1
|
Zarrin P, Ates-Alagoz Z. Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment. Mini Rev Med Chem 2025; 25:293-318. [PMID: 39385424 DOI: 10.2174/0113895575306176240925094457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.
Collapse
Affiliation(s)
- Pouria Zarrin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
2
|
Joy R, Siddiqua H, Sharma S, Raveendran M, John F, Hassan P, Gawali SL, Raghavan SC, George J. Block Copolymer Encapsulation of Disarib, an Inhibitor of BCL2 for Improved Chemotherapeutic Potential. ACS OMEGA 2023; 8:40729-40740. [PMID: 37929147 PMCID: PMC10621013 DOI: 10.1021/acsomega.3c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
A chemical inhibitor of antiapoptotic protein, BCL2, known as Disarib, suffers poor solubility in aqueous environments; thereby limiting its potential as a chemotherapeutic agent. To overcome this limitation and enhance the therapeutic efficacy of Disarib, we have employed the encapsulation of this small molecule inhibitor within P123 copolymer matrix. Micelles were synthesized using a thin-film hydration technique, and a comprehensive analysis was undertaken to evaluate the resulting micelle properties, including morphology, particle size, intermolecular interactions, encapsulation efficiency, and in vitro release characteristics. This assessment utilized various physicochemical techniques including UV spectroscopy, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). Disarib-loaded P123 micelle formulation denoted as P123D exhibited a well-defined particle size of approximately 29.2 nm spherical core-shell morphology. Our investigations revealed a notable encapsulation efficiency of 75%, and we observed a biphasic release pattern for the encapsulated Disarib. Furthermore, our cytotoxicity assessment of P123D micelles against mouse breast adenocarcinoma, mouse lymphoma, and human leukemic cell lines showed 40-45% increase in cytotoxicity compared with the administration of Disarib alone in the breast adenocarcinoma cell line. Enhancement in the cytotoxicity of P123D was found to be higher or limited; however, it is important to observe that the encapsulation method significantly enhanced the aqueous solubility of Disarib as it has the best solubility in dimethyl sulfoxide (DMSO) in the unencapsulated state.
Collapse
Affiliation(s)
- Reshma Joy
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | - Humaira Siddiqua
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shivangi Sharma
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manthra Raveendran
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Franklin John
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | | | - Santosh L Gawali
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sathees C. Raghavan
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jinu George
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| |
Collapse
|
3
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
4
|
Scully MA, Wilkins DE, Dang MN, Hoover EC, Aboeleneen SB, Day ES. Cancer Cell Membrane Wrapped Nanoparticles for the Delivery of a Bcl-2 Inhibitor to Triple-Negative Breast Cancer. Mol Pharm 2023; 20:3895-3913. [PMID: 37459272 PMCID: PMC10628893 DOI: 10.1021/acs.molpharmaceut.3c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) is correlated with poor survival outcomes in triple-negative breast cancer (TNBC), making Bcl-2 inhibition a promising strategy to treat this aggressive disease. Unfortunately, Bcl-2 inhibitors developed to date have limited clinical success against solid tumors, owing to poor bioavailability, insufficient tumor delivery, and off-target toxicity. To circumvent these problems, we loaded the Bcl-2 inhibitor ABT-737 in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were wrapped with phospholipid membranes derived from 4T1 murine mammary cancer cells, which mimic the growth and metastasis of human TNBC. We show that the biomimetic cancer cell membrane coating enabled the NPs to preferentially target 4T1 TNBC cells over noncancerous mammary epithelial cells in vitro and significantly increased NP accumulation in orthotopic 4T1 tumors in mice after intravenous injection by over 2-fold compared to poly(ethylene glycol)-poly(lactide-co-glycolic) (PEG-PLGA) copolymer NPs. Congruently, the ABT-737 loaded, cancer cell membrane-wrapped PLGA NPs (ABT CCNPs) induced higher levels of apoptosis in TNBC cells in vitro than ABT-737 delivered freely or in PEG-PLGA NPs. When tested in a syngeneic spontaneous metastasis model, the ABT CCNPs significantly increased apoptosis (evidenced by elevated active caspase-3 and decreased Bcl-2 staining) and decreased proliferation (denoted by reduced Ki67 staining) throughout tumors compared with saline or ABT-loaded PEG-PLGA NP controls. Moreover, the ABT CCNPs did not alter animal weight or blood composition, suggesting that the specificity afforded by the TNBC cell membrane coating mitigated the off-target adverse effects typically associated with ABT-737. Despite these promising results, the low dose of ABT CCNPs administered only modestly reduced primary tumor growth and metastatic nodule formation in the lungs relative to controls. We posit that increasing the dose of ABT CCNPs, altering the treatment schedule, or encapsulating a more potent Bcl-2 inhibitor may yield more robust effects on tumor growth and metastasis. With further development, drug-loaded biomimetic NPs may safely treat solid tumors such as TNBC that are characterized by Bcl-2 overexpression.
Collapse
Affiliation(s)
- Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Dana E Wilkins
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Elise C Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sara B Aboeleneen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
5
|
Ailawadhi S, Parrondo RD, Dutta N, Han B, Ciccio G, Cherukuri Y, Alegria VR, LaPlant BR, Roy V, Sher T, Edwards B, Lanier S, Manna A, Heslop K, Caulfield T, Maldosevic E, Storz P, Manochakian R, Asmann Y, Chanan-Khan AA, Paulus A. AT-101 Enhances the Antitumor Activity of Lenalidomide in Patients with Multiple Myeloma. Cancers (Basel) 2023; 15:477. [PMID: 36672426 PMCID: PMC9857228 DOI: 10.3390/cancers15020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023] Open
Abstract
Bcl-2 and Mcl-1 proteins play a role in multiple myeloma (MM) cell survival, for which targeted inhibitors are being developed. AT-101 is an oral drug, which disrupts Bcl-2 and Mcl-1 function, impedes mitochondrial bioenergetic processes and induces apoptosis in MM cells. When combined with lenalidomide and dexamethasone (Rd), AT-101 significantly reduced tumor burden in an in vivo xenograft model of MM. These data provided rationale for a phase I/II study to establish the effective dose of AT-101 in combination with Rd (ARd regimen) in relapsed/refractory MM. A total of 10 patients were enrolled, most with high-risk cytogenetics (80%) and prior stem cell transplant (70%). Three patients were lenalidomide-refractory, 2 were bortezomib-refractory and 3 were daratumumab-refractory. The ARd combination was well tolerated with most common grade 3/4 adverse events being cytopenia's. The overall response rate was 40% and clinical benefit rate was 90%. The median progression free survival was 14.9 months (95% CI 7.1-NE). Patients responsive to ARd showed a decrease in Bcl-2:Bim or Mcl-1:Noxa protein complexes, increased CD8+ T and NK cells and depletion of T and B-regulatory cells. The ARd regimen demonstrated an acceptable safety profile and promising efficacy in patients with relapsed/refractory MM prompting further investigation in additional patients.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Ricardo D. Parrondo
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Navnita Dutta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Bing Han
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Gina Ciccio
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Yesesri Cherukuri
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Victoria R. Alegria
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Betsy R. LaPlant
- Department of Biostatistics, Mayo Clinic Rochester, Rochester, MN 55902, USA
| | - Vivek Roy
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Taimur Sher
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Brett Edwards
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Stephanie Lanier
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Keisha Heslop
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Emir Maldosevic
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Asher A. Chanan-Khan
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Aneel Paulus
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Najafi V, Yoosefian M, Hassani Z. Development of venetoclax performance using its new derivatives on BCL-2 protein inhibition. Cell Biochem Funct 2023; 41:58-66. [PMID: 36259104 DOI: 10.1002/cbf.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023]
Abstract
Cancer cells are resistant to apoptosis and this is one of the most obvious symptoms of cancer in humans. One of the most exciting strategies for treating cancer is to design regulators that increase cell death and stop cell growth. Members of the BCL-2 family of proteins play an important role in the regulation of apoptosis. In this study, an attempt was made to improve the performance of one of the anticancer drugs by designing new analogs of venetoclax (VNT). For this purpose, molecular docking studies were performed to determine the best binding state of VNT and its newly designed derivatives at the protein-binding site to estimate the binding energy. The best analog in terms of free energy was VNT-12 with the lowest energy (-12.15 kcal/mol). Finally, to investigate the inhibitory effect of the compounds on BCL-2 protein, molecular dynamics simulation was used, and by performing the relevant analyses during the simulation, it was observed that the newly designed ligand had better performance in inhibiting BCL-2 protein compared to VNT.
Collapse
Affiliation(s)
- Vahideh Najafi
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
7
|
Negi A, Voisin‐Chiret AS. Strategies to Reduce the On-Target Platelet Toxicity of Bcl-x L Inhibitors: PROTACs, SNIPERs and Prodrug-Based Approaches. Chembiochem 2022; 23:e202100689. [PMID: 35263486 PMCID: PMC9311450 DOI: 10.1002/cbic.202100689] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Indexed: 11/07/2022]
Abstract
Apoptosis is a highly regulated cellular process. Aberration in apoptosis is a common characteristic of various disorders. Therefore, proteins involved in apoptosis are prime targets in multiple therapies. Bcl-xL is an antiapoptotic protein. Compared to other antiapoptotic proteins, the expression of Bcl-xL is common in solid tumors and, to an extent, in some leukemias and lymphomas. The overexpression of Bcl-xL is also linked to survival and chemoresistance in cancer and senescent cells. Therefore, Bcl-xL is a promising anticancer and senolytic target. Various nanomolar range Bcl-xL inhibitors have been developed. ABT-263 was successfully identified as a Bcl-xL /Bcl-2 dual inhibitor. But it failed in the clinical trial (phase-II) because of its on-target platelet toxicity, which also implies an essential role of Bcl-xL protein in the survival of human platelets. Classical Bcl-xL inhibitor designs utilize occupancy-driven pharmacology with typical shortcomings (such as dose-dependent off-target and on-target platelet toxicities). Hence, event-driven pharmacology-based approaches, such as proteolysis targeting chimeras (PROTACs) and SNIPERs (specific non-genetic IAP-based protein erasers) have been developed. The development of Bcl-xL based PROTACs was expected, as 600 E3-ligases are available in humans, while some (such as cereblon (CRBN), von Hippel-Lindau (VHL)) are relatively less expressed in platelets. Therefore, E3 ligase ligand-based Bcl-xL PROTACs (CRBN: XZ424, XZ739; VHL: DT2216, PZ703b, 753b) showed a significant improvement in platelet therapeutic index than their parent molecules (ABT-263: DT2216, PZ703b, 753b, XZ739, PZ15227; A1155463: XZ424). Other than their distinctive pharmacology, PROTACs are molecularly large, which limits their cell permeability and plays a role in improving their cell selectivity. We also discuss prodrug-based approaches, such as antibody-drug conjugates (ABBV-155), phosphate prodrugs (APG-1252), dendrimer conjugate (AZD0466), and glycosylated conjugates (Nav-Gal). Studies of in-vitro, in-vivo, structure-activity relationships, biophysical characterization, and status of preclinical/clinical inhibitors derived from these strategies are also discussed in the review.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and BiosystemsAalto UniversityFI-00076EspooFinland
| | | |
Collapse
|
8
|
Singh M, Gupta R, Comez L, Paciaroni A, Rani R, Kumar V. BCL2 G quadruplex-binding small molecules: Current status and prospects for the development of next-generation anticancer therapeutics. Drug Discov Today 2022; 27:2551-2561. [PMID: 35709931 DOI: 10.1016/j.drudis.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
B cell lymphoma 2 (BCL2) overexpression in a range of human tumors is often related to chemotherapy resistance and poor prognosis. GC-rich regions upstream of the P1 promoter in human BCL2 can form G-quadruplex (G4) structures through the stacking of four Hoogsteen-paired guanine bases. Stabilizing the G4 fold implies the inhibition of BCL2 expression and, thus, small molecules that selectively bind to the G4 are promising anticancer candidates. In this review, we discuss the structural aspects, binding affinity, selectivity, and biological activity of well-characterized BCL2 G4 binding ligands in vitro and in vivo. We also explore future directions in the research and development of G4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Lucia Comez
- IOM-CNR National Research Council, Via Pascoli, Perugia I-06123, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Pascoli, 06123, Italy
| | - Reshma Rani
- Drug Discovery Unit, Jubilant Biosys Ltd, Sector 58, Noida, UP 201301, India.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India.
| |
Collapse
|
9
|
Szczepański J, Tuszewska H, Trotsko N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123750. [PMID: 35744873 PMCID: PMC9231410 DOI: 10.3390/molecules27123750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.
Collapse
|
10
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
12
|
Li X, Dou J, You Q, Jiang Z. Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy. Eur J Med Chem 2021; 220:113539. [PMID: 34034128 DOI: 10.1016/j.ejmech.2021.113539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 02/09/2023]
Abstract
The Bcl-2 family members rigorously regulate cell endogenous apoptosis, and targeting anti-apoptotic members is a hot topic in design of anti-cancer drugs. At present, FDA and EMA have approved Bcl-2 inhibitor Venetoclax (ABT-199) for treating chronic lymphocytic leukemia (CLL). However, inhibitors of anti-apoptotic protein BCL2A1/Bfl-1 have not been vigorously developed, and no molecule with ideal activity and selectivity has been found yet. Here we review the biological function and protein structure of Bfl-1, discuss the therapeutic potential and list the currently reported inhibitory peptides and small molecules. This will provide a reference for Bfl-1 targeting drug discovery in the future.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Trisciuoglio D, Del Bufalo D. New insights into the roles of antiapoptotic members of the Bcl-2 family in melanoma progression and therapy. Drug Discov Today 2021; 26:1126-1135. [PMID: 33545382 DOI: 10.1016/j.drudis.2021.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Prosurvival and antiapoptotic B cell lymphoma-2 (Bcl-2) family proteins are often overexpressed in cutaneous melanoma, one of the most aggressive types of human cancer. They are also implicated in resistance to therapy and participate in melanoma progression by regulating various processes, including cell proliferation, migration, invasion, and crosstalk with the tumor microenvironment. In this review, we summarize recent findings related to prosurvival members of the Bcl-2 family beyond their canonical functions in the apoptotic pathway, mainly focusing on their potential roles as diagnostic and prognostic biomarkers in cutaneous melanoma. We also provide an overview of different approaches used to inhibit Bcl-2 proteins in preclinical and clinical studies, which are mainly based on the inhibition of protein expression or the disruption of their antiapoptotic functions.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, via degli Apuli 4, 00185, Rome, Italy.
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy.
| |
Collapse
|
14
|
Nagy MI, Darwish KM, Kishk SM, Tantawy MA, Nasr AM, Qushawy M, Swidan SA, Mostafa SM, Salama I. Design, Synthesis, Anticancer Activity, and Solid Lipid Nanoparticle Formulation of Indole- and Benzimidazole-Based Compounds as Pro-Apoptotic Agents Targeting Bcl-2 Protein. Pharmaceuticals (Basel) 2021; 14:ph14020113. [PMID: 33535550 PMCID: PMC7912796 DOI: 10.3390/ph14020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax’s pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound’s pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound’s cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.
Collapse
Affiliation(s)
- Manar I. Nagy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Safaa M. Kishk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Mohamed A. Tantawy
- National Research Center, Hormones Department, Medical Research Division, Dokki, Giza 12622, Egypt;
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt;
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Samia M. Mostafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Ismail Salama
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
- Correspondence: ; Tel.: +20-102-225-7643
| |
Collapse
|
15
|
Wang H, Han P, Qi X, Li F, Li M, Fan L, Zhang H, Zhang X, Yang X. Bcl-2 Enhances Chimeric Antigen Receptor T Cell Persistence by Reducing Activation-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13020197. [PMID: 33429845 PMCID: PMC7827522 DOI: 10.3390/cancers13020197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chimeric antigen receptor-modified T cells (CAR-T) have shown great success in the treatment of B-cell leukemia. However, their efficacy is compromised in B-cell-derived lymphoma and solid tumors. Optimization of CAR design to improve in vivo persistence is a focus of current CAR-T cell research. The aim of our study is to access the potential added value of integration of anti-apoptotic molecules for enhancing anti-tumor activity of CAR-T cells. We confirmed that integrating B cell lymphoma-2 (Bcl-2) into CAR-T cells improved the proliferation ability of CAR-T cells in vitro and in vivo, which led to enhanced anti-tumor activity and prolonged survival in a mouse xenograft lymphoma model. This work provides proof of concept evidence for a new strategy to optimize the function of CAR-T cells against lymphoma. Abstract Purpose: To evaluate the potential added value of integrating anti-apoptotic molecules for improving the anti-tumor activity of CAR-T cells. Methods: Four small molecules inhibiting apoptosis were tested for their ability to prevent activated induced CAR-T cell death. Five CD20-targeting, CD137 (4-1BB) and CD3ζ integrated CAR-T cells (20BBZ) with constitutively expressed anti-apoptotic genes were established, and we screened out the strongest proliferation enhancer: Bcl-2. The memory subtype and the exhaustion markers of CAR-T cells were analyzed. The anti-tumor activities of Bcl-2 integrating CAR-T cells (20BBZ-Bcl-2) were evaluated in vitro and in a mouse xenograft lymphoma model. Conclusion: The 20BBZ-Bcl-2 CAR-T cells showed improved proliferation ability compared to 20BBZ CAR-T cells in vitro. In addition, activation-induced apoptosis was reduced in the 20BBZ-Bcl-2 CAR-T cells. Consistent with the enhanced proliferation in vitro, 20BBZ-Bcl-2 CAR-T cells exhibited improved anti-tumor activity in a mouse xenograft lymphoma model.
Collapse
Affiliation(s)
- Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.); (P.H.); (X.Q.); (F.L.); (M.L.); (L.F.); (H.Z.); (X.Z.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34204065
| |
Collapse
|
16
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
17
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, Caenepeel S, Hughes P, McIver Z, Mezzi K, Morrow PK, Stein A. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev 2020; 44:100672. [PMID: 32204955 PMCID: PMC7442684 DOI: 10.1016/j.blre.2020.100672] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Myeloid cell leukemia sequence 1 (MCL-1) is an antiapoptotic protein that plays a key role in promoting cell survival in multiple myeloma (MM), acute myeloid leukemia (AML), and non-Hodgkin lymphoma (NHL). Overexpression of MCL-1 is associated with treatment resistance and poor prognosis; thus, MCL-1 inhibitors are rational therapeutic options for malignancies depending on MCL-1. Several MCL-1 inhibitors have entered clinical trials, including AZD5991, S64315, AMG 176, and AMG 397. A key area of investigation is whether MCL-1 inhibitors will complement the activity of BCL-2 inhibitors, such as venetoclax, and synergistically enhance anti-tumor efficacy when given in combination with other anti-cancer drugs. Another important question is whether a safe therapeutic window can be found for this new class of inhibitors. In summary, inhibition of MCL-1 shows potential as a treatment for hematologic malignancies and clinical evaluation of MCL-1 inhibitors is currently underway.
Collapse
Affiliation(s)
- Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, VIC, Australia.
| | - Andrew W Roberts
- University of Melbourne, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew Spencer
- Alfred Hospital, Monash University, Australian Centre for Blood Diseases, Melbourne, VIC, Australia
| | | | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
19
|
Nishi R, Shigemi H, Negoro E, Okura M, Hosono N, Yamauchi T. Venetoclax and alvocidib are both cytotoxic to acute myeloid leukemia cells resistant to cytarabine and clofarabine. BMC Cancer 2020; 20:984. [PMID: 33046037 PMCID: PMC7552348 DOI: 10.1186/s12885-020-07469-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cytarabine (ara-C) is the major drug for the treatment of acute myeloid leukemia (AML), but cellular resistance to ara-C is a major obstacle to therapeutic success. The present study examined enhanced anti-apoptosis identified in 3 newly established nucleoside analogue-resistant leukemic cell line variants and approaches to overcoming this resistance. Methods HL-60 human AML cells were used to develop the ara-C– or clofarabine (CAFdA)-resistant variants. The Bcl-2 inhibitor venetoclax and the Mcl-1 inhibitor alvocidib were tested to determine whether they could reverse these cells’ resistance. Results A 10-fold ara-C-resistant HL-60 variant, a 4-fold CAFdA-resistant HL-60 variant, and a 30-fold CAFdA-resistant HL-60 variant were newly established. The variants demonstrated reduced deoxycytidine kinase and deoxyguanosine kinase expression, but intact expression of surface transporters (hENT1, hENT2, hCNT3). The variants exhibited lower expression of intracellular nucleoside analogue triphosphates compared with non-variant HL-60 cells. The variants also overexpressed Bcl-2 and Mcl-1. Venetoclax as a single agent was not cytotoxic to the resistant variants. Nevertheless, venetoclax with nucleoside analogs demonstrated synergistic cytotoxicity against the variants. Alvocidib as a single agent was cytotoxic to the cells. However, alvocidib induced G1 arrest and suppressed the cytotoxicity of the co-administered nucleoside analogs. Conclusions Three new nucleoside analogue-resistant HL-60 cell variants exhibited reduced production of intracellular analogue triphosphates and enhanced Bcl-2 and Mcl-1 expressions. Venetoclax combined with nucleoside analogs showed synergistic anti-leukemic effects and overcame the drug resistance.
Collapse
Affiliation(s)
- Rie Nishi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan.
| | - Hiroko Shigemi
- Public Health Center of Tango, 855 Tanba, Mineyama, Kyotango, Kyoto, 627-8570, Japan
| | - Eiju Negoro
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Miyuki Okura
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
20
|
D’Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020; 9:cells9051287. [PMID: 32455818 PMCID: PMC7291206 DOI: 10.3390/cells9051287] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression and response to therapy, different efforts have made in recent years in order to develop small molecules able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA. The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in combination for improving anti-cancer therapy, focusing in particular on solid tumors.
Collapse
|
21
|
Sohn YK, Kim HS. Targeted delivery of a human Bcl-2-specific protein binder effectively induces apoptosis of cancer cells. Biochem Biophys Res Commun 2020; 526:447-452. [PMID: 32228885 DOI: 10.1016/j.bbrc.2020.03.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 01/02/2023]
Abstract
Bcl-2 family proteins are critical switches to control cell death and survival, and Bcl-2 is a key regulator in pro-survival signaling, causing various diseases including cancers. Bcl-2 has drawn a considerable attention as a potential target for developing a pro-apoptotic agent for cancers. We here present the development of a specific protein binder against human Bcl-2 and its cytosolic delivery to effectively induce apoptosis of cancer cells. The protein binder composed of leucine-rich repeat modules was selected for human Bcl-2, and its binding affinity was increased up to 60 nM through a modular evolution-based approach. The protein binder was efficiently delivered into cancer cells by an intracellular delivery system using a translocation domain from a bacterial exotoxin, resulting in a strong suppression of anti-apoptotic signaling in cancer cells. Our results demonstrate that the human Bcl-2-specific protein binder can act as a potent therapeutic agent for cancers.
Collapse
Affiliation(s)
- Yoo-Kyoung Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
22
|
Ngoi NYL, Choong C, Lee J, Bellot G, Wong ALA, Goh BC, Pervaiz S. Targeting Mitochondrial Apoptosis to Overcome Treatment Resistance in Cancer. Cancers (Basel) 2020; 12:E574. [PMID: 32131385 PMCID: PMC7139457 DOI: 10.3390/cancers12030574] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
Deregulated cellular apoptosis is a hallmark of cancer and chemotherapy resistance. The B-cell lymphoma 2 (BCL-2) protein family members are sentinel molecules that regulate the mitochondrial apoptosis machinery and arbitrate cell fate through a delicate balance between pro- and anti-apoptotic factors. The recognition of the anti-apoptotic BCL2 gene as an oncogenic driver in hematological malignancies has directed attention toward unraveling the biological significance of each of the BCL-2 superfamily members in cancer progression and garnered interest in the targeting of apoptosis in cancer therapy. Accordingly, the approval of venetoclax (ABT-199), a small molecule BCL-2 inhibitor, in patients with chronic lymphocytic leukemia and acute myeloid leukemia has become the proverbial torchbearer for novel candidate drug approaches selectively targeting the BCL-2 superfamily. Despite the inspiring advances in this field, much remains to be learned regarding the optimal therapeutic context for BCL-2 targeting. Functional assays, such as through BH3 profiling, may facilitate prediction of treatment response, development of drug resistance and shed light on rational combinations of BCL-2 inhibitors with other branches of cancer therapy. This review summarizes the pathological roles of the BCL-2 family members in cancer, discusses the current landscape of their targeting in clinical practice, and highlights the potential for future therapeutic inroads in this important area.
Collapse
Affiliation(s)
- Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Clarice Choong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Gregory Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore 119228, Singapore;
| | - Andrea LA Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- National University Cancer Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
23
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
24
|
Reconstituting the Mammalian Apoptotic Switch in Yeast. Genes (Basel) 2020; 11:genes11020145. [PMID: 32013249 PMCID: PMC7073680 DOI: 10.3390/genes11020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Proteins of the Bcl-2 family regulate the permeabilization of the mitochondrial outer membrane that represents a crucial irreversible step in the process of induction of apoptosis in mammalian cells. The family consists of both proapoptotic proteins that facilitate the membrane permeabilization and antiapoptotic proteins that prevent it in the absence of an apoptotic signal. The molecular mechanisms, by which these proteins interact with each other and with the mitochondrial membranes, however, remain under dispute. Although yeast do not have apparent homologues of these apoptotic regulators, yeast cells expressing mammalian members of the Bcl-2 family have proved to be a valuable model system, in which action of these proteins can be effectively studied. This review focuses on modeling the activity of proapoptotic as well as antiapoptotic proteins of the Bcl-2 family in yeast.
Collapse
|
25
|
Pollyea DA, Amaya M, Strati P, Konopleva MY. Venetoclax for AML: changing the treatment paradigm. Blood Adv 2019; 3:4326-4335. [PMID: 31869416 PMCID: PMC6929394 DOI: 10.1182/bloodadvances.2019000937] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Venetoclax is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore activation of apoptosis in malignancies, the survival of which depends on dysregulation of this pathway. Preclinical data, using various model systems including cell lines and patient samples, suggested targeting BCL-2 could be a successful therapeutic strategy in patients with acute myeloid leukemia (AML). As predicted by this work, the use of venetoclax in the clinical setting has resulted in promising outcomes for patients with this disease. Although venetoclax showed limited activity as a single agent in the relapsed disease setting, recent studies have shown that when combined with a backbone therapy of a hypomethylating agent or low-dose cytarabine, high response rates with encouraging remission durations for older patients with newly diagnosed AML who were not candidates for intensive induction chemotherapy were observed. Furthermore, venetoclax-based therapies allowed for rapid responses and were able to effectively target the leukemia stem cell population. Here we review the preclinical data that supported the development of venetoclax in AML, as well as the results of the promising clinical trials.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO; and
| | - Maria Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO; and
| | | | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
26
|
Cournoyer S, Addioui A, Belounis A, Beaunoyer M, Nyalendo C, Le Gall R, Teira P, Haddad E, Vassal G, Sartelet H. GX15-070 (Obatoclax), a Bcl-2 family proteins inhibitor engenders apoptosis and pro-survival autophagy and increases Chemosensitivity in neuroblastoma. BMC Cancer 2019; 19:1018. [PMID: 31664947 PMCID: PMC6819521 DOI: 10.1186/s12885-019-6195-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background Neuroblastoma (NB) is a frequent pediatric tumor associated with poor prognosis. The disregulation of Bcl-2, an anti-apoptotic protein, is crucial for the tumoral development and chemoresistance. Autophagy is also implicated in tumor cell survival and chemoresistance. The aim of our study was to demonstrate therapeutic efficiency of GX 15–070, a pan-Bcl-2 family inhibitor, used alone and in combination with conventional drugs or with hydroxychloroquine (HCQ), an autophagy inhibitor. Methods Five neuroblastoma cell lines were tested for the cytotoxic activity of GX 15–070 alone or in combination with cisplatin, doxorubicin, HCQ or Z-VAD-FMK a broad-spectrum caspase inhibitor. Apoptosis and autophagy levels were studied by western-blot and FACS. Orthotopic injections were performed on NOD/LtSz-scid/IL-2Rgamma null mice that were treated with either GX 15–070 alone or in combination with HCQ. Results Synergistic cytotoxicity was observed for the drug combination in all of the 5 neuroblastoma cell lines tested, including MYCN amplified lines and in cancer stem cells. GX 15–070 significantly increased apoptosis and autophagy in neuroblastoma cells as evidenced by increased levels of the autophagy marker, LC3-II. Inhibition of autophagy by HCQ, further increased the cytotoxicity of this combinatorial treatment, suggesting that autophagy induced by these agent plays a cytoprotective role. In vivo, GX 15–070 combined with HCQ significantly decreased the growth of the tumor and the number of distant metastases. Conclusions Based on the synergistic effect of HCQ and GX 15–070 observed in this study, the combination of these two drugs may be utilized as a new therapeutic approach for neuroblastoma.
Collapse
Affiliation(s)
- Sonia Cournoyer
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada
| | - Anissa Addioui
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada
| | - Assila Belounis
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada
| | - Mona Beaunoyer
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada.,Department of Pediatric Surgery, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Carine Nyalendo
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada
| | - Roxane Le Gall
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada
| | - Pierre Teira
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada.,Department of Pediatric Hemato-Oncology, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Elie Haddad
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada
| | - Gilles Vassal
- Department of Pediatric Oncology, Institut Gustave Roussy, Villejuif, France
| | - Hervé Sartelet
- Research Center, Sainte Justine University Hospital Center, Montreal, QC, Canada. .,Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada. .,Département d'anatomie et cytologie pathologiques, Institut de Biologie et Pathologie, CHU A Michallon, 38043, Grenoble cedex 09, France.
| |
Collapse
|
27
|
ABT737 enhances ovarian cancer cells sensitivity to cisplatin through regulation of mitochondrial fission via Sirt3 activation. Life Sci 2019; 232:116561. [DOI: 10.1016/j.lfs.2019.116561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
|
28
|
Zhou D, Dai L, Liu X, Que F, Xu Y, Luo X, Zhu Y, Liu S, Li Y, Yu L. [Bortezomib and obatoclax for dual blockade of protein degradation pathways show synergistic anti-tumor effect in human acute T lymphoblastic leukemia cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:401-408. [PMID: 31068282 DOI: 10.12122/j.issn.1673-4254.2019.04.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore whether bortezomib and a Bcl-2 inhibitor exhibit synergistic anti-tumor effect in human acute T lymphoblastic leukemia cells. METHODS MTT assay was used to determine the cytotoxicity of bortezomib in the absence or presence of Bcl-2 inhibitors (obatoclax, AT-101 and ABT-199) in Jurkat cells. The effects of drug treatment on the expression of Bcl-2 family proteins, LC3B, p62, ubiquitin, BiP/Grp78, p-JNK, p-p38 and CHOP proteins were examined by Western blotting. Flow cytometry was used to determine the effects of bortezomib and Bcl-2 inhibitors (obatoclax, AT-101 and ABT-199) on cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression levels of the key regulatory factors of unfolded protein reaction (UPR). A zebrafish xenograft model was used to study the anti-tumor effect of bortezomib, obatoclax and their combination in vivo. RESULTS Bortezomib or Bcl-2 inhibitors alone inhibited the cell viability of Jurkat cells, but only obatoclax and bortezomib showed synergistic cytotoxicity and pro-apoptotic effect. Obatoclax, rather than AT-101 and ABT- 199, blocked autophagic flux in the cells evidenced by concomitant accumulation of LC3B-Ⅱ and p62. Both bortezomib and obatoclax alone caused accumulation of polyubiquinated proteins, and their combination showed a synergistic effect, which was consistent with their synergistic cytotoxicity. The dual blockade of proteasome and autophagy by the combination of bortezomib and obatoclax triggered unfolded protein response followed by cell apoptosis. Preventing UPS dysfunction by tauroursodeoxycholic acid (TUDCA) significantly attenuated the cytotoxicity and pro-apoptotic effect of bortezomib in combination with obatoclax. In zebrafish xenograft models, bortezomib combined with obatoclax significantly decreased tumor foci formation. CONCLUSIONS Bortezomib and obatoclax for dual blockade of protein degradation pathways show synergistic anti-tumor effect in human acute T lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Dan Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Dai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaolian Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fuchang Que
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuyan Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yaolu Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yilei Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Yalniz FF, Wierda WG. Targeting BCL2 in Chronic Lymphocytic Leukemia and Other Hematologic Malignancies. Drugs 2019; 79:1287-1304. [PMID: 31313099 DOI: 10.1007/s40265-019-01163-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, the process of programmed cell death, occurs normally during development and aging. Members of the B-cell lymphoma 2 (BCL2) family of proteins are central regulators of apoptosis, and resistance to apoptosis is one of the hallmarks of cancer. Targeting the apoptotic pathway via BCL2 inhibitors has been considered a promising treatment strategy in the past decade. Initial efforts with small molecule BH3 mimetics such as ABT-737 and ABT-263 (navitoclax) pioneered the development of the first-in-class Food and Drug Administration (FDA)-approved oral BCL2 inhibitor, venetoclax. Venetoclax was approved for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia, and is now being studied in a number of hematologic malignancies. Several other inhibitors targeting different BCL2 family members are now in early stages of development.
Collapse
Affiliation(s)
- Fevzi F Yalniz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Wolf P. Tumor-Specific Induction of the Intrinsic Apoptotic Pathway-A New Therapeutic Option for Advanced Prostate Cancer? Front Oncol 2019; 9:590. [PMID: 31312616 PMCID: PMC6614431 DOI: 10.3389/fonc.2019.00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Gogoi A, Das A, Frontera A, Verma AK, Bhattacharyya MK. Energetically significant unconventional π-π contacts involving fumarate in a novel coordination polymer of Zn(II): In-vitro anticancer evaluation and theoretical studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Adewole KE, Ishola AA. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study. J Recept Signal Transduct Res 2019; 39:87-97. [DOI: 10.1080/10799893.2019.1625062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Nigeria
| | - Ahmed Adebayo Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
33
|
Ivanov SM, Huber RG, Alibay I, Warwicker J, Bond PJ. Energetic Fingerprinting of Ligand Binding to Paralogous Proteins: The Case of the Apoptotic Pathway. J Chem Inf Model 2018; 59:245-261. [DOI: 10.1021/acs.jcim.8b00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan M. Ivanov
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
| | - Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
34
|
Anantram A, Kundaikar H, Degani M, Prabhu A. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity. J Biomol Struct Dyn 2018; 37:3109-3121. [DOI: 10.1080/07391102.2018.1508371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Harish Kundaikar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Arati Prabhu
- Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
35
|
Noll T, Schultze-Seemann S, Kuckuck I, Michalska M, Wolf P. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol Immunother 2018; 67:413-422. [PMID: 29188305 PMCID: PMC11028116 DOI: 10.1007/s00262-017-2097-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
In many tumors, including prostate cancer, anti-apoptotic members of the Bcl-2 family are overexpressed and cause cell death resistance, which is a typical hallmark of cancer. Different therapeutic approaches, therefore, aim to restore the death mechanisms for enhanced apoptosis. Our recombinant immunotoxin D7(VL-VH)-PE40 is composed of the scFv D7(VL-VH) against the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer cells and of the cytotoxic domain of the bacterial toxin Pseudomonas Exotoxin A (PE40). Since Pseudomonas Exotoxin A-based immunotoxins are known to preferentially inhibit the expression of the anti-apoptotic protein Mcl-1, the rationale was to test our immunotoxin in combination with the BH3 mimetic ABT-737, which specifically inhibits Bcl-2, Bcl-xl, and Bcl-w for enhanced induction of apoptosis in prostate cancer cells. The immunotoxin showed high and specific binding and cytotoxicity against PSMA expressing prostate cancer cells marked by a direct inhibition of Mcl-1. The combination of the immunotoxin with a subtoxic concentration of ABT-737 caused additive or even synergistic effects, which were based on an enhanced apoptosis induction as detected by poly(ADP-ribose) polymerase (PARP) and Caspase-3 cleavage in Western blot. Our study shows that the combination therapy of immunotoxin plus ABT-737 is a promising approach for the future treatment of advanced prostate cancer to improve therapeutic efficacy and to reduce adverse side effects.
Collapse
Affiliation(s)
- Theresa Noll
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Irina Kuckuck
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Marta Michalska
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany.
| |
Collapse
|
36
|
Friend or foe? Mitochondria as a pharmacological target in cancer treatment. Future Med Chem 2017; 9:2197-2210. [PMID: 29182013 DOI: 10.4155/fmc-2017-0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria have acquired numerous functions over the course of evolution, such as those involved in controlling energy production, cellular metabolism, cell survival, apoptosis and autophagy within host cells. Tumor cells can develop defects in mitochondrial function, presenting a potential strategy for designing selective anticancer therapies. Therefore, cancer has been the main focus of recent research to uncover possible mitochondrial targets for therapeutic benefit. This comprehensive review covers not only the recent discoveries of the roles of mitochondria in cancer development, progression and therapeutic implications but also the findings regarding emerging mitochondrial therapeutic targets and mitochondria-targeted agents. Current challenges and future directions for developments and applications of mitochondrial-targeted therapeutics are also discussed.
Collapse
|
37
|
Wolf P. BH3 Mimetics for the Treatment of Prostate Cancer. Front Pharmacol 2017; 8:557. [PMID: 28868037 PMCID: PMC5563364 DOI: 10.3389/fphar.2017.00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Despite improved diagnostic and therapeutic intervention, advanced prostate cancer (PC) remains incurable. The acquired resistance of PC cells to current treatment protocols has been traced to apoptosis resistance based on the upregulation of anti-apoptotic proteins of the Bcl-2 family. The use of BH3 mimetics, mimicking pro-apoptotic activator or sensitizer proteins of the intrinsic apoptotic pathway, is therefore a promising treatment strategy. The present review gives an overview of preclinical and clinical studies with pan- and specific BH3 mimetics as sensitizers for cell death and gives an outlook how they could be effectively used for the therapy of advanced PC in future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburg, Germany
| |
Collapse
|
38
|
|
39
|
Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med Chem 2017; 9:1243-1275. [PMID: 28722469 DOI: 10.4155/fmc-2017-0046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gossypol as a natural occurring polyphenol has been studied in a wide range of therapeutic contexts for a long time. The chemical modifications on gossypol were limited due to the unique chemical properties of polyphenols. The design and synthesis of gossypol derivatives and the exploration of their biological activities are the interest of the synthetic chemists, medicinal chemists and pharmacologists. Thus, the progress of diverse gossypol derivatives and analogs' synthesis, biological activities, mechanism elucidation and drug discovery based on gossypol scaffold is summarized.
Collapse
|
40
|
Colak S, Medema JP. Human colonic fibroblasts regulate stemness and chemotherapy resistance of colon cancer stem cells. Cell Cycle 2017; 15:1531-7. [PMID: 25483065 DOI: 10.4161/15384101.2014.973321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that cancers are heterogeneous and contain a hierarchical organization consisting of cancer stem cells and their differentiated cell progeny. These cancer stem cells are at the core of the tumor as they represent the clonogenic cells within a tumor. Moreover, these cells are considered to contain selective therapy resistance, which suggests a pivotal role in therapy resistance and tumor relapse. Here we show that differentiated cells can re-acquire stemness through factors secreted from fibroblasts. This induced CSC state also coincides with re-acquisition of resistance to chemotherapy. Resistance induced in newly formed CSCs is mediated by the anti-apoptotic molecule BCLXL and inhibition of BCLXL with the BH3 mimetic ABT-737 sensitizes these cancer cells toward chemotherapy. These data point to an important interplay between tumor cells and their microenvironment in the regulation of stemness and therapy resistance.
Collapse
Affiliation(s)
- S Colak
- a LEXOR (Laboratory of Experimental Oncology and Radiobiology), Center for Experimental Molecular Medicine Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - J P Medema
- a LEXOR (Laboratory of Experimental Oncology and Radiobiology), Center for Experimental Molecular Medicine Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Cancer Genomics Center , The Netherlands
| |
Collapse
|
41
|
Huang X, Huang W, Li L, Sun X, Song S, Xu Q, Zhang L, Wei BG, Deng X. Structure Determinants of Lagunamide A for Anticancer Activity and Its Molecular Mechanism of Mitochondrial Apoptosis. Mol Pharm 2016; 13:3756-3763. [PMID: 27715057 DOI: 10.1021/acs.molpharmaceut.6b00564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine natural products are served as attractive source of anticancer therapeutics, with the great success of "first-in-class" drugs, such as Yondelis, Halaven, and Brentuximab vendotin. Lagunamides A-C from marine cyanobacterium, Lyngbya majuscula, exhibit exquisite growth inhibitory activities against cancer cells. In this study, we have systematically investigated the structure-activity relationships (SARs) of a concise collection of lagunamide A and its analogues constructed by total chemical synthesis against a broad panel of cancer cells derived from various tissues or organs, including A549, HeLa, U2OS, HepG2, BEL-7404, BGC-823, HCT116, MCF-7, HL-60, and A375. The R configuration of lagunamide A at C-39 position was found to be the structure determinant for anticancer activity. Further molecular mechanism study in A549 cells revealed that lagunamide A induced caspase-mediated mitochondrial apoptosis. Accompanied with the dissipation of mitochondrial membrane potential (Δφm) and overproduction of reactive oxygen species (ROS), lagunamide A led to mitochondrial dysfunction and finally caused cell death. Moreover, both anti- and pro-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins participated in lagunamide A-induced mitochondrial apoptosis, especially myeloid cell leukemia-1 (Mcl-1). Overexpression of Mcl-1 partly rescued A549 cells from lagunamide A-induced apoptosis. This study suggests that lagunamide A may exert anticancer property through mitochondrial apoptosis. Together, our findings would provide insightful information for the design of new anticancer drugs derived from lagunamides.
Collapse
Affiliation(s)
- Xiaoxing Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China.,Department of Natural Products Chemistry, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Siyang Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Lianru Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen, Fujian 361102, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University , Xiamen, Fujian 361102, China
| |
Collapse
|
42
|
Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M, Al-Katib A. Hematologic malignancies: newer strategies to counter the BCL-2 protein. J Cancer Res Clin Oncol 2016; 142:2013-22. [PMID: 27043233 DOI: 10.1007/s00432-016-2144-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION BCL-2 is the founding member of the BCL-2 family of apoptosis regulatory proteins that either induce (pro-apoptotic) or inhibit (anti-apoptotic) apoptosis. The anti-apoptotic BCL-2 is classified as an oncogene, as damage to the BCL-2 gene has been shown to cause a number of cancers, including lymphoma. Ongoing research has demonstrated that disruption of BCL-2 leads to cell death. BCL-2 is also known to be involved in the development of resistance to chemotherapeutic agents, further underscoring the importance of targeting the BCL-2 gene in cancer therapeutics. Thus, numerous approaches have been developed to block or modulate the production of BCL-2 at the RNA level using antisense oligonucleotides or at the protein level with BCL-2 inhibitors, such as the novel ABT737. METHODS In this article, we briefly review previous strategies to target the BCL-2 gene and focus on a new approach to silence DNA, DNA interference (DNAi). RESULTS AND CONCLUSION DNA interference is aimed at blocking BCL-2 gene transcription. Evaluations of this technology in preclinical and early clinical studies are very encouraging and strongly support further development of DNAi as cancer therapeutics. A pilot phase II clinical trial in patients with relapsed or refractory non-Hodgkin lymphoma, PNT2258 demonstrated clinical benefit in 11 of 13 patients with notable responses in diffuse large B cell lymphoma and follicular lymphoma. By targeting the DNA directly, the DNAi technology promises to be more effective compared with other gene-interference strategies that target the RNA or protein but leaves the dysregulated DNA functional.
Collapse
Affiliation(s)
- Abdul Shukkur Ebrahim
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Hussam Sabbagh
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Allison Liddane
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Ali Raufi
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University, Detroit, MI, 48201, USA
| | - Ayad Al-Katib
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
43
|
Iyer D, Vartak SV, Mishra A, Goldsmith G, Kumar S, Srivastava M, Hegde M, Gopalakrishnan V, Glenn M, Velusamy M, Choudhary B, Kalakonda N, Karki SS, Surolia A, Raghavan SC. Identification of a novel BCL2-specific inhibitor that binds predominantly to the BH1 domain. FEBS J 2016; 283:3408-37. [DOI: 10.1111/febs.13815] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Divyaanka Iyer
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Supriya V. Vartak
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Archita Mishra
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore India
| | - Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Electronics City; Bangalore India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry; KLE University's College of Pharmacy; Bangalore India
| | - Mrinal Srivastava
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Mahesh Hegde
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Vidya Gopalakrishnan
- Department of Biochemistry; Indian Institute of Science; Bangalore India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City; Bangalore India
| | - Mark Glenn
- Haematology; Department of Molecular and Clinical Cancer Medicine University of Liverpool; UK
| | - Mahesh Velusamy
- Institute of Bioinformatics and Applied Biotechnology, Electronics City; Bangalore India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City; Bangalore India
| | - Nagesh Kalakonda
- Haematology; Department of Molecular and Clinical Cancer Medicine University of Liverpool; UK
| | - Subhas S. Karki
- Department of Pharmaceutical Chemistry; KLE University's College of Pharmacy; Bangalore India
| | - Avadhesha Surolia
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore India
| | | |
Collapse
|
44
|
Gény C, Rivière G, Bignon J, Birlirakis N, Guittet E, Awang K, Litaudon M, Roussi F, Dumontet V. Anacardic Acids from Knema hookeriana as Modulators of Bcl-xL/Bak and Mcl-1/Bid Interactions. JOURNAL OF NATURAL PRODUCTS 2016; 79:838-844. [PMID: 27008174 DOI: 10.1021/acs.jnatprod.5b00915] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
Collapse
Affiliation(s)
- Charlotte Gény
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Gwladys Rivière
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nicolas Birlirakis
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Eric Guittet
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Khaljah Awang
- Department of Chemistry, Faculty of Science, University Malaya , Kuala Lumpur 50603, Malaysia
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Saclay , Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
45
|
Beekman AM, Howell LA. Small-Molecule and Peptide Inhibitors of the Pro-Survival Protein Mcl-1. ChemMedChem 2016; 11:802-13. [PMID: 26696548 PMCID: PMC4991272 DOI: 10.1002/cmdc.201500497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/02/2015] [Indexed: 01/11/2023]
Abstract
The ability of protein-protein interactions to regulate cellular processes in both beneficial and detrimental ways has made them obvious drug targets. The Bcl-2 family of proteins undergo a series of protein-protein interactions which regulate the intrinsic cell-death pathway. The pro-survival members of the Bcl-2 family, including Bcl-2, Bcl-xL , and Mcl-1, are commonly overexpressed in a number of human cancers. Effective modulators of members of the Bcl-2 family have been developed and are undergoing clinical trials, but the efficient modulation of Mcl-1 is still not represented in the clinic. In addition, Mcl-1 is a major cause of resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. Subsequently, the inhibition of Mcl-1 has become of significant interest to the scientific community. This review covers the progress made to date in modulating the activity of Mcl-1, by both stapled peptides and small molecules. The development of peptides as drug candidates, and the advancement of experimental and computational techniques used to discover small molecules are also highlighted.
Collapse
Affiliation(s)
- Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
46
|
Tam CS, Seymour JF, Roberts AW. Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia. Semin Oncol 2016; 43:274-9. [DOI: 10.1053/j.seminoncol.2016.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Gao Y, Sun Q, Liu D, Ma B, Zhao H, Fang Z, Wang H, Lou H. A sensitive LC–MS/MS method to quantify methylergonovine in human plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1011:62-8. [DOI: 10.1016/j.jchromb.2015.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
48
|
Xiao Z, Morris-Natschke SL, Lee KH. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Med Res Rev 2016; 36:32-91. [PMID: 26359649 PMCID: PMC4679534 DOI: 10.1002/med.21377] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bioisosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted.
Collapse
Affiliation(s)
- Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
49
|
Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 2015; 12:109-16. [PMID: 26656090 PMCID: PMC4718762 DOI: 10.1038/nchembio.1986] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.
Collapse
Affiliation(s)
| | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Jaime H Cheah
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Drew J Adams
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Edmund V Price
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Sarah Javaid
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | - Nicole E Bodycombe
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Christian K Soule
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Ava Li
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | - Ted Liefeld
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | - Michelle Palmer
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | | | | | | |
Collapse
|
50
|
Nguyen M, Cencic R, Ertel F, Bernier C, Pelletier J, Roulston A, Silvius JR, Shore GC. Obatoclax is a direct and potent antagonist of membrane-restricted Mcl-1 and is synthetic lethal with treatment that induces Bim. BMC Cancer 2015; 15:568. [PMID: 26231047 PMCID: PMC4522062 DOI: 10.1186/s12885-015-1582-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/27/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Obatoclax is a clinical stage drug candidate that has been proposed to target and inhibit prosurvival members of the Bcl-2 family, and thereby contribute to cancer cell lethality. The insolubility of this compound, however, has precluded the use of many classical drug-target interaction assays for its study. Thus, a direct demonstration of the proposed mechanism of action, and preferences for individual Bcl-2 family members, remain to be established. METHODS Employing modified proteins and lipids, we recapitulated the constitutive association and topology of mitochondrial outer membrane Mcl-1 and Bak in synthetic large unilamellar liposomes, and measured bakdependent bilayer permeability. Additionally, cellular and tumor models, dependent on Mcl-1 for survival, were employed. RESULTS We show that regulation of bilayer permeabilization by the tBid - Mcl-1 - Bak axis closely resemblesthe tBid - Bcl-XL - Bax model. Obatoclax rapidly and completely partitioned into liposomal lipid but also rapidly exchanged between liposome particles. In this system, obatoclax was found to be a direct and potent antagonist of liposome-bound Mcl-1 but not of liposome-bound Bcl-XL, and did not directly influence Bak. A 2.5 molar excess of obatoclax relative to Mcl-1 overcame Mcl-1-mediated inhibition of tBid-Bak activation. Similar results were found for induction of Bak oligomers by Bim. Obatoclax exhibited potent lethality in a cellmodel dependent on Mcl-1 for viability but not in cells dependent on Bcl-XL. Molecular modeling predicts that the 3-methoxy moiety of obatoclax penetrates into the P2 pocket of the BH3 binding site of Mcl-1. A desmethoxy derivative of obatoclax failed to inhibit Mcl-1 in proteoliposomes and did not kill cells whose survival depends on Mcl-1. Systemic treatment of mice bearing Tsc2(+) (/) (-) Em-myc lymphomas (whose cells depend on Mcl-1 for survival) with obatoclax conferred a survival advantage compared to vehicle alone (median 31 days vs 22 days, respectively; p=0.003). In an Akt-lymphoma mouse model, the anti-tumor effects of obatoclax synergized with doxorubicin. Finally, treatment of the multiple myeloma KMS11 cell model (dependent on Mcl-1 for survival) with dexamethasone induced Bim and Bim-dependent lethality. As predicted for an Mcl-1 antagonist, obatoclax and dexamethasone were synergistic in this model. CONCLUSIONS Taken together, these findings indicate that obatoclax is a potent antagonist of membranerestricted Mcl-1. Obatoclax represents an attractive chemical series to generate second generation Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Mai Nguyen
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
| | - Franziska Ertel
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
| | - Cynthia Bernier
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada.
| | - Anne Roulston
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada.
| | - John R Silvius
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
| | - Gordon C Shore
- Department of Biochemistry, McGill University, Montreal, Québec, Canada.
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada.
| |
Collapse
|