen for small molecules capable of disrupting this interaction revealed a sultam series as potent small-molecule disruptors. Diversification of the sultam scaffold afforded a set of 24 analogs or further evaluation. Several structure-activity trends within the analog set were found, most notably a negligible effect of absolute stereochemistry and a strong beneficial correlation with electron-withdrawing aromatic substituents. The most promising analogs were profiled for off-target effects at relevant kinases and, ultimately, one candidate molecule was evaluated for neuroprotection in a neuronal cell model of Huntington's disease.
Collapse
Affiliation(s)
- Nicholas J. Klus
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Khushboo Kapadia
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Peter McDonald
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Anuradha Roy
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Kevin J. Frankowski
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington's disease. Chem Biol Interact 2020; 315:108907. [DOI: 10.1016/j.cbi.2019.108907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
18
|
Franich NR, Basso M, André EA, Ochaba J, Kumar A, Thein S, Fote G, Kachemov M, Lau AL, Yeung SY, Osmand A, Zeitlin SO, Ratan RR, Thompson LM, Steffan JS. Striatal Mutant Huntingtin Protein Levels Decline with Age in Homozygous Huntington's Disease Knock-In Mouse Models. J Huntingtons Dis 2019; 7:137-150. [PMID: 29843246 PMCID: PMC6002862 DOI: 10.3233/jhd-170274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: Huntington’s disease (HD) is a progressive neurodegenerative disorder associated with aging, caused by an expanded polyglutamine (polyQ) repeat within the Huntingtin (HTT) protein. In HD, degeneration of the striatum and atrophy of the cortex are observed while cerebellum is less affected. Objective: To test the hypothesis that HTT protein levels decline with age, which together with HTT mutation could influence disease progression. Methods: Using whole brain cell lysates, a unique method of SDS-PAGE and western analysis was used to quantitate HTT protein, which resolves as a monomer and as a high molecular weight species that is modulated by the presence of transglutaminase 2. HTT levels were measured in striatum, cortex and cerebellum in congenic homozygous Q140 and HdhQ150 knock-in mice and WT littermate controls. Results: Mutant HTT in both homozygous knock-in HD mouse models and WT HTT in control striatal and cortical tissues significantly declined in a progressive manner over time. Levels of mutant HTT in HD cerebellum remained high during aging. Conclusions: A general decline in mutant HTT levels in striatum and cortex is observed that may contribute to disease progression in homozygous knock-in HD mouse models through reduction of HTT function. In cerebellum, sustained levels of mutant HTT with aging may be protective to this tissue which is less overtly affected in HD.
Collapse
Affiliation(s)
- Nicholas R Franich
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Manuela Basso
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Emily A André
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA.,Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Soe Thein
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Gianna Fote
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Marketta Kachemov
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alice L Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Sylvia Y Yeung
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alexander Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rajiv R Ratan
- Burke Medical Research Institute, White Plains, NY, USA.,Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA.,Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
D'Eletto M, Rossin F, Fedorova O, Farrace MG, Piacentini M. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019; 400:125-140. [PMID: 29908126 DOI: 10.1515/hsz-2018-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.
Collapse
Affiliation(s)
- Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Olga Fedorova
- Institute of Cytology, 194064 Saint-Petersburg, Russia
| | - Maria Grazia Farrace
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy.,National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', I-00149 Rome, Italy
| |
Collapse
|
20
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
21
|
Abstract
Transglutaminase 2 (TG2) is a multi-functional protein that has both protein cross-linking and guanosine 5'-triphosphate (GTP) hydrolysis activities. The activities of this protein are controlled by many cellular factors, including calcium (Ca2+) and GTP, and have been implicated in several physiological activities, including apoptosis, angiogenesis, wound healing, cellular differentiation, neuronal regeneration, and bone development. TG2 is linked to many human diseases such as inflammatory disease, celiac disease, neurodegenerative disease, diabetes, tissue fibrosis, and various cancers and is one of the most dynamic enzymes in terms of its functions, structures, and regulatory mechanisms. The aim of this review was to summarize the functional, structural, and regulatory diversity of TG2, with a particular focus on the structure of TG2.
Collapse
|
22
|
Cystamine and cysteamine as inhibitors of transglutaminase activity in vivo. Biosci Rep 2018; 38:BSR20180691. [PMID: 30054429 PMCID: PMC6123069 DOI: 10.1042/bsr20180691] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cystamine is commonly used as a transglutaminase inhibitor. This disulphide undergoes reduction in vivo to the aminothiol compound, cysteamine. Thus, the mechanism by which cystamine inhibits transglutaminase activity in vivo could be due to either cystamine or cysteamine, which depends on the local redox environment. Cystamine inactivates transglutaminases by promoting the oxidation of two vicinal cysteine residues on the enzyme to an allosteric disulphide, whereas cysteamine acts as a competitive inhibitor for transamidation reactions catalyzed by this enzyme. The latter mechanism is likely to result in the formation of a unique biomarker, N-(γ-glutamyl)cysteamine that could serve to indicate how cyst(e)amine acts to inhibit transglutaminases inside cells and the body.
Collapse
|
23
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
24
|
Lieberman AP, Shakkottai VG, Albin RL. Polyglutamine Repeats in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:1-27. [PMID: 30089230 DOI: 10.1146/annurev-pathmechdis-012418-012857] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the age-dependent protein aggregation disorders, nine neurodegenerative diseases are caused by expansions of CAG repeats encoding polyglutamine (polyQ) tracts. We review the clinical, pathological, and biological features of these inherited disorders. We discuss insights into pathogenesis gleaned from studies of model systems and patients, highlighting work that informs efforts to develop effective therapies. An important conclusion from these analyses is that expanded CAG/polyQ domains are the primary drivers of neurodegeneration, with the biology of carrier proteins influencing disease-specific manifestations. Additionally, it has become apparent that CAG/polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms, involving both gain- and loss-of-function effects. This conclusion indicates that the likelihood of developing effective therapies targeting single nodes is reduced. The evaluation of treatments for premanifest disease will likely require new investigational approaches. We highlight the opportunities and challenges underlying ongoing work and provide recommendations related to the development of symptomatic and disease-modifying therapies and biomarkers that could inform future research.
Collapse
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA;
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; , .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; , .,Neurology Service and the Geriatric Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
25
|
Quinn BR, Yunes-Medina L, Johnson GVW. Transglutaminase 2: Friend or foe? The discordant role in neurons and astrocytes. J Neurosci Res 2018; 96:1150-1158. [PMID: 29570839 DOI: 10.1002/jnr.24239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Members of the transglutaminase family catalyze the formation of isopeptide bonds between a polypeptide-bound glutamine and a low molecular weight amine (e.g., spermidine) or the ɛ-amino group of a polypeptide-bound lysine. Transglutaminase 2 (TG2), a prominent member of this family, is unique because in addition to being a transamidating enzyme, it exhibits numerous other activities. As a result, TG2 plays a role in many physiological processes, and its function is highly cell type specific and relies upon a number of factors, including conformation, cellular compartment location, and local concentrations of Ca2+ and guanine nucleotides. TG2 is the most abundant transglutaminase in the central nervous system (CNS) and plays a pivotal role in the CNS injury response. How TG2 affects the cell in response to an insult is strikingly different in astrocytes and neurons. In neurons, TG2 supports survival. Overexpression of TG2 in primary neurons protects against oxygen and glucose deprivation (OGD)-induced cell death and in vivo results in a reduction in infarct volume subsequent to a stroke. Knockdown of TG2 in primary neurons results in a loss of viability. In contrast, deletion of TG2 from astrocytes results in increased survival following OGD and improved ability to protect neurons from injury. Here, a brief overview of TG2 is provided, followed by a discussion of the role of TG2 in transcriptional regulation, cellular dynamics, and cell death. The differing roles TG2 plays in neurons and astrocytes are highlighted and compared to how TG2 functions in other cell types.
Collapse
Affiliation(s)
- Breandan R Quinn
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Laura Yunes-Medina
- Department of Neuroscience, University of Rochester, Rochester, New York
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York.,Department of Neuroscience, University of Rochester, Rochester, New York.,Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
26
|
Katt WP, Antonyak MA, Cerione RA. The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discov Today 2018; 23:575-591. [PMID: 29362136 PMCID: PMC5864117 DOI: 10.1016/j.drudis.2018.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (tTG) is capable of binding and hydrolyzing GTP, as well as catalyzing an enzymatic transamidation reaction that crosslinks primary amines to glutamine residues. tTG adopts two vastly different conformations, depending on whether it is functioning as a GTP-binding protein or a crosslinking enzyme. It has been shown to have important roles in several different aspects of cancer progression, making it an attractive target for therapeutic intervention. Here, we highlight many of the major findings involving tTG since its discovery 60 years ago, and describe recent drug discovery efforts that target specific activities or conformations of this unique protein.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| |
Collapse
|
27
|
Rosas-Arellano A, Tejeda-Guzmán C, Lorca-Ponce E, Palma-Tirado L, Mantellero CA, Rojas P, Missirlis F, Castro MA. Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol Dis 2018; 110:142-153. [DOI: 10.1016/j.nbd.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
|
28
|
Basso M, Chen HH, Tripathy D, Conte M, Apperley KYP, De Simone A, Keillor JW, Ratan R, Nebbioso A, Sarno F, Altucci L, Milelli A. Designing Dual Transglutaminase 2/Histone Deacetylase Inhibitors Effective at Halting Neuronal Death. ChemMedChem 2018; 13:227-230. [PMID: 29286587 DOI: 10.1002/cmdc.201700601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/16/2017] [Indexed: 01/06/2023]
Abstract
In recent years there has been a clear consensus that neurodegenerative conditions can be better treated through concurrent modulation of different targets. Herein we report that combined inhibition of transglutaminase 2 (TG2) and histone deacetylases (HDACs) synergistically protects against toxic stimuli mediated by glutamate. Based on these findings, we designed and synthesized a series of novel dual TG2-HDAC binding agents. Compound 3 [(E)-N-hydroxy-5-(3-(4-(3-oxo-3-(pyridin-3-yl)prop-1-en-1-yl)phenyl)thioureido)pentanamide] emerged as the most interesting of the series, being able to inhibit TG2 and HDACs both in vitro (TG2 IC50 =13.3±1.5 μm, HDAC1 IC50 =3.38±0.14 μm, HDAC6 IC50 =4.10±0.13 μm) and in cell-based assays. Furthermore, compound 3 does not exert any toxic effects in cortical neurons up to 50 μm and protects neurons against toxic insults induced by glutamate (5 mm) with an EC50 value of 3.7±0.5 μm.
Collapse
Affiliation(s)
- Manuela Basso
- Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive n. 9, 38123, Trento, Italy
| | - Huan Huan Chen
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Debasmita Tripathy
- Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive n. 9, 38123, Trento, Italy
| | | | - Kim Y P Apperley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Rajiv Ratan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY, 10605, USA
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Federica Sarno
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia generale, Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| |
Collapse
|
29
|
Morotomi-Yano K, Yano KI. Calcium-dependent activation of transglutaminase 2 by nanosecond pulsed electric fields. FEBS Open Bio 2017; 7:934-943. [PMID: 28680807 PMCID: PMC5494297 DOI: 10.1002/2211-5463.12227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022] Open
Abstract
Exposure of cultured human cells to nanosecond pulsed electric fields (nsPEFs) elicits various cellular events, including Ca2+ influx and cell death. Recently, nsPEFs have been regarded as a novel physical treatment useful for biology and medicine, but the underlying mechanism of action remains to be fully elucidated. In this study, we investigated the effect of nsPEFs on transglutaminases (TGs), enzymes that catalyze covalent protein modifications such as protein-protein crosslinking. Cellular TG activity was monitored by conjugation of cellular proteins with biotin-cadaverine, a cell-permeable pseudosubstrate for TGs. We applied nsPEFs to HeLa S3 cells and found that overall catalytic activity of cellular TGs was greatly increased in a Ca2+-dependent manner. The Ca2+ ionophore ionomycin significantly augmented nsPEF-induced TG activation, further supporting the importance of Ca2+. Among human TG family members, TG2 is known to be the most ubiquitously expressed, and its catalytic activity requires elevated intracellular Ca2+. Given the requirement of Ca2+ for TG activation by nsPEFs, we performed depletion of TG2 by RNA interference (RNAi). We observed that TG2 RNAi suppressed the nsPEF-induced TG activation and partially alleviated the cytotoxic effects of nsPEFs. These findings demonstrate that TG2 activation is a Ca2+-dependent event in nsPEF-exposed cells and exerts negative effects on cell physiology.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Bioelectrics Institute of Pulsed Power Science Kumamoto University Japan
| | - Ken-Ichi Yano
- Department of Bioelectrics Institute of Pulsed Power Science Kumamoto University Japan
| |
Collapse
|
30
|
Lai TS, Lin CJ, Greenberg CS. Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids 2016; 49:501-515. [PMID: 27270573 DOI: 10.1007/s00726-016-2270-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Post-translational modification (PTM) is an important mechanism in modulating a protein's structure and can lead to substantial diversity in biological function. Compared to other forms of PTMs such as phosphorylation, acetylation and glycosylation, the physiological significance of aminylation is limited. Aminylation refers to the covalent incorporation of biogenic/polyamines into target protein by calcium-dependent transglutaminases (TGs). The development of novel and more sensitive techniques has led to more proteins identified as tissue transglutaminase (TG2) substrates and potential targets for aminylation. Many of these substrate proteins play a role in cell signaling, cytoskeleton organization, muscle contraction, and inflammation. TG2 is well studied and widely expressed in a variety of tissues and will be the primary focus of this review on recent advance in transglutaminase-mediated aminylation.
Collapse
Affiliation(s)
- Thung-S Lai
- Graduate Institute of Biomedical Science, Mackay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., Sanzhi Dist, New Taipei City, 25200, Taiwan, ROC.
| | - Cheng-Jui Lin
- Nephrology/Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan, ROC
| | - Charles S Greenberg
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
31
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Diaz-Hidalgo L, Altuntas S, Rossin F, D'Eletto M, Marsella C, Farrace MG, Falasca L, Antonioli M, Fimia GM, Piacentini M. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2084-92. [PMID: 27169926 DOI: 10.1016/j.bbamcr.2016.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment.
Collapse
Affiliation(s)
| | - Sara Altuntas
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Claudia Marsella
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | | | - Laura Falasca
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Manuela Antonioli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy; Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy.
| |
Collapse
|
33
|
Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D'Amelio M, Maura G, Mariottini P, Voci A, Marcoli M, Cervelli M. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromolecular Med 2016; 18:50-68. [PMID: 26530396 DOI: 10.1007/s12017-015-8377-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132, Genoa, Italy
| | - Milena Ragazzoni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Nicola Mercuri
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Medical School Campus, Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Manuela Cervelli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
34
|
Serretiello E, Iannaccone M, Titta F, G. Gatta N, Gentile V. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Inhibition of transglutaminase exacerbates polyglutamine-induced neurotoxicity by increasing the aggregation of mutant ataxin-3 in an SCA3 Drosophila model. Neurotox Res 2014; 27:259-67. [PMID: 25501875 DOI: 10.1007/s12640-014-9506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
Transglutaminases (TGs) comprise a family of Ca(2+)-dependent enzymes that catalyze protein cross-linking, which include nine family members in humans but only a single homolog in Drosophila with three conserved domains. Drosophila Tg plays important roles in cuticle morphogenesis, hemolymph clotting, and innate immunity. Mammalian tissue TG (TG2) is involved in polyglutamine diseases (polyQ diseases), and TG6 has been identified as a causative gene of a novel spinocerebellar ataxia, SCA35. Using a well-established SCA3 fly model, we found that RNA interference-mediated suppression of Tg aggravated polyQ-induced neurodegenerative phenotypes. The administration of cystamine, a known effective Tg inhibitor, enhanced ommatidial degeneration in SCA3 flies. We also demonstrated that the aggregates of pathogenic ataxin-3 increased greatly, when the Tg activity was repressed. These findings indicate that Tg is crucial for polyQ-induced neurotoxicity because Tg ablation resulted in more severe neurodegeneration due to the elevated accumulation of insoluble ataxin-3 complexes in the SCA3 Drosophila model.
Collapse
|
36
|
Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2014; 111:E3966-75. [PMID: 25201980 DOI: 10.1073/pnas.1409730111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.
Collapse
|
37
|
Abstract
Tissue transglutaminase (transglutaminase 2) is a multifunctional enzyme with many interesting properties resulting in versatile roles in both physiology and pathophysiology. Herein, the particular involvement of the enzyme in human diseases will be outlined with special emphasis on its role in cancer and in tissue interactions with biomaterials. Despite recent progress in unraveling the different cellular functions of transglutaminase 2, several questions remain. Transglutaminase 2 features in both confirmed and some still ambiguous roles within pathological conditions, raising interest in developing inhibitors and imaging probes which target this enzyme. One important prerequisite for identifying and characterizing such molecular tools are reliable assay methods to measure the enzymatic activity. This digest Letter will provide clarification about the various assay methods described to date, accompanied by a discussion of recent progress in the development of inhibitors and imaging probes targeting transglutaminase 2.
Collapse
|
38
|
Grosso H, Woo JM, Lee KW, Im JY, Masliah E, Junn E, Mouradian MM. Transglutaminase 2 exacerbates α-synuclein toxicity in mice and yeast. FASEB J 2014; 28:4280-91. [PMID: 24970392 DOI: 10.1096/fj.14-251413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
α-Synuclein is a key pathogenic protein that aggregates in hallmark lesions in Parkinson's disease and other α-synucleinopathies. Prior in vitro studies demonstrated that it is a substrate for cross-linking by transglutaminase 2 (TG2) into higher-order species. Here we investigated whether this increased aggregation occurs in vivo and whether TG2 exacerbates α-synuclein toxicity in Mus musculus and Saccharomyces cerevisiae. Compared with α-synuclein transgenic (Syn(Tg)) mice, animals double transgenic for human α-synuclein and TG2 (TG2(Tg)/Syn(Tg)) manifested greater high-molecular-weight insoluble species of α-synuclein in brain lysates and developed α-synuclein aggregates in the synaptic vesicle fraction. In addition, larger proteinase K-resistant aggregates developed, along with increased thioflavin-S-positive amyloid fibrils. This correlated with an exaggerated neuroinflammatory response, as seen with more astrocytes and microglia. Further neuronal damage was suggested by greater morphological disruption of nerve fibers and a trend toward decreased c-Fos immunoreactive neurons. Finally, the performance of TG2(Tg)/Syn(Tg) animals on motor behavioral tasks was worse relative to Syn(Tg) mice. Greater toxicity of α-synuclein was also demonstrated in yeast cells coexpressing TG2. Our findings demonstrate that TG2 promotes the aggregation of α-synuclein in vivo and that this is associated with aggravated toxicity of α-synuclein and its downstream neuropathologic consequences.
Collapse
Affiliation(s)
- Hilary Grosso
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Jong-Min Woo
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Kang-Woo Lee
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Joo-Young Im
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; and
| |
Collapse
|
39
|
Menalled LB, Kudwa AE, Oakeshott S, Farrar A, Paterson N, Filippov I, Miller S, Kwan M, Olsen M, Beltran J, Torello J, Fitzpatrick J, Mushlin R, Cox K, McConnell K, Mazzella M, He D, Osborne GF, Al-Nackkash R, Bates GP, Tuunanen P, Lehtimaki K, Brunner D, Ghavami A, Ramboz S, Park L, Macdonald D, Munoz-Sanjuan I, Howland D. Genetic deletion of transglutaminase 2 does not rescue the phenotypic deficits observed in R6/2 and zQ175 mouse models of Huntington's disease. PLoS One 2014; 9:e99520. [PMID: 24955833 PMCID: PMC4067284 DOI: 10.1371/journal.pone.0099520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene. Tissue transglutaminase 2 (TG2), a multi-functional enzyme, was found to be increased both in HD patients and in mouse models of the disease. Furthermore, beneficial effects have been reported from the genetic ablation of TG2 in R6/2 and R6/1 mouse lines. To further evaluate the validity of this target for the treatment of HD, we examined the effects of TG2 deletion in two genetic mouse models of HD: R6/2 CAG 240 and zQ175 knock in (KI). Contrary to previous reports, under rigorous experimental conditions we found that TG2 ablation had no effect on either motor or cognitive deficits, or on the weight loss. In addition, under optimal husbandry conditions, TG2 ablation did not extend R6/2 lifespan. Moreover, TG2 deletion did not change the huntingtin aggregate load in cortex or striatum and did not decrease the brain atrophy observed in either mouse line. Finally, no amelioration of the dysregulation of striatal and cortical gene markers was detected. We conclude that TG2 is not a valid therapeutic target for the treatment of HD.
Collapse
Affiliation(s)
| | - Andrea E. Kudwa
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Steve Oakeshott
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Andrew Farrar
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Neil Paterson
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Igor Filippov
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Sam Miller
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Mei Kwan
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Michael Olsen
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Jose Beltran
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Justin Torello
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Jon Fitzpatrick
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Richard Mushlin
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Kimberly Cox
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Kristi McConnell
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Matthew Mazzella
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Dansha He
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Georgina F. Osborne
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Rand Al-Nackkash
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Gill P. Bates
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Pasi Tuunanen
- Charles River Discovery Research Services, Kuopio, Finland
| | | | - Dani Brunner
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Afshin Ghavami
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Sylvie Ramboz
- PsychoGenics Inc., Tarrytown, New York, United States of America
| | - Larry Park
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
| | | | - David Howland
- CHDI Management/CHDI Foundation, Princeton, New Jersey, United States of America
| |
Collapse
|
40
|
Lee JH, Jeong J, Jeong EM, Cho SY, Kang JW, Lim J, Heo J, Kang H, Kim IG, Shin DM. Endoplasmic reticulum stress activates transglutaminase 2 leading to protein aggregation. Int J Mol Med 2014; 33:849-55. [PMID: 24481335 PMCID: PMC3976127 DOI: 10.3892/ijmm.2014.1640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/28/2014] [Indexed: 01/13/2023] Open
Abstract
Aberrant activation of transglutaminase 2 (TGase2) contributes to a variety of protein conformational disorders such as neurodegenerative diseases and age-related cataracts. The accumulation of improperly folded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), which promotes either repair or degradation of the damaged proteins. Inadequate UPR results in protein aggregation that may contribute to the development of age-related degenerative diseases. TGase2 is a calcium-dependent enzyme that irreversibly modifies proteins by forming cross-linked protein aggregates. Intracellular TGase2 is activated by oxidative stress which generates large quantities of unfolded proteins. However, the relationship between TGase2 activity and UPR has not yet been established. In the present study, we demonstrated that ER stress activated TGase2 in various cell types. TGase2 activation was dependent on the ER stress-induced increase in the intracellular calcium ion concentration but not on the TGase2 protein expression level. Enzyme substrate analysis revealed that TGase2-mediated protein modification promoted protein aggregation concurrently with decreasing water solubility. Moreover, treatment with KCC009, a TGase2 inhibitor, abrogated ER stress-induced TGase2 activation and subsequent protein aggregation. However, TGase2 activation had no effect on ER stress-induced cell death. These results demonstrate that the accumulation of misfolded proteins activates TGase2, which further accelerates the formation of protein aggregates. Therefore, we suggest that inhibition of TGase2 may be a novel strategy by which to prevent the protein aggregation in age-related degenerative diseases.
Collapse
Affiliation(s)
- Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Wook Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyunsook Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Oono M, Okado-Matsumoto A, Shodai A, Ido A, Ohta Y, Abe K, Ayaki T, Ito H, Takahashi R, Taniguchi N, Urushitani M. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem 2013; 128:403-18. [DOI: 10.1111/jnc.12441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Miki Oono
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | | | - Akemi Shodai
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| | - Akemi Ido
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| | - Yasuyuki Ohta
- Department of Neurology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Koji Abe
- Department of Neurology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Takashi Ayaki
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | - Hidefumi Ito
- Department of Neurology; Wakayama Medical University; Graduate School of Medicine; Wakayama Japan
| | - Ryosuke Takahashi
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | | | - Makoto Urushitani
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| |
Collapse
|
42
|
Cervelli M, Bellavia G, D'Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M, Maura G, Piacentini M, Amendola R, Cecconi F, Mariottini P. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury. PLoS One 2013; 8:e64810. [PMID: 23840306 PMCID: PMC3686797 DOI: 10.1371/journal.pone.0064810] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain.
Collapse
Affiliation(s)
| | | | - Marcello D'Amelio
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Virve Cavallucci
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Sandra Moreno
- Dipartimento di Biologia, Università “Roma Tre,” Rome, Italy
| | - Joachim Berger
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Roberta Nardacci
- Istituto Nazionale per le Malattie Infettive, IRCCS “L. Spallanzani,” Rome, Italy
| | - Manuela Marcoli
- Dipartimento di Farmacia, Sez. Farmacologia e Tossicologia, Centro di Eccellenza per la Ricerca Biomedica CEBR, Università di Genova, Genoa, Italy
| | - Guido Maura
- Dipartimento di Farmacia, Sez. Farmacologia e Tossicologia, Centro di Eccellenza per la Ricerca Biomedica CEBR, Università di Genova, Genoa, Italy
| | - Mauro Piacentini
- Istituto Nazionale per le Malattie Infettive, IRCCS “L. Spallanzani,” Rome, Italy
| | - Roberto Amendola
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Il Centro Ricerche Casaccia, Sezione Tossicologia e Scienze Biomediche (BAS-BIOTECMED), Rome, Italy
| | - Francesco Cecconi
- Laboratory of Molecular Neuroembryology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
43
|
Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 2013; 33:809-18. [PMID: 23571278 PMCID: PMC3677119 DOI: 10.1038/jcbfm.2013.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transglutaminases (TGs) are multifunctional, calcium-dependent enzymes that have been recently implicated in stroke pathophysiology. Classically, these enzymes are thought to participate in cell injury and death in chronic neurodegenerative conditions via their ability to catalyze covalent, nondegradable crosslinks between proteins or to incorporate polyamines into protein substrates. Accumulating lines of inquiry indicate that specific TG isoforms can shuttle into the nucleus when they sense pathologic changes in calcium or oxidative stress, bind to chromatin and thereby transduce these changes into transcriptional repression of genes involved in metabolic or oxidant adaptation. Here, we review the evidence that supports principally a role for one isoform of this family, TG2, in cell injury and death associated with hemorrhagic or ischemic stroke. We also outline an evolving model in which TG2 is a critical mediator between pathologic signaling and epigenetic modifications that lead to gene repression. Accordingly, the salutary effects of TG inhibitors in stroke may derive from their ability to restore homeostasis by removing inappropriate deactivation of adaptive genetic programs by oxidative stress or extrasynaptic glutamate receptor signaling.
Collapse
|
44
|
Sepe S, Payan-Gomez C, Milanese C, Hoeijmakers JH, Mastroberardino PG. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair (Amst) 2013; 12:568-77. [PMID: 23726220 DOI: 10.1016/j.dnarep.2013.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impaired DNA repair involving the nucleotide excision repair (NER)/transcription-coupled repair (TCR) pathway cause human pathologies associated with severe neurological symptoms. These clinical observations suggest that defective NER/TCR might also play a critical role in chronic neurodegenerative disorders (ND), such as Alzheimer's and Parkinson's disease. Involvement of NER/TCR in these disorders is also substantiated by the evidence that aging constitutes the principal risk factor for chronic ND and that this DNA repair mechanism is very relevant for the aging process itself. Our understanding of the exact role of NER/TCR in chronic ND, however, is extremely rudimentary; while there is no doubt that defective NER/TCR can lead to neuronal death, evidence for its participation in the etiopathogenesis of ND is inconclusive thus far. Here we summarize the experimental observations supporting a role for NER/TCR in chronic ND and suggest questions and lines of investigation that might help in addressing this important issue. We also present a preliminary yet unprecedented meta-analysis on human brain microarray data to understand the expression levels of the various NER factors in the anatomical areas relevant for chronic ND pathogenesis. In summary, this review intends to highlight elements supporting a role of NER/TCR in these devastating disorders and to propose potential strategies of investigation.
Collapse
Affiliation(s)
- Sara Sepe
- Department of Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Ku BM, Kim DS, Kim KH, Yoo BC, Kim SH, Gong YD, Kim SY. Transglutaminase 2 inhibition found to induce p53 mediated apoptosis in renal cell carcinoma. FASEB J 2013; 27:3487-95. [PMID: 23704086 DOI: 10.1096/fj.12-224220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal cell carcinoma (RCC), the predominant form of kidney cancer, is characterized by high resistance to radiation and chemotherapy. This study shows that expression of protein cross-linking enzyme transglutaminase 2 (TGase 2) is markedly increased in 7 renal cell carcinoma (RCC) cell lines in comparison to HEK293 and other cancer cell lines, such as NCI 60. However, the key role of TGase 2 in RCC was not clear. The down-regulation of TGase 2 was found to stabilize p53 expression, thereby inducing a 3- to 10-fold increase in apoptosis for 786-O, A498, CAKI-1, and ACHN cell lines by DAPI staining. MEF cells from TGase 2(-/-) mice showed stabilized p53 under apoptotic stress to compare to MEFs from wild-type mice. TGase 2 directly cross links the DNA binding domain of p53, leading to p53 depletion via autophagy in RCC. TGase 2 and p53 expression showed an inverse relationship in RCC cells. This finding implies that induced expression of TGase 2 promotes tumor cell survival through p53 depletion in RCC.
Collapse
Affiliation(s)
- Bo Mi Ku
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Kawai HD, La M, Kang HA, Hashimoto Y, Liang K, Lazar R, Metherate R. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex. Synapse 2013; 67:455-68. [PMID: 23401204 DOI: 10.1002/syn.21647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Enhancement of sound-evoked responses in auditory cortex (ACx) following administration of systemic nicotine is known to depend on activation of extracellular-signaling regulated kinase (ERK), but the nature of this enhancement is not clear. Here, we show that systemic nicotine increases the density of cells immunolabeled for phosphorylated (activated) ERK (P-ERK) in mouse primary ACx (A1). Cortical injection of dihydro-β-erythroidine reduced nicotine-induced P-ERK immunolabel, suggesting a role for nicotinic acetylcholine receptors located in A1 and containing α4 and β2 subunits. P-ERK expressing cells were distributed mainly in layers 2/3 and more sparsely in lower layers, with many cells exhibiting immunolabel within pyramidal-shaped somata and proximal apical dendrites. About one-third of P-ERK positive cells also expressed calbindin. In the thalamus, P-ERK immunopositive cells were found in the nonlemniscal medial geniculate (MG) and adjacent nuclei, but were absent in the lemniscal MG. Pairing broad spectrum acoustic stimulation (white noise) with systemic nicotine increased P-ERK immunopositive cell density in ACx as well as the total amount of P-ERK protein, particularly the phosphorylated form of ERK2. However, narrow spectrum (tone) stimulation paired with nicotine increased P-ERK immunolabel preferentially at a site within A1 where the paired frequency was characteristic frequency (CF), relative to a second site with a spectrally distant CF (two octaves above or below the paired frequency). Together, these results suggest that ERK is activated optimally where nicotinic signaling and sound-evoked neural activity converge.
Collapse
Affiliation(s)
- Hideki D Kawai
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Wityak J, Prime ME, Brookfield FA, Courtney SM, Erfan S, Johnsen S, Johnson PD, Li M, Marston RW, Reed L, Vaidya D, Schaertl S, Pedret-Dunn A, Beconi M, Macdonald D, Muñoz-Sanjuan I, Dominguez C. SAR Development of Lysine-Based Irreversible Inhibitors of Transglutaminase 2 for Huntington's Disease. ACS Med Chem Lett 2012; 3:1024-8. [PMID: 24900424 DOI: 10.1021/ml300241m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022] Open
Abstract
We report a series of irreversible transglutaminase 2 inhibitors starting from a known lysine dipeptide bearing an acrylamide warhead. We established new SARs resulting in compounds demonstrating improved potency and better physical and calculated properties. Transglutaminase selectivity profiling and in vitro ADME properties of selected compounds are also reported.
Collapse
Affiliation(s)
- John Wityak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 100, Los Angeles, California 90045, United States
| | - Michael E. Prime
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | | | | | - Sayeh Erfan
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Siw Johnsen
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Peter D. Johnson
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Marie Li
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | | | - Laura Reed
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Darshan Vaidya
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Sabine Schaertl
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Anna Pedret-Dunn
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, OX14 4SA, United Kingdom
| | - Maria Beconi
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 100, Los Angeles, California 90045, United States
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 100, Los Angeles, California 90045, United States
| | - Ignacio Muñoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 100, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 100, Los Angeles, California 90045, United States
| |
Collapse
|
48
|
Expression, purification and kinetic characterisation of human tissue transglutaminase. Protein Expr Purif 2012; 87:41-6. [PMID: 23085087 DOI: 10.1016/j.pep.2012.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/26/2022]
Abstract
The expression of soluble recombinant transglutaminase (TGase) has proven to be a challenge for many research groups. Herein, we report a complementary method for the expression, in BL21(DE3) Escherichia coli, of recombinant human tissue transglutaminase (hTG2) whose solubility is enhanced through N-terminal fusion to glutathione S-transferase (GST). Moreover, we report the cleavage of the GST tag using PreScission™ Protease (PSP) and purification of hTG2 in its untagged form, distinctively suitable for subsequent studies of its remarkable conformational equilibrium. The effects of co-solvents and storage conditions on stability of purified hTG2 are also reported. Furthermore, we demonstrate for the first time the use of a convenient chromogenic assay to measure the activity of the human enzyme. The utility of this assay was demonstrated in the measurement of the kinetic parameters of a wide variety of substrates and inhibitors of both hTG2 and the extensively studied guinea pig liver TGase. Finally, comparison of these results provides further evidence for the functional similarity of the two enzymes.
Collapse
|
49
|
Kobayashi T, Saito Y, Ohtake Y, Maruko A, Yamamoto Y, Yamamoto F, Kuwahara Y, Fukumoto M, Fukumoto M, Ohkubo Y. Effect of aging on norepinephrine-related proliferative response in primary cultured periportal and perivenous hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G861-9. [PMID: 22837346 DOI: 10.1152/ajpgi.00081.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Norepinephrine (NE) amplifies the mitogenic effect of EGF in a rat liver through the adrenergic receptor coupled with G protein, Ghα. Ghα is also known as a transglutaminase 2 (TG2), whose cross-linking activity is implicated in hepatocyte growth. Recently, we found that NE-induced amplification of EGF-induced DNA synthesis in hepatocytes obtained from perivenous regions of liver is caused by inhibiting the downregulation of EGF receptor (EGFR) by TG2. In the present study, we investigated the effect of aging on NE-related proliferative response. Hepatocytes were obtained from the liver of 7- and 90-wk-old rats. To examine this in detail, periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) were isolated using the digitonin/collagenase perfusion technique. EGF or NE receptor binding was analyzed by Scatchard analysis. Changes in NE-induced DNA synthesis, G protein activity, and TG2 activity were measured. NE slightly potentiated [125I]EGF binding to EGFR, and EGF-induced DNA synthesis in PVH but not in PPH. [3H]NE binding studies indicated that PVH have a greater number of receptors than PPH, and that the number of receptors in both subpopulations increased with aging. NE-induced changes in G protein activity and TG2 activity in 90-wk-old rats were slight compared with 7-wk-old rats. These results suggest that NE results in a slight recovery effect on the age-related decline in EGF-induced DNA synthesis because of incomplete switching of the function from TG2 to Ghα.
Collapse
Affiliation(s)
- Tomonori Kobayashi
- Department of Radiopharmacy, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Prime ME, Brookfield FA, Courtney SM, Gaines S, Marston RW, Ichihara O, Li M, Vaidya D, Williams H, Pedret-Dunn A, Reed L, Schaertl S, Toledo-Sherman L, Beconi M, Macdonald D, Muñoz-Sanjuan I, Dominguez C, Wityak J. Irreversible 4-Aminopiperidine Transglutaminase 2 Inhibitors for Huntington's Disease. ACS Med Chem Lett 2012; 3:731-5. [PMID: 24900540 DOI: 10.1021/ml3001352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022] Open
Abstract
A new series of potent TG2 inhibitors are reported that employ a 4-aminopiperidine core bearing an acrylamide warhead. We establish the structure-activity relationship of this new series and report on the transglutaminase selectivity and in vitro ADME properties of selected compounds. We demonstrate that the compounds do not conjugate glutathione in an in vitro setting and have superior plasma stability over our previous series.
Collapse
Affiliation(s)
- Michael E. Prime
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | | | | | - Simon Gaines
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | | | - Osamu Ichihara
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Marie Li
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Darshan Vaidya
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Helen Williams
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Anna Pedret-Dunn
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Laura Reed
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon OX14
4SA, United Kingdom
| | - Sabine Schaertl
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419
Hamburg, Germany
| | - Leticia Toledo-Sherman
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| | - Maria Beconi
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| | - Ignacio Muñoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| | - John Wityak
- CHDI Management/CHDI Foundation, 6080 Center Drive,
Suite 100, Los Angeles, California 90045, United States
| |
Collapse
|