1
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
2
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024:10.1038/s41551-024-01241-3. [PMID: 39025942 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
3
|
Kim SH, Chun C, Yoon TY. Profiling of BCLxL Protein Complexes in Non-Small Cell Lung Cancer Cells via Multiplexed Single-Molecule Pull-Down and Co-Immunoprecipitation. Anal Chem 2024; 96:8932-8941. [PMID: 38728439 DOI: 10.1021/acs.analchem.3c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We introduce multiplexed single-molecule pull-down and co-immunoprecipitation, named m-SMPC, an analysis tool for profiling multiple protein complexes within a single reaction chamber using single-molecule fluorescence imaging. We employed site-selective conjugation of biotin and fluorescent dye directly onto the monoclonal antibodies, which completed an independent sandwich immunoassay without the issue of host cross-reactivity. We applied this technique to profile endogenous B-cell lymphoma extra-large (BCLxL) complexes in non-small cell lung cancer (NSCLC) cells. Up to three distinct BCLxL complexes were successfully detected simultaneously within a single reaction chamber without fluorescence signal crosstalk. Notably, the NSCLC cell line EBC-1 exhibited high BCLxL-BAX and BCLxL-BAK levels, which closely paralleled a strong response to the BCLxL inhibitor A-1331852. This streamlined method offers the potential for quantitative biomarkers derived from protein complex profiling, paving the way for their application in protein complex-targeted therapies.
Collapse
Affiliation(s)
- Shi Ho Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
| | - Changju Chun
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Tae-Young Yoon
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Orel VE, Diedkov AG, Ostafiichuk VV, Lykhova OO, Kolesnyk DL, Orel VB, Dasyukevich OY, Rykhalskyi OY, Diedkov SA, Prosvietova AB. Combination Treatment with Liposomal Doxorubicin and Inductive Moderate Hyperthermia for Sarcoma Saos-2 Cells. Pharmaceuticals (Basel) 2024; 17:133. [PMID: 38276006 PMCID: PMC10819935 DOI: 10.3390/ph17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Despite efforts in osteosarcoma (OS) research, the role of inductive moderate hyperthermia (IMH) in delivering and enhancing the antitumor effect of liposomal doxorubicin formulations (LDOX) remains unresolved. This study investigated the effect of a combination treatment with LDOX and IMH on Saos-2 human OS cells. We compared cell viability using a trypan blue assay, apoptosis and reactive oxygen species (ROS) measured by flow cytometry and pro-apoptotic Bax protein expression examined by immunocytochemistry in response to IMH (42 MHz frequency, 15 W power for 30 min), LDOX (0.4 μg/mL), and LDOX plus IMH. The lower IC50 value of LDOX at 72 h indicated increased accumulation of the drug in the OS cells. LDOX plus IMH resulted in a 61% lower cell viability compared to no treatment. Moreover, IMH potentiated the LDOX action on the Saos-2 cells by promoting ROS production at temperatures of <42 °C. There was a 12% increase in cell populations undergoing early apoptosis with a less heterogeneous distribution of Bax after combination treatment compared to those treated with LDOX (p < 0.05). Therefore, we determined that IMH could enhance LDOX delivery and its antitumor effect via altered membrane permeabilization, ROS generation, and a lower level of visualized Bax heterogeneity in the Saos-2 cells, suggesting the potential translation of these findings into in vivo studies.
Collapse
Affiliation(s)
- Valerii E. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Oleksandra O. Lykhova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Denys L. Kolesnyk
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska Str., 03022 Kyiv, Ukraine
| | - Valerii B. Orel
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| | | | | | - Serhii A. Diedkov
- National Cancer Institute, 33/43 Zdanovska Str., 03022 Kyiv, Ukraine
| | - Anna B. Prosvietova
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 16/2 Yangel Str., 03056 Kyiv, Ukraine
| |
Collapse
|
5
|
Rouchidane Eyitayo A, Boudier-Lemosquet A, Chaignepain S, Priault M, Manon S. Bcl-xL Is Spontaneously Inserted into Preassembled Nanodiscs and Stimulates Bax Insertion in a Cell-Free Protein Synthesis System. Biomolecules 2023; 13:876. [PMID: 37371456 DOI: 10.3390/biom13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The antiapoptotic protein Bcl-xL is a major regulator of cell death and survival, but many aspects of its functions remain elusive. It is mostly localized in the mitochondrial outer membrane (MOM) owing to its C-terminal hydrophobic α-helix. In order to gain further information about its membrane organization, we set up a model system combining cell-free protein synthesis and nanodisc insertion. We found that, contrary to its proapoptotic partner Bax, neosynthesized Bcl-xL was spontaneously inserted into nanodiscs. The deletion of the C-terminal α-helix of Bcl-xL prevented nanodisc insertion. We also found that nanodisc insertion protected Bcl-xL against the proteolysis of the 13 C-terminal residues that occurs during expression of Bcl-xL as a soluble protein in E. coli. Interestingly, we observed that Bcl-xL increased the insertion of Bax into nanodiscs, in a similar way to that which occurs in mitochondria. Cell-free synthesis in the presence of nanodiscs is, thus, a suitable model system to study the molecular aspects of the interaction between Bcl-xL and Bax during their membrane insertion.
Collapse
Affiliation(s)
- Akandé Rouchidane Eyitayo
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Axel Boudier-Lemosquet
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphane Chaignepain
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
- Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, 33077 Bordeaux, France
| | - Muriel Priault
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| |
Collapse
|
6
|
Simonyan L, Gonin M, Hanks J, Friedlein J, Dutrec K, Arokium H, Rouchidane Eyitayo A, Doudy TM, Chaignepain S, Manon S, Dejean L. Non-phosphorylatable mutants of Ser184 lead to incomplete activation of Bax. Front Oncol 2023; 12:1068994. [PMID: 36741728 PMCID: PMC9892840 DOI: 10.3389/fonc.2022.1068994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023] Open
Abstract
The S184 residue of Bax is the target of several protein kinases regulating cell fate, including AKT. It is well-established that, in cellulo, the substitution of S184 by a non-phosphorylatable residue stimulates both the mitochondrial localization of Bax, cytochrome c release, and apoptosis. However, in in vitro experiments, substituted mutants did not exhibit any increase in their binding capacity to isolated mitochondria or liposomes. Despite exhibiting a significant increase of the 6A7 epitope exposure, substituted mutants remain limited in their ability to form large oligomers, suggesting that they high capacity to promote apoptosis in cells was more related to a high content than to an increased ability to form large pores in the outer mitochondrial membranes.
Collapse
Affiliation(s)
- Lilit Simonyan
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France
| | - Mathilde Gonin
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France
| | - James Hanks
- California State University of Fresno, Department of Chemistry and Biochemistry, Fresno, CA, United States
| | - Jordan Friedlein
- California State University of Fresno, Department of Chemistry and Biochemistry, Fresno, CA, United States
| | - Kevin Dutrec
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France
| | - Hubert Arokium
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France
| | - Akandé Rouchidane Eyitayo
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France
| | - Toukounou Megann Doudy
- Université de Bordeaux, CNRS, Centre de Génomique Fonctionnelle Bordeaux (CGFB), Bordeaux, France
| | - Stéphane Chaignepain
- Université de Bordeaux, CNRS, Centre de Génomique Fonctionnelle Bordeaux (CGFB), Bordeaux, France
| | - Stéphen Manon
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et de Génétique Cellulaires (IBGC), Bordeaux, France,*Correspondence: Stéphen Manon, ; Laurent Dejean,
| | - Laurent Dejean
- California State University of Fresno, Department of Chemistry and Biochemistry, Fresno, CA, United States,*Correspondence: Stéphen Manon, ; Laurent Dejean,
| |
Collapse
|
7
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
8
|
Flores‐Romero H, Hohorst L, John M, Albert M, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP, Kashkar H, Garcia‐Saez AJ. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 2022; 41:e108690. [PMID: 34931711 PMCID: PMC8762556 DOI: 10.15252/embj.2021108690] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
During apoptosis, the BCL-2-family protein tBID promotes mitochondrial permeabilization by activating BAX and BAK and by blocking anti-apoptotic BCL-2 members. Here, we report that tBID can also mediate mitochondrial permeabilization by itself, resulting in release of cytochrome c and mitochondrial DNA, caspase activation and apoptosis even in absence of BAX and BAK. This previously unrecognized activity of tBID depends on helix 6, homologous to the pore-forming regions of BAX and BAK, and can be blocked by pro-survival BCL-2 proteins. Importantly, tBID-mediated mitochondrial permeabilization independent of BAX and BAK is physiologically relevant for SMAC release in the immune response against Shigella infection. Furthermore, it can be exploited to kill leukaemia cells with acquired venetoclax resistance due to lack of active BAX and BAK. Our findings define tBID as an effector of mitochondrial permeabilization in apoptosis and provide a new paradigm for BCL-2 proteins, with implications for anti-bacterial immunity and cancer therapy.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Lisa Hohorst
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Malina John
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Marie‐Christine Albert
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Louise E King
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Beckmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Tamas Szabo
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vanessa Hertlein
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
- Present address:
Children Cancer Research Institute (CCRI)ViennaAustria
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaMEUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Lukas P Frenzel
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Hamid Kashkar
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| |
Collapse
|
9
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
10
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
11
|
Chen F, Amgalan D, Kitsis RN, Pessin JE, Feng D. ATG16L1 autophagy pathway regulates BAX protein levels and programmed cell death. J Biol Chem 2020; 295:15045-15053. [PMID: 32848017 PMCID: PMC7606669 DOI: 10.1074/jbc.ra120.013999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX-SNAP23-ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.
Collapse
Affiliation(s)
- Fenfen Chen
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dulguun Amgalan
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Richard N. Kitsis
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daorong Feng
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA,For correspondence: Daorong Feng,
| |
Collapse
|
12
|
Wang Z, Salih E, Igwebuike C, Mulhern R, Bonegio RG, Havasi A, Borkan SC. Nucleophosmin Phosphorylation as a Diagnostic and Therapeutic Target for Ischemic AKI. J Am Soc Nephrol 2019; 30:50-62. [PMID: 30573638 DOI: 10.1681/asn.2018040401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Ischemic AKI lacks a urinary marker for early diagnosis and an effective therapy. Differential nucleophosmin (NPM) phosphorylation is a potential early marker of ischemic renal cell injury and a therapeutic target.Methods Differential NPM phosphorylation was assessed by mass spectrometry in NPM harvested from murine and human primary renal epithelial cells, fresh kidney tissue, and urine before and after ischemic injury. The biologic behavior and toxicity of NPM was assessed using phospho-NPM mutant proteins that either mimic stress-induced or normal NPM phosphorylation. Peptides designed to interfere with NPM function were used to explore NPM as a therapeutic target.Results Within hours of stress, virtually identical phosphorylation changes were detected at distinct serine/threonine sites in NPM harvested from primary renal cells, tissue, and urine. A phosphomimic NPM protein that replicated phosphorylation under stress localized to the cytosol, formed monomers that interacted with Bax, a cell death protein, coaccumulated with Bax in isolated mitochondria, and significantly increased cell death after stress; wild-type NPM or a phosphomimic NPM with a normal phosphorylation configuration did not. Three renal targeted peptides designed to interfere with NPM at distinct functional sites significantly protected against cell death, and a single dose of one peptide administered several hours after ischemia that would be lethal in untreated mice significantly reduced AKI severity and improved survival.Conclusions These findings establish phosphorylated NPM as a potential early marker of ischemic AKI that links early diagnosis with effective therapeutic interventions.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Erdjan Salih
- Department of Periodontology, Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | | | - Ryan Mulhern
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Ramon G Bonegio
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Andrea Havasi
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Steven C Borkan
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| |
Collapse
|
13
|
Feng D, Amgalan D, Singh R, Wei J, Wen J, Wei TP, McGraw TE, Kitsis RN, Pessin JE. SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. J Clin Invest 2018; 128:3941-3956. [PMID: 30102258 PMCID: PMC6118598 DOI: 10.1172/jci99217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.
Collapse
Affiliation(s)
- Daorong Feng
- Department of Medicine
- Department of Molecular Pharmacology
| | | | - Rajat Singh
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianwen Wei
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, and
| | - Jennifer Wen
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Richard N. Kitsis
- Department of Medicine
- Department of Cell Biology, and
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
14
|
Seo SU, Woo SM, Lee HS, Kim SH, Min KJ, Kwon TK. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 2018; 37:5205-5220. [PMID: 29849119 PMCID: PMC6147804 DOI: 10.1038/s41388-018-0345-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/09/2022]
Abstract
mTOR is an important regulator of cell growth and forms two complexes, mTORC1/2. In cancer, mTOR signaling is highly activated, and the regulation of this signaling, as an anti-cancer strategy, has been emphasized. However, PP242 (inhibitor of mTORC1 and mTORC2) alone did not induce human renal carcinoma cell death. In this study, we found that PP242 alone did not alter cell viability, but combined curcumin and PP242 treatment induced cell death. Combined PP242 and curcumin treatment induced Bax activation and decreased expression of Mcl-1 and Bcl-2. Furthermore, co-treatment with PP242 and curcumin-induced the downregulation of the Rictor (an mTORC2 complex protein) and Akt protein levels, and ectopic overexpression of Rictor or Akt inhibited PP242 plus curcumin induced cell death. Downregulation of Rictor increased cytosolic Ca2+ release from endoplasmic reticulum, which led to lysosomal damage in PP242 plus curcumin-treated cells. Furthermore, damaged lysosomes induced autophagy. Autophagy inhibitors markedly inhibited cell death. Finally, combined curcumin and PP242 treatment reduced tumor growth and induced cell death in xenograft models. Altogether, our results reveal that combined PP242 and curcumin treatment could induce autophagy-mediated cell death by reducing the expression of Rictor and Akt in renal carcinoma cells.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea.
| |
Collapse
|
15
|
N-terminal acetylation modulates Bax targeting to mitochondria. Int J Biochem Cell Biol 2017; 95:35-42. [PMID: 29233735 DOI: 10.1016/j.biocel.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25-/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting.
Collapse
|
16
|
Simonyan L, Légiot A, Lascu I, Durand G, Giraud MF, Gonzalez C, Manon S. The substitution of Proline 168 favors Bax oligomerization and stimulates its interaction with LUVs and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1144-1155. [DOI: 10.1016/j.bbamem.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/23/2022]
|
17
|
Woo SM, Kwon TK. Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells. Chem Biol Interact 2016; 260:168-175. [PMID: 27729209 DOI: 10.1016/j.cbi.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
Jaceosidin is a flavonoid isolated from Artemisia vestita that has been reported to possess anti-tumor and anti-proliferative activities in many cancer cells. In this study, we investigated the anti-tumor activity of jaceosodin in renal carcinoma cells. Jaceosidin induced apoptosis in multiple human renal carcinoma cells (Caki, ACHN, A498, and 786-O), lung cancer cells (A549) and glioma cells (U251MG). In contrast, jaceosidin does not induce apoptosis in normal human umbilical vein cells (EA.hy926). Apoptotic cell death was associated with the activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase. Treatment with jaceosidin also caused loss of mitochondrial membrane potential (MMP) and Bax activation, which led to the release of cytochrome c into the cytosol. We also found that jaceosidin downregulated Mcl-1 and c-FLIP expression at the transcriptional level and that ectopic expression of Mcl-1 and c-FLIP blocked jaceosidin-induced apoptosis. Cumulatively, our results suggest that jaceosidin induces apoptosis in renal carcinoma cells through Bax activation and reduces Mcl-1 and c-FLIP expression.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| |
Collapse
|
18
|
Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 2016; 161:201-210. [PMID: 27112371 DOI: 10.1016/j.mad.2016.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
Bcl-2 family members form a network of protein-protein interactions that regulate apoptosis through permeabilization of the mitochondrial outer membrane. Deciphering this intricate network requires streamlined experimental models, including the heterologous expression in yeast. This approach had previously enabled researchers to identify domains and residues that underlie the conformational changes driving the translocation, the insertion and the oligomerization of the pro-apoptotic protein Bax at the level of the mitochondrial outer membrane. Recent studies that combine experiments in yeast and in mammalian cells have shown the unexpected effect of the anti-apoptotic protein Bcl-xL on the priming of Bax. As demonstrated with the BH3-mimetic molecule ABT-737, this property of Bcl-xL, and of Bcl-2, is crucial to elaborate about how apoptosis could be reactivated in tumoral cells.
Collapse
Affiliation(s)
- Thibaud T Renault
- Helmholtz Center for Infection Research, Junior Research Group Infection Biology of Salmonella, Inhoffenstraße 7, 38124 Braunschweig, Germany; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Laurent M Dejean
- California State University of Fresno, Department of Chemistry, 2555 E. San Ramon Ave M/S SB70, Fresno, CA 93740-8034, USA
| | - Stéphen Manon
- CNRS, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
19
|
Alsop AE, Fennell SC, Bartolo RC, Tan IKL, Dewson G, Kluck RM. Dissociation of Bak α1 helix from the core and latch domains is required for apoptosis. Nat Commun 2015; 6:6841. [PMID: 25880232 DOI: 10.1038/ncomms7841] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
During apoptosis, Bak permeabilizes mitochondria after undergoing major conformational changes, including poorly defined N-terminal changes. Here, we characterize those changes using 11 antibodies that were epitope mapped using peptide arrays and mutagenesis. After Bak activation by Bid, epitopes throughout the α1 helix are exposed indicating complete dissociation of α1 from α2 in the core and from α6-α8 in the latch. Moreover, disulfide tethering of α1 to α2 or α6 blocks cytochrome c release, suggesting that α1 dissociation is required for further conformational changes during apoptosis. Assaying epitope exposure when α1 is tethered shows that Bid triggers α2 movement, followed by α1 dissociation. However, α2 reaches its final position only after α1 dissociates from the latch. Thus, α1 dissociation is a key step in unfolding Bak into three major components, the N terminus, the core (α2-α5) and the latch (α6-α8).
Collapse
Affiliation(s)
- Amber E Alsop
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephanie C Fennell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ray C Bartolo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Iris K L Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Grant Dewson
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ruth M Kluck
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Id4 dependent acetylation restores mutant-p53 transcriptional activity. Mol Cancer 2013; 12:161. [PMID: 24330748 PMCID: PMC3866570 DOI: 10.1186/1476-4598-12-161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022] Open
Abstract
Background The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expression is observed in one third of prostate cancer. Here we demonstrate that Id4, an HLH transcriptional regulator and a tumor suppressor, can restore the mutant p53 transcriptional activity in prostate cancer cells. Methods Id4 was over-expressed in prostate cancer cell line DU145 harboring mutant p53 (P223L and V274F) and silenced in LNCaP cells with wild type p53. The cells were used to quantitate apoptosis, p53 localization, p53 DNA binding and transcriptional activity. Immuno-precipitation/-blot studies were performed to demonstrate interactions between Id4, p53 and CBP/p300 and acetylation of specific lysine residues within p53. Results Ectopic expression of Id4 in DU145 cells resulted in increased apoptosis and expression of BAX, PUMA and p21, the transcriptional targets of p53. Mutant p53 gained DNA binding and transcriptional activity in the presence of Id4 in DU145 cells. Conversely, loss of Id4 in LNCaP cells abrogated wild type p53 DNA binding and transactivation potential. Gain of Id4 resulted in increased acetylation of mutant p53 whereas loss of Id4 lead to decreased acetylation in DU145 and LNCaP cells respectively. Id4 dependent acetylation of p53 was in part due to a physical interaction between Id4, p53 and acetyl-transferase CBP/p300. Conclusions Taken together, our results suggest that Id4 regulates the activity of wild type and mutant p53. Id4 promoted the assembly of a macromolecular complex involving CBP/P300 that resulted in acetylation of p53 at K373, a critical post-translational modification required for its biological activity.
Collapse
|
21
|
Renault TT, Chipuk JE. Death upon a kiss: mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. ACTA ACUST UNITED AC 2013; 21:114-23. [PMID: 24269152 DOI: 10.1016/j.chembiol.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 01/24/2023]
Abstract
For stressed cells to induce the mitochondrial pathway of apoptosis, a cohort of pro-apoptotic BCL-2 proteins must collaborate with the outer mitochondrial membrane to permeabilize it. BAK and BAX are the two pro-apoptotic BCL-2 family members that are required for mitochondrial outer membrane permeabilization. While biochemical and structural insights of BAK/BAX function have expanded in recent years, very little is known about the role of the outer mitochondrial membrane in regulating BAK/BAX activity. In this review, we will highlight the impact of mitochondrial composition (both protein and lipid) and mitochondrial interactions with cellular organelles on BAK/BAX function and cellular commitment to apoptosis. A better understanding of how BAK/BAX and mitochondrial biology are mechanistically linked will likely reveal novel insights into homeostatic and pathological mechanisms associated with apoptosis.
Collapse
Affiliation(s)
- Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.
| |
Collapse
|
22
|
Uversky AV, Xue B, Peng Z, Kurgan L, Uversky VN. On the intrinsic disorder status of the major players in programmed cell death pathways. F1000Res 2013; 2:190. [PMID: 24358900 PMCID: PMC3829196 DOI: 10.12688/f1000research.2-190.v1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 12/19/2022] Open
Abstract
Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng
et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.
Collapse
Affiliation(s)
- Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Bin Xue
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Zhenling Peng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Byrd Alzheimer's Research Institute, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
23
|
Zou XJ, Yang L, Yao SL. Endoplasmic reticulum stress and C/EBP homologous protein-induced Bax translocation are involved in angiotensin II-induced apoptosis in cultured neonatal rat cardiomyocytes. Exp Biol Med (Maywood) 2013; 237:1341-9. [PMID: 23239445 DOI: 10.1258/ebm.2012.012041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to identify the roles and potential mechanisms of endoplasmic reticulum stress (ER stress), proapoptotic transcription factor C/EBP homologous protein (CHOP) and Bax in angiotensin II (Ang II)-induced cardiomyocyte apoptosis. Cultured neonatal rat cardiomyocytes were incubated with Ang II or antisense CHOP oligonucleotide which was used to inhibit CHOP expression. Expressions of ER chaperone immunoglobulin heavy chain-binding protein (BiP), CHOP and cytochrome c were examined by Western blotting. Mitochondrial membrane potential (MMP) was detected by a spectrofluorimeter. Apoptosis was analyzed with flow cytometry. Bax translocation was determined by double-labeling of immunofluorescence and Western blotting. Our results showed that Ang II-induced cardiomyocyte apoptosis was associated with the upregulations of BiP and CHOP, Bax translocation, MMP deplorization and cytochrome c release. These above effects were suppressed by antisense CHOP oligonucleotide. Furthermore, BiP and CHOP expressions, reactive oxygen species (ROS) production and cardiomyocyte apoptosis, which were upregulated by Ang II, were depressed by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin. From our results, ROS, ER stress and CHOP-mediated Bax translocation may be involved in Ang II-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiao-Jing Zou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| | | | | |
Collapse
|
24
|
Renault TT, Floros KV, Chipuk JE. BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Methods 2013; 61:146-55. [PMID: 23567751 DOI: 10.1016/j.ymeth.2013.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial pathway of apoptosis proceeds when the outer mitochondrial membrane (OMM) is compromised by the pro-apoptotic BCL-2 family members, BAK and BAX. Once activated, BAK and BAX form proteolipid pores in the OMM leading to mitochondrial outer membrane permeabilization (MOMP), and the release of inner membrane space proteins, such as cytochrome c, which promotes caspase activation. The use of isolated mitochondria has been instrumental to understanding the key interactions necessary to engage BAK and BAX activation, MOMP, and apoptosis. Furthermore, it is possible to biochemically define the relationships between BCL-2 family function and mitochondrial physiology using isolated systems. Our laboratory uses freshly isolated mitochondria from numerous sources to better understand BCL-2 family function and requirements for BAK and BAX activation. Here, we will discuss commonly used in vitro techniques to perform MOMP and cytochrome c release assays; and provide several key methodologies to implicate BAK and BAX activity in these processes.
Collapse
Affiliation(s)
- Thibaud T Renault
- Icahn School of Medicine at Mount Sinai, Department of Oncological Sciences, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | | | | |
Collapse
|
25
|
Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 2013; 5:a008714. [PMID: 23545417 DOI: 10.1101/cshperspect.a008714] [Citation(s) in RCA: 494] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family of proteins controls a critical step in commitment to apoptosis by regulating permeabilization of the mitochondrial outer membrane (MOM). The family is divided into three classes: multiregion proapoptotic proteins that directly permeabilize the MOM; BH3 proteins that directly or indirectly activate the pore-forming class members; and the antiapoptotic proteins that inhibit this process at several steps. Different experimental approaches have led to several models, each proposed to explain the interactions between Bcl-2 family proteins. The discovery that many of these interactions occur at or in membranes as well as in the cytoplasm, and are governed by the concentrations and relative binding affinities of the proteins, provides a new basis for rationalizing these models. Furthermore, these dynamic interactions cause conformational changes in the Bcl-2 proteins that modulate their apoptotic function, providing additional potential modes of regulation.
Collapse
Affiliation(s)
- Aisha Shamas-Din
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | | | | |
Collapse
|
26
|
Hsu JL, Ho YF, Li TK, Chen CS, Hsu LC, Guh JH. Rottlerin potentiates camptothecin-induced cytotoxicity in human hormone refractory prostate cancers through increased formation and stabilization of topoisomerase I-DNA cleavage complexes in a PKCδ-independent pathway. Biochem Pharmacol 2012; 84:59-67. [PMID: 22490701 DOI: 10.1016/j.bcp.2012.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
Abstract
Combination therapy, which can optimize killing activity to cancers and minimize drug resistance, is a mainstream therapy against hormone-refractory prostate cancers (HRPCs). Rottlerin, a natural polyphenolic component, synergistically increased PC-3 (a HRPC cell line) apoptosis induced by camptothecin (a topoisomerase I inhibitor). Using siRNA technique to knockdown protein kinase C-δ (PKCδ), the data showed that rottlerin-mediated synergistic effect was PKCδ-independent, although rottlerin has been used as a PKCδ inhibitor. Rottlerin potentiated camptothecin-induced DNA fragmentation at S phase and ATM phosphorylation at Ser1981. The effect was correlated to apoptosis (r2 = 0.9). To detect upstream signals, the data showed that camptothecin acted on and stabilized topoisomerase I-DNA complex, leading to the formation of camptothecin-trapped cleavage complexes (TOP1cc). The effect was potentiated by rottlerin. To determine DNA repair capability, the time-related γH2A.X formation was examined after camptothecin removal. Consequently, rottlerin significantly inhibited camptothecin removal-mediated decline of γH2A.X formation at S phase, indicating the impairment of DNA repair activity in the presence of rottlerin. The combinatory treatment of camptothecin and rottlerin induced conformational change and activation of Bax and formation of truncated Bad, suggesting the contribution of mitochondria stress to apoptosis. In summary, the data suggest that rottlerin-mediated camptothecin sensitization is through the augmented stabilization of TOP1cc, leading to an increase of DNA damage stress and, possibly, an impairment of DNA repair capability. Subsequently, mitochondria-involved apoptosis is triggered through Bax activation and truncated Bad formation. The novel discovery may provide an anticancer approach of combinatory use between rottlerin and camptothecin for the treatment of HRPCs.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Renault TT, Grandier-Vazeille X, Arokium H, Velours G, Camougrand N, Priault M, Teijido O, Dejean LM, Manon S. The cytosolic domain of human Tom22 modulates human Bax mitochondrial translocation and conformation in yeast. FEBS Lett 2011; 586:116-21. [DOI: 10.1016/j.febslet.2011.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
|
28
|
Agostino M, Sandrin MS, Thompson PE, Ramsland PA, Yuriev E. Peptide inhibitors of xenoreactive antibodies mimic the interaction profile of the native carbohydrate antigens. Biopolymers 2011; 96:193-206. [PMID: 20564023 DOI: 10.1002/bip.21427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbohydrate-antibody interactions mediate many cellular processes and immune responses. Carbohydrates expressed on the surface of cells serve as recognition elements for particular cell types, for example, in the ABO(H) blood group system. Antibodies that recognize host-incompatible ABO(H) system antigens exist in the bloodstream of all individuals (except AB individuals), preventing blood transfusion and organ transplantation between incompatible donors and recipients. A similar barrier exists for cross-species transplantation (xenotransplantation), in particular for pig-to-human transplantation. All humans express antibodies against the major carbohydrate xenoantigen, Galalpha (1,3)Gal (alphaGal), preventing successful xenotransplantation. Although antibody binding sites are precisely organized so as to selectively bind a specific antigen, many antibodies recognize molecules other than their native antigen. A range of peptides have been identified that can mimic carbohydrates and inhibit anti-alphaGal antibodies. However, the structural basis of how the peptides achieved this was not known. Previously, we developed an in silico method which we used to investigate carbohydrate recognition by a panel of anti-alphaGal antibodies. The method involves molecular docking of carbohydrates to antibodies and uses the docked carbohydrate poses to generate maps of th antibody binding sites in terms of prevalent hydrogen bonding and van der Waals interactions. We have applied this method to investigate peptide recognition by the anti-alphaGal antibodies. It was found that the site maps of the peptides and the carbohydrates were similar, indicating that the peptides interact with the same residues as those involved in carbohydrate recognition. This study demonstrates the potential for "design by mapping" of anti-carbohydrate antibody inhibitors.
Collapse
Affiliation(s)
- Mark Agostino
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | | | | |
Collapse
|
29
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
30
|
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:521-31. [PMID: 21195116 DOI: 10.1016/j.bbamcr.2010.12.019] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/17/2010] [Accepted: 12/19/2010] [Indexed: 12/26/2022]
Abstract
Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
|
31
|
Boohaker RJ, Zhang G, Carlson AL, Nemec KN, Khaled AR. BAX supports the mitochondrial network, promoting bioenergetics in nonapoptotic cells. Am J Physiol Cell Physiol 2011; 300:C1466-78. [PMID: 21289292 DOI: 10.1152/ajpcell.00325.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dual functionality of the tumor suppressor BAX is implied by the nonapoptotic functions of other members of the BCL-2 family. To explore this, mitochondrial metabolism was examined in BAX-deficient HCT-116 cells as well as primary hepatocytes from BAX-deficient mice. Although mitochondrial density and mitochondrial DNA content were the same in BAX-containing and BAX-deficient cells, MitoTracker staining patterns differed, suggesting the existence of BAX-dependent functional differences in mitochondrial physiology. Oxygen consumption and cellular ATP levels were reduced in BAX-deficient cells, while glycolysis was increased. These results suggested that cells lacking BAX have a deficiency in the ability to generate ATP through cellular respiration. This conclusion was supported by detection of reduced citrate synthase activity in BAX-deficient cells. In nonapoptotic cells, a portion of BAX associated with mitochondria and a sequestered, protease-resistant form was detected. Inhibition of BAX with small interfering RNAs reduced intracellular ATP content in BAX-containing cells. Expression of either full-length or COOH-terminal-truncated BAX in BAX-deficient cells rescued ATP synthesis and oxygen consumption and reduced glycolytic activity, suggesting that this metabolic function of BAX was not dependent upon its COOH-terminal helix. Expression of BCL-2 in BAX-containing cells resulted in a subsequent loss of ATP measured, implying that, even under nonapoptotic conditions, an antagonistic interaction exists between the two proteins. These findings infer that a basal amount of BAX is necessary to maintain energy production via aerobic respiration.
Collapse
Affiliation(s)
- Rebecca J Boohaker
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | | | | | | | | |
Collapse
|
32
|
Wang X, Han W, Du X, Zhu C, Carlsson Y, Mallard C, Jacotot E, Hagberg H. Neuroprotective Effect of Bax-Inhibiting Peptide on Neonatal Brain Injury. Stroke 2010; 41:2050-5. [DOI: 10.1161/strokeaha.110.589051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoyang Wang
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Wei Han
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Xiaonan Du
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Changlian Zhu
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Ylva Carlsson
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Carina Mallard
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Etienne Jacotot
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| | - Henrik Hagberg
- From the Perinatal Center (X.W., W.H., X.D., Y.C., C.M., E.J., H.H.), Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; the Department of Pediatrics (X.W., W.H., X.D., C.Z.), The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; the Center for Brain Repair and Rehabilitation (C.Z.), Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; the Perinatal Center (Y.C., H.H.), Department of
| |
Collapse
|
33
|
Koshy C, Parthiban M, Sowdhamini R. 100 ns Molecular Dynamics Simulations to Study Intramolecular Conformational Changes in Bax. J Biomol Struct Dyn 2010; 28:71-83. [DOI: 10.1080/07391102.2010.10507344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Zhang Z, Song T, Zhang T, Gao J, Wu G, An L, Du G. A novel BH3 mimetic S1 potently induces Bax/Bak-dependent apoptosis by targeting both Bcl-2 and Mcl-1. Int J Cancer 2010; 128:1724-35. [PMID: 20503275 DOI: 10.1002/ijc.25484] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/17/2010] [Indexed: 11/09/2022]
Abstract
Broad spectrum Bcl-2 small molecule inhibitors act as BH3 mimetics are effective antitumor agents. Herein, we have identified S1, a previously discovered small molecule Bcl-2 inhibitor, as the first authentic BH3 mimetic as well as a dual, nanomolar inhibitor of Bcl-2 and Mcl-1 (K(i) = 310 nM and 58 nM, respectively). The results of fluorescence polarization assays, coimmunoprecipitation, fluorescent resonance energy transfer, and shRNA indicated that S1 can disrupt Bcl-2/Bax, Mcl-1/Bak and Bcl-2/Bim heterodimerization in multiple cell lines, activate Bax accompanied by its translocation to mitochondrial, activate caspase 3 completely dependent on Bax/Bak, and in turn induce a Bim-independent apoptosis. Moreover, S1 could induce apoptosis on the primary acute lymphoblastic leukemia cells regardless of Mcl-1 level. Mechanism-based single agent antitumor activity in a mouse xenograft H22 (mouse liver carcinoma) model ascertain its therapeutic potential. S1 represents a novel chemical class of antitumor leads that function solely as BH3 mimetics and pan-Bcl-2 inhibitors. In the meanwhile, S1 could become a unique tool for interactions between Bcl-2 family proteins.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Damico R, Simms T, Kim BS, Tekeste Z, Amankwan H, Damarla M, Hassoun PM. p53 mediates cigarette smoke-induced apoptosis of pulmonary endothelial cells: inhibitory effects of macrophage migration inhibitor factor. Am J Respir Cell Mol Biol 2010; 44:323-32. [PMID: 20448056 DOI: 10.1165/rcmb.2009-0379oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exposure to cigarette smoke (CS) is the most common cause of emphysema, a debilitating pulmonary disease histopathologically characterized by the irreversible destruction of lung architecture. Mounting evidence links enhanced endothelial apoptosis causally to the development of emphysema. However, the molecular determinants of human endothelial cell apoptosis and survival in response to CS are not fully defined. Such determinants could represent clinically relevant targets for intervention. We show here that CS extract (CSE) triggers the death of human pulmonary macrovascular endothelial cells (HPAECs) through a caspase 9-dependent apoptotic pathway. Exposure to CSE results in the increased expression of p53 in HPAECs. Using the p53 inhibitor, pifithrin-α (PFT-α), and RNA interference (RNAi) directed at p53, we demonstrate that p53 function and expression are required for CSE-mediated apoptosis. The expression of macrophage migration inhibitory factor (MIF), an antiapoptotic cytokine produced by HPAECs, also increases in response to CSE exposure. The addition of recombinant human MIF prevents cell death from exposure to CSE. Further, the suppression of MIF or its receptor/binding partner, Jun activation domain-binding protein 1 (Jab-1), with RNAi enhances the sensitivity of human pulmonary endothelial cells to CSE via a p53-dependent (PFT-α-inhibitable) pathway. Finally, we demonstrate that MIF is a negative regulator of p53 expression in response to CSE, placing MIF upstream of p53 as an antagonist of CSE-induced apoptosis. We conclude that MIF can protect human vascular endothelium from the toxic effects of CSE via the antagonism of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Z, Zhu W, Lapolla SM, Miao Y, Shao Y, Falcone M, Boreham D, McFarlane N, Ding J, Johnson AE, Zhang XC, Andrews DW, Lin J. Bax forms an oligomer via separate, yet interdependent, surfaces. J Biol Chem 2010; 285:17614-27. [PMID: 20382739 DOI: 10.1074/jbc.m110.113456] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1-3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1-3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1-3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Abstract
Bid, a pro-apoptotic member of the Bcl-2 family, was initially discovered through binding to both pro-apoptotic Bax and anti-apoptotic Bcl-2. During apoptosis, Bid can be cleaved not only by caspase-8 during death receptor apoptotic signaling, but also by other caspases, granzyme B, calpains and cathepsins. Protease-cleaved Bid migrates to mitochondria where it induces permeabilization of the outer mitochondrial membrane that is dependent on the pro-apoptotic proteins Bax and/or Bak, and thus Bid acts as a sentinel for protease-mediated death signals. Although sequence analysis suggests that Bid belongs to the BH3-only subgroup of the Bcl-2 family, structural and phylogenetic analysis suggests that Bid may be more related to multi-BH region proteins such as pro-apoptotic Bax. Analysis of membrane binding by protease-cleaved Bid reveals mechanistic similarities with the membrane binding of Bax. For both proteins, membrane binding is characterized by relief of N-terminal inhibition of sequences promoting migration to membranes, insertion into the bilayer of the central hydrophobic hairpin helices and exposure of the BH3 region. These findings implicate Bid as a BH3-only protein that is both structurally and functionally related to multi-BH region Bcl-2 family proteins such as Bax.
Collapse
|
39
|
Düssmann H, Rehm M, Concannon CG, Anguissola S, Würstle M, Kacmar S, Völler P, Huber HJ, Prehn JHM. Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ 2009; 17:278-90. [PMID: 19745831 DOI: 10.1038/cdd.2009.123] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial outer membrane permeabilisation (MOMP) during apoptosis is triggered by the activation and oligomerisation of Bax and Bak, but a quantification of these processes in individual cells has not yet been performed. Single-cell imaging of Bax translocation and oligomerisation in Bax-deficient DU-145 cells expressing CFP-Bax and YFP-Bax revealed that both processes started only minutes before or concomitantly with MOMP, with the majority of Bax translocation and oligomerisation occurring downstream of MOMP. Quantification of YFP-Bax concentrations at mitochondria revealed an increase of only 1.8 + or - 1.5% at MOMP onset. This was increased to 11.2 + or - 3.6% in bak-silenced cells. These data suggested that Bax activation exceeded by far the quantities required for MOMP induction, and that minimal Bax or Bak activation may be sufficient to trigger rapid pore formation. In a cellular automaton modelling approach that incorporated the quantities and movement probabilities of Bax and its inhibitors, activators and enablers in the mitochondrial membrane, we could re-model rapid pore formation kinetics at submaximal Bax activation.
Collapse
Affiliation(s)
- H Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alabran JL, Cheuk A, Liby K, Sporn M, Khan J, Letterio J, Leskov KS. Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO. Cancer Biol Ther 2008; 7:709-17. [PMID: 18277094 DOI: 10.4161/cbt.7.5.5713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Synthetic triterpenoids, such as 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its derivatives, are an extremely potent class of new anti-cancer therapeutic agents, characterized by high anti-tumor potency and low toxicity to normal tissues. This report is the first to investigate the effects of C-28 derivatives of CDDO on 22 pediatric solid tumor cell lines, including neuroblastoma, rhabdomyosarcoma, osteosarcoma, and Ewing's sarcoma. We determined IC(50)s in the range of 5-170 nM for inhibition of colony formation and DNA synthesis, and 110-630 nM for metabolic cell death and decrease in cell number, using the C-28 CDDO analogs, CDDO methyl ester (CDDO-Me), CDDO imidazolide (CDDO-Im), CDDO ethyl amide (CDDO-EA), CDDO trifluoroethyl amide (CDDO-TFEA), and CDDO diethylamide (CDDO-DE). After treatment of human neuroblastoma cells with CDDO-Me, cell cycle studies show depletion of the S-phase, while apoptosis studies show conformational activation and mitochondrial translocation of Bax protein, as well as activation of caspases -3 and -8. These data demonstrate the potential utility of CDDO analogs as promising novel therapeutic agents for high-risk pediatric solid tumors.
Collapse
Affiliation(s)
- Jennifer L Alabran
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Radogna F, Cristofanon S, Paternoster L, D'Alessio M, De Nicola M, Cerella C, Dicato M, Diederich M, Ghibelli L. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44:316-25. [PMID: 18339127 DOI: 10.1111/j.1600-079x.2007.00532.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently shown that melatonin antagonizes damage-induced apoptosis by interaction with the MT-1/MT-2 plasma membrane receptors. Here, we show that melatonin interferes with the intrinsic pathway of apoptosis at the mitochondrial level. In response to an apoptogenic stimulus, melatonin allows mitochondrial translocation of the pro-apoptotic protein Bax, but it impairs its activation/dimerization The downstream apoptotic events, i.e. cytochrome c release, caspase 9 and 3 activation and nuclear vesiculation are equally impaired, indicating that melatonin interferes with Bax activation within mitochondria. Interestingly, we found that melatonin induces a strong re-localization of Bcl-2, the main Bax antagonist to mitochondria, suggesting that Bax activation may in fact be antagonized by Bcl-2 at the mitochondrial level. Indeed, we inhibit the melatonin anti-apoptotic effect (i) by silencing Bcl-2 with small interfering RNAs, or with small-molecular inhibitors targeted at the BH3 binding pocket in Bcl-2 (i.e. the one interacting with Bax); and (ii) by inhibiting melatonin-induced Bcl-2 mitochondrial re-localization with the MT1/MT2 receptor antagonist luzindole. This evidence provides a mechanism that may explain how melatonin through interaction with the MT1/MT2 receptors, elicits a pathway that interferes with the Bcl-2 family, thus modulating the cell life/death balance.
Collapse
Affiliation(s)
- Flavia Radogna
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Collapse
|
43
|
Arokium H, Ouerfelli H, Velours G, Camougrand N, Vallette FM, Manon S. Substitutions of Potentially Phosphorylatable Serine Residues of Bax Reveal How They May Regulate Its Interaction with Mitochondria. J Biol Chem 2007; 282:35104-12. [PMID: 17911107 DOI: 10.1074/jbc.m704891200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During apoptosis, the pro-apoptotic protein Bax relocalizes from the cytosol to the mitochondrial outer membrane. This relocalization is associated to major conformational changes, namely at the N- and C-terminal ends of the protein. Substitution of residues located at critical positions within the protein potentially stimulates or inhibits this process. In the present study, we investigated the hypothesis that phosphorylation of serine residues might trigger these conformational changes, with a focus on Ser(163) and Ser(184), which have been shown to be phosphorylatable by protein kinases GSK3beta and Akt/PKB, respectively, and on Ser(60), which is located in a consensus target sequence for PKA. Substitutions of these serine residues by alanine or aspartate were done in wild type or previously characterized Bax mutants, and the capacity of the resulting proteins to interact with mitochondria and to release cytochrome c was assayed in yeast, which provides a tool to study the function of Bax, independently of the rest of the apoptotic network. We conclude that sequential phosphorylation of these serine residues might participate in the triggering of the different conformational changes associated with Bax activation during apoptosis.
Collapse
Affiliation(s)
- Hubert Arokium
- CNRS, UMR5095, Université de Bordeaux 2, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | | | | | | | | | | |
Collapse
|