1
|
Green DR. Cell death: Revisiting the roads to ruin. Dev Cell 2024; 59:2523-2531. [PMID: 39378838 PMCID: PMC11469552 DOI: 10.1016/j.devcel.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
A paradigm shift in the study of cell death is currently occurring: whereas previously we had always considered that there were "points of no return" in any cell death pathway, we now realize that in many types of active, regulated cell death, this is not the case. We are also learning that cells that "almost die," but nevertheless survive, can transiently take on an altered state, with potential implications for understanding cancer therapies and relapse. In this perspective, we parse the many forms of cell death by analogy to suicide, sabotage, and murder, and consider how cells that might be "instructed" to engage a cell death pathway might nevertheless survive.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
3
|
Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat Neurosci 2020; 23:281-292. [PMID: 31959934 PMCID: PMC7147976 DOI: 10.1038/s41593-019-0568-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/05/2019] [Indexed: 12/04/2022]
Abstract
New protein synthesis is known to be required for the consolidation of memories, yet existing methods to block translation lack spatiotemporal precision and cell-type specificity, preventing investigation of cell-specific contributions of protein synthesis. Here, we developed a combined knock-in mouse and chemogenetic approach for cell type-specific and drug-inducible protein synthesis inhibition (ciPSI) that enables rapid and reversible phosphorylation of eIF2α, leading to inhibition of general translation by 50% in vivo. We use ciPSI to show that targeted protein synthesis inhibition pan-neuronally and in excitatory neurons in lateral amygdala (LA) impaired long-term memory. This could be recovered with artificial chemogenetic activation of LA neurons, though at the cost of stimulus generalization. Conversely, genetically reducing phosphorylation of eIF2α in excitatory neurons in LA enhanced memory strength, but reduced memory fidelity and behavioral flexibility. Our findings provide evidence for a cell-specific translation program during consolidation of threat memories.
Collapse
|
4
|
Bou-Nader C, Gordon JM, Henderson FE, Zhang J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA (NEW YORK, N.Y.) 2019; 25:539-556. [PMID: 30770398 PMCID: PMC6467004 DOI: 10.1261/rna.070169.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Chang YH, Lau KS, Kuo RL, Horng JT. dsRNA Binding Domain of PKR Is Proteolytically Released by Enterovirus A71 to Facilitate Viral Replication. Front Cell Infect Microbiol 2017; 7:284. [PMID: 28702377 PMCID: PMC5487429 DOI: 10.3389/fcimb.2017.00284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023] Open
Abstract
Enterovirus 71 (EV-A71) causes hand, foot and mouth disease in young children and infants, but can also cause severe neurological complications or even death. The double-stranded RNA (dsRNA)-dependent protein kinase R (PKR), an interferon-induced antiviral protein, phosphorylates the regulatory α-subunit of the eukaryotic translation initiation factor 2 in response to viral infection, thereby blocking the translation of cellular and viral mRNA and promoting apoptosis. The cleavage of PKR after infection with poliovirus, a prototype enterovirus, has been reported by others, but the underlying mechanism of this cleavage and its role in viral replication remain unclear. In the present study, we show that viral 3C protease cleaves PKR at a site, Q188, which differs from the site cleaved during apoptosis, D251. In contrast to the conventional phosphorylation of PKR by dsRNA, EV-A71 3C physically interacts with PKR to mediate the phosphorylation of PKR; this effect is dependent on 3C protease activity. Overexpression of a catalytically inactive PKR mutant (K296H) accelerates viral protein accumulation and increases virus titer, whereas a K64E substitution in the dsRNA binding site abolishes this advantage. We also demonstrate that PKR cleavage mediated by EV-A71 3C protease produces a short N-terminal PKR fragment that can enhance EV-A71 replication, in terms of viral RNA, viral protein, and viral titers. We conclude that PKR is co-opted by EV-A71 via viral protease 3C-mediated proteolytic activation to facilitate viral replication.
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,National Defense Medical Center, Institute of Preventive MedicineTaipei, Taiwan
| | - Kean Seng Lau
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Jim-Tong Horng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
6
|
Schipp R, Varga J, Bátor J, Vecsernyés M, Árvai Z, Pap M, Szeberényi J. Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells. Mol Cell Biochem 2017; 434:41-50. [PMID: 28432551 DOI: 10.1007/s11010-017-3035-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
The bacterial antibiotic anisomycin is known to induce apoptosis by activating several mitogen-activated protein kinases and by inhibiting protein synthesis. In this study, the influence of p53 protein on the apoptosis-inducing effect of anisomycin was investigated. The effect of protein synthesis-inhibiting concentration of anisomycin on apoptotic events was analyzed using Western blot, DNA fragmentation, and cell viability assays in wild-type PC12 and in mutant p53 protein expressing p143p53PC12 cells. Anisomycin stimulated the main apoptotic pathways in both cell lines, but p143p53PC12 cells showed lower sensitivity to the drug than their wild-type counterparts. Anisomycin caused the activation of the main stress kinases, phosphorylation of the p53 protein and the eukaryotic initiation factor eIF2α, proteolytic cleavage of protein kinase R, Bid, caspase-9 and -3. Furthermore, anisomycin treatment led to the activation of TRAIL and caspase-8, two proteins involved in the extrinsic apoptotic pathway. All these changes were stronger and more sustained in wtPC12 cells. In the presence of the dominant inhibitory p53 protein, p53- dependent genes involved in the regulation of apoptosis may be less transcribed and this can lead to the decrease of apoptotic processes in p143p53PC12 cells.
Collapse
Affiliation(s)
- R Schipp
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Varga
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Bátor
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Vecsernyés
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - Z Árvai
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Pap
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary. .,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
7
|
Smad7 knockdown activates protein kinase RNA-associated eIF2α pathway leading to colon cancer cell death. Cell Death Dis 2017; 8:e2681. [PMID: 28300830 PMCID: PMC5386514 DOI: 10.1038/cddis.2017.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of the cell cycle. These findings occur in CRC cells unresponsive to TGF-β1, thus suggesting the existence of a Smad7-mediated TGF-β1-independent mechanism that controls CRC cell behavior. Here we show that Smad7 inhibition with a specific Smad7 antisense oligonucleotide upregulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, a transcription factor involved in the regulation of cell cycle arrest and induction of cell death, and induces activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homology protein (CHOP), two downstream targets of eIF2α. Among the upstream kinases that control eIF2α phosphorylation, the serine-threonine protein kinase RNA (PKR), but not general control non-derepressible 2 (GCN2) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), is activated by Smad7 knockdown. PKR silencing abolishes Smad7 antisense-induced eIF2α phosphorylation and ATF4/CHOP induction, thereby preventing Smad7 antisense-driven cell death. Smad7 inhibition diminishes interaction of PKR with protein kinase inhibitor p58 (p58IPK), a cellular inhibitor of PKR, but does not change the expression and/or activity of other factors involved in the control of PKR activation. These findings delineate a novel mechanism by which Smad7 knockdown promotes CRC cell death.
Collapse
|
8
|
Mason AR, Elia LP, Finkbeiner S. The Receptor-interacting Serine/Threonine Protein Kinase 1 (RIPK1) Regulates Progranulin Levels. J Biol Chem 2017; 292:3262-3272. [PMID: 28069809 DOI: 10.1074/jbc.m116.752006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Progranulin (PGRN), a secreted growth factor, is a key regulator of inflammation and is genetically linked to two common and devastating neurodegenerative diseases. Haploinsufficiency mutations in GRN, the gene encoding PGRN, cause frontotemporal dementia (FTD), and a GRN SNP confers significantly increased risk for Alzheimer's disease (AD). Because cellular and animal data indicate that increasing PGRN can reverse phenotypes of both FTD and AD, modulating PGRN level has been proposed as a therapeutic strategy for both diseases. However, little is known about the regulation of PGRN levels. In this study, we performed an siRNA-based screen of the kinome to identify genetic regulators of PGRN levels in a rodent cell-based model system. We found that knocking down receptor-interacting serine/threonine protein kinase 1 (Ripk1) increased both intracellular and extracellular PGRN protein levels by increasing the translation rate of PGRN without affecting mRNA levels. We observed this effect in Neuro2a cells, wild-type primary mouse neurons, and Grn-haploinsufficient primary neurons from an FTD mouse model. We found that the effect of RIPK1 on PGRN is independent of the kinase activity of RIPK1 and occurs through a novel signaling pathway. These data suggest that targeting RIPK1 may be a therapeutic strategy in both AD and FTD.
Collapse
Affiliation(s)
- Amanda R Mason
- Gladstone Institute of Neurological Disease, San Francisco, California 94158; Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California 94158; Developmental and Stem Cell Biology Graduate Program; Medical Scientist Training Program
| | - Lisa P Elia
- Gladstone Institute of Neurological Disease, San Francisco, California 94158; Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California 94158
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, California 94158; Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California 94158; Departments of Physiology and Neurology, University of California, San Francisco, California 94158.
| |
Collapse
|
9
|
Tronel C, Page G, Bodard S, Chalon S, Antier D. The specific PKR inhibitor C16 prevents apoptosis and IL-1β production in an acute excitotoxic rat model with a neuroinflammatory component. Neurochem Int 2013; 64:73-83. [PMID: 24211709 DOI: 10.1016/j.neuint.2013.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/10/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR), an apoptotic inducer, regulates much pro-inflammatory cytokine production. The purpose of this study was to evaluate in vivo the effects of the specific PKR inhibitor C16 in the striatum in an acute excitotoxic rat model with an important neuroinflammatory component. Inflammation was induced by unilateral striatal injection of quinolinic acid (QA) in 10-week-old normotensive rats. Animals were separated into groups receiving either vehicle or C16 for both sham and QA rats. The effects were assessed in ipsi- and contralateral striata by immunoblotting for PKR activation, by Luminex assay for cytokine levels and by immunofluorescent staining for cleaved caspase-3 to detect neuronal apoptosis. The highest dose of C16 (600μg/kg; C16-2) in QA rats reduced expression of the active catalytic domain of the PKR vs. that in vehicle-injected QA rats. A robust increase of IL-1β levels on the contralateral side of QA rats was prevented by C16-2 (97% inhibition). Macroscopic and microscopic observation of cerebral tissue (Hematoxylin & Eosin staining) revealed that tissue integrity was more preserved with C16-2 treatment than its vehicle in QA rats. Furthermore, C16-2 treatment decreased by 47% the neuronal loss and by 37% the number of positive cleaved caspase-3 neurons induced by QA injection. In conclusion, C16 prevented not only the PKR-induced neuronal loss but also the inflammatory response in this acute excitotoxic in vivo model, highlighting its promising neuroprotective properties to rescue acute brain lesions.
Collapse
Affiliation(s)
- C Tronel
- INSERM U930, Tours, France; Université François Rabelais de Tours, UMR U930, Tours, France.
| | - G Page
- EA 3808, University of Poitiers, "Molecular Targets and Therapeutics of Alzheimer's Disease (CiMoTheMA)", 6 rue de la Milétrie, BP 199, 86034 Poitiers, France
| | - S Bodard
- INSERM U930, Tours, France; Université François Rabelais de Tours, UMR U930, Tours, France
| | - S Chalon
- INSERM U930, Tours, France; Université François Rabelais de Tours, UMR U930, Tours, France
| | - D Antier
- INSERM U930, Tours, France; Université François Rabelais de Tours, UMR U930, Tours, France
| |
Collapse
|
10
|
Thomas MP, Lieberman J. Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 2013; 253:237-52. [PMID: 23550650 DOI: 10.1111/imr.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of the regulation of gene expression historically focused on transcription. However, during stress and apoptosis, profound gene expression changes occur more rapidly and globally than is possible by regulating transcription. Posttranscriptional changes in mRNA processing and translation in response to diverse stresses shut down most protein translation to conserve energy and lead to rapid remodeling of the proteome to promote repair. Pre-mRNA splicing and mRNA stability are fundamentally altered under some stress conditions. Stress pathways coordinate a cytoprotective repair response, while simultaneously initiating signaling that can ultimately trigger cell death. How the cell mediates the decision between repair and apoptosis is largely not understood. In some stresses, microRNAs may tip the balance. Here, we review what is known about posttranscriptional gene regulation during stress, focusing on what is still unknown and how new technologies might be used to understand what changes are most physiologically important in different forms of stress and death.
Collapse
Affiliation(s)
- Marshall P Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 2013; 110:E3109-18. [PMID: 23898178 DOI: 10.1073/pnas.1301218110] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferons (IFNs) are cytokines with powerful immunomodulatory and antiviral properties, but less is known about how they induce cell death. Here, we show that both type I (α/β) and type II (γ) IFNs induce precipitous receptor-interacting protein (RIP)1/RIP3 kinase-mediated necrosis when the adaptor protein Fas-associated death domain (FADD) is lost or disabled by phosphorylation, or when caspases (e.g., caspase 8) are inactivated. IFN-induced necrosis proceeds via progressive assembly of a RIP1-RIP3 "necrosome" complex that requires Jak1/STAT1-dependent transcription, but does not need the kinase activity of RIP1. Instead, IFNs transcriptionally activate the RNA-responsive protein kinase PKR, which then interacts with RIP1 to initiate necrosome formation and trigger necrosis. Although IFNs are powerful activators of necrosis when FADD is absent, these cytokines are likely not the dominant inducers of RIP kinase-driven embryonic lethality in FADD-deficient mice. We also identify phosphorylation on serine 191 as a mechanism that disables FADD and collaborates with caspase inactivation to allow IFN-activated necrosis. Collectively, these findings outline a mechanism of IFN-induced RIP kinase-dependent necrotic cell death and identify FADD and caspases as negative regulators of this process.
Collapse
|
12
|
Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 2013; 9:398-405. [PMID: 23603659 DOI: 10.1038/nchembio.1236] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Formation of the inflammasome, a scaffolding complex that activates caspase-1, is important in numerous diseases. Pyroptotic cell death induced by anthrax lethal toxin (LT) is a model for inflammasome-mediated caspase-1 activation. We discovered 7-desacetoxy-6,7-dehydrogedunin (7DG) in a phenotypic screen as a small molecule that protects macrophages from LT-induced death. Using chemical proteomics, we identified protein kinase R (PKR) as the target of 7DG and show that RNAi knockdown of PKR phenocopies treatment with 7DG. Further, we show that PKR's role in ASC assembly and caspase-1 activation induced by several different inflammasome stimuli is independent of PKR's kinase activity, demonstrating that PKR has a previously uncharacterized role in caspase-1 activation and pyroptosis that is distinct from its reported kinase-dependent roles in apoptosis and inflammasome formation in lipopolysaccharide-primed cells. Remarkably, PKR has different roles in two distinct cell death pathways and has a broad role in inflammasome function relevant in other diseases.
Collapse
|
13
|
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2011; 11:537-61. [PMID: 21532838 PMCID: PMC3048316 DOI: 10.2174/138920210793175895] [Citation(s) in RCA: 1242] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/23/2010] [Accepted: 09/06/2010] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.
Collapse
Affiliation(s)
- Leigh-Ann Macfarlane
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|
14
|
Couturier J, Paccalin M, Morel M, Terro F, Milin S, Pontcharraud R, Fauconneau B, Page G. Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. J Neuroinflammation 2011; 8:72. [PMID: 21699726 PMCID: PMC3131234 DOI: 10.1186/1742-2094-8-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/23/2011] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation may be involved in the pathogenesis of Alzheimer's disease (AD). There has been little success with anti-inflammatory drugs in AD, while the promise of anti-inflammatory treatment is more evident in experimental models. A new anti-inflammatory strategy requires a better understanding of molecular mechanisms. Among the plethora of signaling pathways activated by β-amyloid (Aβ) peptides, the nuclear factor-kappa B (NF-κB) pathway could be an interesting target. In virus-infected cells, double-stranded RNA-dependent protein kinase (PKR) controls the NF-κB signaling pathway. It is well-known that PKR is activated in AD. This led us to study the effect of a specific inhibitor of PKR on the Aβ42-induced inflammatory response in primary mixed murine co-cultures, allowing interactions between neurons, astrocytes and microglia. Methods Primary mixed murine co-cultures were prepared in three steps: a primary culture of astrocytes and microglia for 14 days, then a primary culture of neurons and astrocytes which were cultured with microglia purified from the first culture. Before exposure to Aβ neurotoxicity (72 h), co-cultures were treated with compound C16, a specific inhibitor of PKR. Levels of tumor necrosis factor-α (TNFα), interleukin (IL)-1β, and IL-6 were assessed by ELISA. Levels of PT451-PKR and activation of IκB, NF-κB and caspase-3 were assessed by western blotting. Apoptosis was also followed using annexin V-FITC immunostaining kit. Subcellular distribution of PT451-PKR was assessed by confocal immunofluorescence and morphological structure of cells by scanning electron microscopy. Data were analysed using one-way ANOVA followed by a Newman-Keuls' post hoc test Results In these co-cultures, PKR inhibition prevented Aβ42-induced activation of IκB and NF-κB, strongly decreased production and release of tumor necrosis factor (TNFα) and interleukin (IL)-1β, and limited apoptosis. Conclusion In spite of the complexity of the innate immune response, PKR inhibition could be an interesting anti-inflammatory strategy in AD.
Collapse
Affiliation(s)
- J Couturier
- Research Group on Brain Aging, GReViC EA 3808, 6 rue de la Milétrie BP 199, 86034 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Couturier J, Morel M, Pontcharraud R, Gontier V, Fauconneau B, Paccalin M, Page G. Interaction of double-stranded RNA-dependent protein kinase (PKR) with the death receptor signaling pathway in amyloid beta (Abeta)-treated cells and in APPSLPS1 knock-in mice. J Biol Chem 2010; 285:1272-82. [PMID: 19889624 PMCID: PMC2801255 DOI: 10.1074/jbc.m109.041954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/27/2009] [Indexed: 01/05/2023] Open
Abstract
For 10 years, research has focused on signaling pathways controlling translation to explain neuronal death in Alzheimer Disease (AD). Previous studies demonstrated in different cellular and animal models and AD patients that translation is down-regulated by the activation of double-stranded RNA-dependent protein kinase (PKR). Among downstream factors of PKR, the Fas-associated protein with a death domain (FADD) and subsequent activated caspase-8 are responsible for PKR-induced apoptosis in recombinant virus-infected cells. However, no studies have reported the role of PKR in death receptor signaling in AD. The aim of this project is to determine physical and functional interactions of PKR with FADD in amyloid-beta peptide (Abeta) neurotoxicity and in APP(SL)PS1 KI transgenic mice. In SH-SY5Y cells, results showed that Abeta42 induced a large increase in phosphorylated PKR and FADD levels and a physical interaction between PKR and FADD in the nucleus, also observed in the cortex of APP(SL)PS1 KI mice. However, PKR gene silencing or treatment with a specific PKR inhibitor significantly prevented the increase in pT(451)-PKR and pS(194)-FADD levels in SH-SY5Y nuclei and completely inhibited activities of caspase-3 and -8. The contribution of PKR in neurodegeneration through the death receptor signaling pathway may support the development of therapeutics targeting PKR to limit neuronal death in AD.
Collapse
Affiliation(s)
- Julien Couturier
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | - Milena Morel
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | - Raymond Pontcharraud
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | - Virginie Gontier
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | - Bernard Fauconneau
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | - Marc Paccalin
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
- the Department of Geriatrics, Poitiers University Hospital, 2 rue de la Milétrie, BP 577, 86021 Poitiers Cedex, France, and
- the Clinical Investigation Center, CIC INSERM 802, Poitiers University Hospital, Poitiers, France
| | - Guylène Page
- From the Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| |
Collapse
|