1
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
2
|
Singh S, Kim GH, Baek KR, Seo SO. Anti-Cancer Strategies Using Anaerobic Spore-Forming Bacteria Clostridium: Advances and Synergistic Approaches. Life (Basel) 2025; 15:465. [PMID: 40141809 PMCID: PMC11943571 DOI: 10.3390/life15030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Despite ongoing advancements, cancer remains a significant global health concern, with a persistent challenge in identifying a definitive cure. While various cancer therapies have been developed and approved, offering treatments for smaller neoplasms, their efficacy diminishes in solid tumors and hypoxic environments, particularly for chemotherapy and radiation therapy. A novel approach, Clostridium-based therapy, has emerged as a promising candidate for current solid tumor treatments due to its unique affinity for the hypoxic tumor microenvironment. This review examines the potential of Clostridium in cancer treatment, encompassing direct tumor lysis, immune modulation, and synergistic effects with existing cancer therapies. Advancements in synthetic biology have further enhanced its potential through genetic modifications, such as the removal of alpha toxin gene from Clostridium novyi-NT, the implementation of targeted approaches, and reduction in systemic toxicity. Although preclinical and clinical studies have demonstrated that Clostridium-based treatments combined with other therapies hold promise for complete cancer eradication, challenges persist. Through this review, we also propose that the integration of various methods and technologies together with Clostridium-based therapy may lead to the complete eradication of cancer in the future.
Collapse
Affiliation(s)
- Saloni Singh
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Kwang-Rim Baek
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea (G.-H.K.); (K.-R.B.)
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
3
|
Zahedifard Z, Mahmoodi S, Ghasemian A. Genetically Engineered Bacteria as a Promising Therapeutic Strategy Against Cancer: A Comprehensive Review. Biotechnol Appl Biochem 2025. [PMID: 39985148 DOI: 10.1002/bab.2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
As a significant cause of global mortality, the cancer has also economic impacts. In the era of cancer therapy, mitigating side effects and costs and overcoming drug resistance is crucial. Microbial species can grow inside the tumor microenvironment and inhibit cancer growth through direct killing of tumor cells and immunoregulatory effects. Although microbiota or their products have demonstrated anticancer effects, the possibility of acting as pathogens and exerting side effects in certain individuals is a risk. Hence, several genetically modified/engineered bacteria (GEB) have been developed to this aim with ability of diagnosing and selective targeting and destruction of cancers. Additionally, GEB are expected to be considerably more efficient, safer, more permeable, less costly, and less invasive theranostic approaches compared to wild types. Potential GEB strains such as Escherichia coli (Nissle 1917, and MG1655), Salmonella typhimurium YB1 SL7207 (aroA gene deletion), VNP20009 (∆msbB/∆purI) and ΔppGpp (PTet and PBAD), and Listeria monocytogenes Lmat-LLO have been developed to combat cancer cells. When used in tandem with conventional treatments, GEB substantially improve the efficacy of anticancer therapy outcomes. In addition, public acceptance, optimal timing (s), duration (s), dose (s), and strains identification, interactions with other strains and the host cells, efficacy, safety and quality, and potential risks and ethical dilemmas include major challenges.
Collapse
Affiliation(s)
- Zahra Zahedifard
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
5
|
Kefayat A, Bahrami M, Karami M, Rostami S, Ghahremani F. Veillonella parvula as an anaerobic lactate-fermenting bacterium for inhibition of tumor growth and metastasis through tumor-specific colonization and decrease of tumor's lactate level. Sci Rep 2024; 14:21008. [PMID: 39251652 PMCID: PMC11385575 DOI: 10.1038/s41598-024-71140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
High tumor's lactate level directly associates with high tumor growth, metastasis, and patients' poor prognosis. Therefore, many studies have focused on the decrease of tumor's lactate as a novel cancer treatment. In the present study for the first time, a strictly anaerobic lactate-fermenting bacterium, Veillonella parvula, was employed for the decrease of tumor's lactate level. At first, 4T1 breast tumor-bearing BALB/c mice were administered with 106 V. parvula bacteria intravenously, orally, intraperitoneally, and intratumorally. Then, the bacteria biodistribution was evaluated. The best administration route according to tumor colonization was selected and its safety was assessed. Then, the therapeutic effect of V. parvula administration through the best route was investigated according to 4T1 murine breast tumor's growth and metastasis in vivo. In addition, histopathological and immunohistochemistry evaluations were done to estimate microscopic changes at the inner of the tumor and tumor's lactate level was measured after V. parvula administration. V. parvula exhibited considerable tumor-targeting and colonization efficacy, 24 h after intravenous administration. Normal organs were free of the bacteria after 72 h and no side effect was observed. Tumor colonization by V. parvula significantly decreased the tumors' lactate level for about 46% in comparison with control tumors which caused 44.3% and 51.6% decline (P < 0.05) in the mean tumors' volume and liver metastasis of the treatment group in comparison with the control group, respectively. The treatment group exhibited 35% inhibition in the cancer cell proliferation in comparison with the control according to the Ki-67 immunohistochemistry staining. Therefore, intravenous administration of V. parvula is a tumor-specific and safe treatment which can significantly inhibit tumors' growth and metastasis by decreasing the tumor lactate level.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahshid Bahrami
- Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Karami
- Department of Dermatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Soodabeh Rostami
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Sardasht, Meydan Basij, Arāk, 38481-76941, Iran.
| |
Collapse
|
6
|
Xie LW, Lu HY, Tang LF, Tang FL, Zhu RQ, Wang DF, Cai S, Tian Y, Li M. Probiotic Consortia Protect the Intestine Against Radiation Injury by Improving Intestinal Epithelial Homeostasis. Int J Radiat Oncol Biol Phys 2024; 120:189-204. [PMID: 38485099 DOI: 10.1016/j.ijrobp.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.
Collapse
Affiliation(s)
- Li-Wei Xie
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hai-Yan Lu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Lin-Feng Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Feng-Ling Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Rui-Qiu Zhu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Han H, Zhang Y, Tang H, Zhou T, Khan A. A Review of the Use of Native and Engineered Probiotics for Colorectal Cancer Therapy. Int J Mol Sci 2024; 25:3896. [PMID: 38612706 PMCID: PMC11011422 DOI: 10.3390/ijms25073896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) is a serious global health concern, and researchers have been investigating different strategies to prevent, treat, or support conventional therapies for CRC. This review article comprehensively covers CRC therapy involving wild-type bacteria, including probiotics and oncolytic bacteria as well as genetically modified bacteria. Given the close relationship between CRC and the gut microbiota, it is crucial to compile and present a comprehensive overview of bacterial therapies used in the context of colorectal cancer. It is evident that the use of native and engineered probiotics for colorectal cancer therapy necessitates research focused on enhancing the therapeutic properties of probiotic strains.. Genetically engineered probiotics might be designed to produce particular molecules or to target cancer cells more effectively and cure CRC patients.
Collapse
Affiliation(s)
- Huawen Han
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yifan Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Aman Khan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Lim D, Kim K, Duysak T, So E, Jeong JH, Choy HE. Bacterial cancer therapy using the attenuated fowl-adapted Salmonella enterica serovar Gallinarum. Mol Ther Oncolytics 2023; 31:100745. [PMID: 38053546 PMCID: PMC10694566 DOI: 10.1016/j.omto.2023.100745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
We report here a novel anti-cancer therapy based on an avian-host-specific serotype Salmonella enterica serovar Gallinarum (S. Gallinarum) deficient in ppGpp synthesis. To monitor the tumor targeting, a bioluminescent ΔppGpp S. Gallinarum was constructed and injected intravenously into mice bearing syngeneic and human xenograft tumors. Strong bioluminescent signals were detected specifically in all grafted tumors at 2 days post-injection (dpi). The bacterial counts in normal and tumor tissue at 1 dpi revealed that ΔppGpp S. Gallinarum reached >108 CFU/g in tumor tissue and 106-107 CFU/g in endothelial organs; counts were much lower in other organs. At 16 dpi, ΔppGpp S. Gallinarum counts in tumor tissue decreased to ∼106 CFU/g, while those in the other organs became undetectable. A strong anti-cancer effect was observed after the injection of ΔppGpp S. Gallinarum into BALB/c mice grafted with CT26 colon cancer cells. This could be attributed to reduced virulence, which allowed the administration of at least a 10-fold greater dose (108 CFU) of ΔppGpp S. Gallinarum than other attenuated strains of S. enterica serovar Typhimurium (≤107 CFU). An advantage of the avian-specific S. Gallinarum as a cancer therapeutic should be a reduced capacity to cause infections or harm in humans.
Collapse
Affiliation(s)
- Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwangsoo Kim
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyangro, Hwasun, Jeonnam 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Taner Duysak
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - EunA. So
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Hyon E. Choy
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyangro, Hwasun, Jeonnam 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| |
Collapse
|
10
|
Morishita M, Kida M, Motomura T, Tsukamoto R, Atari M, Higashiwaki K, Masuda K, Katsumi H, Yamamoto A. Elucidation of the Tissue Distribution and Host Immunostimulatory Activity of Exogenously Administered Probiotic-Derived Extracellular Vesicles for Immunoadjuvant. Mol Pharm 2023; 20:6104-6113. [PMID: 37931251 DOI: 10.1021/acs.molpharmaceut.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that can be used as novel biomaterials. In the development of EVs-based therapeutic systems, it is essential to understand the in vivo fate of exogenously administered EVs and subsequent biological responses mediated by EVs. Although probiotics and microorganisms that modulate the host immune system also secrete EVs, their tissue distribution and biological reactions after administration to the host have not been sufficiently elucidated. In this study, we characterized EVs released from the probiotics Bifidobacterium longum (B-EVs) and Lactobacillus plantarum WCFS1 (L-EVs) in terms of tissue distribution and immune-activating capacity after intravenous and subcutaneous administration in mice. B-EVs and L-EVs exhibited particle sizes of approximately 100-160 nm and negative zeta potentials. These EVs contained peptidoglycan, DNA, and RNA as their cargoes. Intravenously administered B-EVs and L-EVs mainly accumulated in the liver and spleen. Furthermore, liver F4/80 and splenic CD169 macrophages took up the intravenously administered EVs. Subcutaneously administered B-EVs and L-EVs accumulated in the lymph nodes and were mainly located in the B-lymphocyte zone, indicating that exogenously administered probiotic-derived EVs showed a similar biodistribution, irrespective of the EVs-secreting cell type. Evaluation of EVs-mediated immune reactions demonstrated that intravenously administered EVs showed little activation potency. In contrast, subcutaneously administered B-EVs strongly increased the expression of inflammatory cytokine (TNF-α) and co-stimulatory molecules (CD40 and CD80) than L-EVs. These findings indicate that the subcutaneous administration of B-EVs is a useful strategy for the development of novel EVs-based immunotherapies.
Collapse
Affiliation(s)
- Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Masakatsu Kida
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Tomomi Motomura
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Rihito Tsukamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Mizuho Atari
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Kazuya Higashiwaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Kisa Masuda
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| |
Collapse
|
11
|
Zheng X, Fang Y, Zou X, Wang X, Li Z. Therapeutic potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in cancer treatment. Microb Pathog 2023; 185:106422. [PMID: 37871855 DOI: 10.1016/j.micpath.2023.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Yiqiao Fang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiuhe Zou
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiaofei Wang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Din SRU, Saeed S, Khan SU, Arbi FM, Xuefang G, Zhong M. Bacteria-driven cancer therapy: Exploring advancements and challenges. Crit Rev Oncol Hematol 2023; 191:104141. [PMID: 37742883 DOI: 10.1016/j.critrevonc.2023.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer, a serious fatal disease caused by the uncontrolled growth of cells, is the biggest challenge flagging around medicine and health fields. Conventionally, various treatments-based strategies such as radiotherapy, chemotherapy, and alternative cancer therapies possess drugs that cannot reach the cancerous tissues and make them toxic to noncancerous cells. Cancer immunotherapy has made outstanding achievements in reducing the chances of cancer. Our considerable attention towards cancer-directed immune responses and the mechanisms behind which immune cells kill cancer cells have progressively been helpful in the advancement of new therapies. Among them, bacteria-based cancer immunotherapy has achieved much more attention due to smart and robust mechanisms in activating the host anti-tumor response. Moreover, bacterial-based therapy can be utilized as a single monotherapy or in combination with multiple anticancer immunotherapies to accelerate productive clinical results. Herein, we comprehensively reviewed recent advancements, challenges, and future perspectives in developing bacterial-based cancer immunotherapies.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK 22020, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Guo Xuefang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. MICROBIOME RESEARCH REPORTS 2023; 3:3. [PMID: 38455077 PMCID: PMC10917622 DOI: 10.20517/mrr.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024]
Abstract
Gut microbiota research has gained a tremendous amount of attention from the scientific community because of its contribution to gut homeostasis, human health, and various pathophysiological conditions. The early colonizer of the human gut, i.e., bifidobacteria, has emerged as an efficient probiotic in various diseased conditions, including cancer. This review explores the pros and cons of Bifidobacterium in various malignancies and various therapeutic strategies. We have illustrated the controversial role of bifidobacteria participating in various malignancies as well as described the current knowledge regarding its use in anticancer therapies. Ultimately, this article also addresses the need for further extensive research in elucidating the mechanism of how bifidobacteria is involved and is indirectly affecting the tumor microenvironment. Exhaustive and large-scale research is also required to solve the controversial questions regarding the involvement of bifidobacteria in cancer research.
Collapse
Affiliation(s)
| | | | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Ge X, Hu J, Peng Y, Zeng Z, He D, Li X, Chen Y, Luo G, Deng J, Xu Z, He S. Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of Interleukin-4 for inflammatory microenvironment modulation. Biomaterials 2023; 301:122254. [PMID: 37531774 DOI: 10.1016/j.biomaterials.2023.122254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) has been closely associated with immune disorders and excessive M1 macrophage activation, which can be reversed by the M2-polarizing effect of interleukin-4 (IL-4). However, maintaining native IL-4 activity with its specific release in the inflammatory microenvironment and efficient biological performance remain a challenge. Inspired by the multilayered defense mechanism of the earth's atmosphere, we constructed a multilayered protective nanoarmor (NA) for IL-4 delivery (termed as IL-4@PEGRA NAs) into an intricate inflammatory microenvironment. The poly(ethylene glycol) (PEG)-ylated phenolic rosmarinic acid (RA)-grafted copolymer contains two protective layers-the intermediate polyphenol (RA molecules) and outermost shield (PEG) layers-to protect the biological activity of IL-4 and prolong its circulation in blood. Moreover, IL-4@PEGRA NAs scavenge reactive oxygen species with the specific release of IL-4 and maximize its biofunction at the site of inflammation, leading to M2 macrophage polarization and downregulation of inflammatory mediators. Simultaneously, gut microbiota dysbiosis can improve to amplify the M2-polarizing effect and inhibit the phosphatidylinositol 3 kinase/Akt signaling pathway, thereby attenuating inflammation and promoting colitis tissue repair. It provides a nature-inspired strategy for constructing an advanced multilayered NA delivery system with protective characteristics and potential for IBD management.
Collapse
Affiliation(s)
- Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Junfeng Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhuo Zeng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xilan Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China.
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
16
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
17
|
Terrazas-Armendáriz LD, Alvizo-Báez CA, Luna-Cruz IE, Hernández-González BA, Uscanga-Palomeque AC, Ruiz-Robles MA, Pérez Tijerina EG, Rodríguez-Padilla C, Tamez-Guerra R, Alcocer-González JM. Systemic Delivery of Magnetogene Nanoparticle Vector for Gene Expression in Hypoxic Tumors. Pharmaceutics 2023; 15:2232. [PMID: 37765201 PMCID: PMC10536535 DOI: 10.3390/pharmaceutics15092232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.
Collapse
Affiliation(s)
- Luis Daniel Terrazas-Armendáriz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Cynthia Aracely Alvizo-Báez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Itza Eloisa Luna-Cruz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Becky Annette Hernández-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Ashanti Concepción Uscanga-Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Mitchel Abraham Ruiz-Robles
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Eduardo Gerardo Pérez Tijerina
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Juan Manuel Alcocer-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| |
Collapse
|
18
|
Wang C, Shen Y, Ma Y. Bifidobacterium infantis-Mediated Herpes Simplex Virus-TK/Ganciclovir Treatment Inhibits Cancer Metastasis in Mouse Model. Int J Mol Sci 2023; 24:11721. [PMID: 37511481 PMCID: PMC10380465 DOI: 10.3390/ijms241411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Zhao H, Li D, Liu J, Zhou X, Han J, Wang L, Fan Z, Feng L, Zuo J, Wang Y. Bifidobacterium breve predicts the efficacy of anti-PD-1 immunotherapy combined with chemotherapy in Chinese NSCLC patients. Cancer Med 2023; 12:6325-6336. [PMID: 36205311 PMCID: PMC10028067 DOI: 10.1002/cam4.5312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbes play an important role in the occurrence of lung cancer, immunotherapy, and chemotherapy. In this study, we analyzed the characteristics of gut microbes in patients with lung cancer and investigated the effect of gut microbes on anti-PD-1 therapy combined with chemotherapy. METHODS Fecal samples from 21 non-small cell lung cancer (NSCLC) patients and 22 healthy volunteers who were treated in the Fourth Hospital of Hebei Medical University from 2019 to 2021 were collected. DNA was extracted from all samples, and the V3-V4 region of the bacterial 16S rRNA gene was PCR-amplified using the Illumina sequencing platform, and R language was used for data analysis. RESULTS There were significant differences in the Beta diversity and metabolic pathways of gut microbes between NSCLC patients and healthy individuals (p < 0.05). Bifidobacterium, Escherichia, and Sarterella were significantly enriched in patients with clinical benefit response (p < 0.05), and these three bacteria had certain predictive value for clinical benefit. Patients with Bifidobacterium breve had significantly longer median progression-free survival (mPFS) compared with patients with no detectable Bifidobacterium breve feces at baseline (106 days vs. NR, p < 0.001). Multivariate COX analysis showed that the presence of B.breve was an independent good prognostic factor affecting the PFS of patients receiving combination therapy (p < 0.05). CONCLUSION The clinical efficacy of anti-PD-1 therapy combined with chemotherapy in Chinese advanced NSCLC patients is closely related to the gut microbiota, and Bifidobacterium breve may be a potential biomarker to predict the efficacy of immune-combined chemotherapy.
Collapse
Affiliation(s)
- Honghui Zhao
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Dan Li
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jiayin Liu
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xinliang Zhou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jing Han
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Long Wang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhisong Fan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Li Feng
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jing Zuo
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yudong Wang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
20
|
Takahashi M, Sukowati EW, Nomura S, Kato A, Mizuseki K, Watanabe Y, Mukai H. Impact of tumoral structure and bacterial species on growth and biodistribution of live bacterial therapeutics in xenografted tumours. J Drug Target 2023; 31:194-205. [PMID: 36097977 DOI: 10.1080/1061186x.2022.2122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Live bacterial therapeutics is gaining attention, especially for cancer therapy, because anaerobic bacteria selectively grow inside the solid tumours. However, the effect of tumour structure and bacterial characteristics on the pharmacokinetics of tumours is unclear; therefore, we aimed to elucidate the effects of tumour structure and types of bacteria on tumoral bacterial growth. Using six mouse xenograft models, including stroma-rich tumours similar to clinical tumours, and two models of live bacterial therapeutics, Salmonella typhimurium VNP20009 and Escherichia coli DH5α, we investigated bacterial growth and distribution in tumours after intravenous administration. Rapid growth of E. coli was observed in HCT116 and other tumours with few collagens, blood vessels not covered by mural cells, and a cancer cell area proliferated disorderly, whereas tumours with contrasting features, such as BxPC-3, showed lower bacterial growth and a limited intratumor distribution. Alternatively, Salmonella typhimurium VNP20009, when successfully proliferated (the probability was approximately 50%), grew to 108 colony forming units/g tissue even in BxPC-3 tumours, and its intratumor distribution was extensive. This study suggests that the development of new methods to modify tumour structure will be essential for the development of anti-tumour clinical therapies based on live bacterial therapeutics.
Collapse
Affiliation(s)
- Maiko Takahashi
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Erike Widyasari Sukowati
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shoko Nomura
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akari Kato
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
21
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Anti-Tumor Effects of Engineered VNP20009-Abvec-Igκ-mPD-1 Strain in Melanoma Mice via Combining the Oncolytic Therapy and Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122789. [PMID: 36559282 PMCID: PMC9781615 DOI: 10.3390/pharmaceutics14122789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein 1/Programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors are the most promising treatments for malignant tumors currently, but the low response rate limits their further clinical utilization. To address this problem, our group constructed an engineered strain of VNP20009-Abvec-Igκ-mPD-1 [V-A-mPD-1 (mPD-1, murine PD-1)] to combine oncolytic bacterial therapy with immunotherapy. Further, we evaluated its growth performance and mPD-1 expression ability in vitro while establishing the melanoma mice model to explore its potential anti-cancer effects in tumor therapy. Our results indicated that the V-A-mPD-1 strain has superior growth performance and can invade B16F10 melanoma cells and express PD-1. In addition, in the melanoma mice model, we observed a marked reduction in tumor volume and the formation of a larger necrotic area. V-A-mPD-1 administration resulted in a high expression of mPD-1 at the tumor site, inhibiting tumor cell proliferation via the down-regulation of the expression of rat sarcoma (Ras), phosphorylated mitogen-activated protein kinase (p-MEK)/MEK, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK expression significantly inhibited tumor cell proliferation. Tumor cell apoptosis was promoted by down-regulating phosphoinositide 3 kinase (PI3K) and protein kinase B (AKT) signaling pathways, as evidenced by an increased Bcl-2-associated X protein/B cell lymphoma-2 (Bax/Bcl-2) expression ratio. Meanwhile, the expression levels of systemic inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were substantially reduced. In conclusion, our research demonstrated that V-A-mPD-1 has an excellent anti-tumor effect, prompting that the combined application of microbial therapy and immunotherapy is a feasible cancer treatment strategy.
Collapse
|
23
|
Recent Advances in Bacteria-Based Cancer Treatment. Cancers (Basel) 2022; 14:cancers14194945. [PMID: 36230868 PMCID: PMC9563255 DOI: 10.3390/cancers14194945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer refers to a disease involving abnormal cells that proliferate uncontrollably and can invade normal body tissue. It was estimated that at least 9 million patients are killed by cancer annually. Recent studies have demonstrated that bacteria play a significant role in cancer treatment and prevention. Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses and preferentially accumulating and proliferating within tumors, bacteria-based cancer immunotherapy has recently attracted wide attention. We aim to illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected. Abstract Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses, bacteria-based cancer immunotherapy has recently attracted wide attention. Compared to traditional cancer treatments such as surgery, chemotherapy, radiotherapy, and phototherapy, bacteria-based cancer immunotherapy exhibits the versatile capabilities for suppressing cancer thanks to its preferentially accumulating and proliferating within tumors. In particular, bacteria have demonstrated their anticancer effect through the toxins, and other active components from the cell membrane, cell wall, and dormant spores. More importantly, the design of engineering bacteria with detoxification and specificity is essential for the efficacy of bacteria-based cancer therapeutics. Meanwhile, bacteria can deliver the cytokines, antibody, and other anticancer theranostic nanoparticles to tumor microenvironments by regulating the expression of the bacterial genes or chemical and physical loading. In this review, we illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected.
Collapse
|
24
|
Jiang F, Wang L, Tang Y, Wang Y, Li N, Wang D, Zhang Z, Lin L, Du Y, Ou X, Zou J. US/MR Bimodal Imaging-Guided Bio-Targeting Synergistic Agent for Tumor Therapy. Int J Nanomedicine 2022; 17:2943-2960. [PMID: 35814614 PMCID: PMC9270014 DOI: 10.2147/ijn.s363645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Breast cancer is detrimental to the health of women due to the difficulty of early diagnosis and unsatisfactory therapeutic efficacy of available breast cancer therapies. High intensity focused ultrasound (HIFU) ablation is a new method for the treatment of breast tumors, but there is a problem of low ablation efficiency. Therefore, the improvement of HIFU efficiency to combat breast cancer is immediately needed. This study aimed to describe a novel anaerobic bacteria-mediated nanoplatform, comprising synergistic HIFU therapy for breast cancer under guidance of ultrasound (US) and magnetic resonance (MR) bimodal imaging. Methods The PFH@CL/Fe3O4 nanoparticles (NPs) (Perfluorohexane (PFH) and superparamagnetic iron oxides (SPIO, Fe3O4) with cationic lipid (CL) NPs) were synthesized using the thin membrane hydration method. The novel nanoplatform Bifidobacterium bifidum-mediated PFH@CL/Fe3O4 NPs were constructed by electrostatic adsorption. Thereafter, US and MR bimodal imaging ability of B. bifidum-mediated PFH@CL/Fe3O4 NPs was evaluated in vitro and in vivo. Finally, the efficacy of HIFU ablation based on B. bifidum-PFH@CL/Fe3O4 NPs was studied. Results B. bifidum combined with PFH@CL/Fe3O4 NPs by electrostatic adsorption and enhanced the tumor targeting ability of PFH@CL/Fe3O4 NPs. US and MR bimodal imaging clearly displayed the distribution of the bio-targeting nanoplatform in vivo. It was conducive for accurate and effective guidance of HIFU synergistic treatment of tumors. Furthermore, PFH@CL/Fe3O4 NPs could form microbubbles by acoustic droplet evaporation and promote efficiency of HIFU ablation under guidance of bimodal imaging. Conclusion A bio-targeting nanoplatform with high stability and good physicochemical properties was constructed. The HIFU synergistic agent achieved early precision imaging of tumors and promoted therapeutic effect, monitored by US and MR bimodal imaging during the treatment process.
Collapse
Affiliation(s)
- Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ningshan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Disen Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhong Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Li Lin
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xia Ou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Jianzhong Zou, State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China, Tel +86-13708302390, Email
| |
Collapse
|
25
|
Bi Z, Cui E, Yao Y, Chang X, Wang X, Zhang Y, Xu GX, Zhuang H, Hua ZC. Recombinant Bifidobacterium longum Carrying Endostatin Protein Alleviates Dextran Sodium Sulfate-Induced Colitis and Colon Cancer in Rats. Front Microbiol 2022; 13:927277. [PMID: 35847065 PMCID: PMC9280188 DOI: 10.3389/fmicb.2022.927277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bifidobacterium has been widely administrated orally as probiotics to prevent pathogen colonization and modulate the gut microbiome balance. Endostatin is an endogenous inhibitor of angiogenesis and has been shown to inhibit tumor growth, invasion, and metastasis. At present, the combination of endostatin and chemotherapeutic drugs has been regarded as a promising antitumor treatment strategy. In this study, we selected a safe strain of Bifidobacterium longum as a delivery system to transport endostatin to the gastrointestinal tract and explored their combined effect on inflammatory bowel disease (IBD) and colitis-associated cancer. The results indicated that B. longum-Endo relieved dextran sulfate sodium-induced body weight loss, diarrhea, colon shortening, and epithelium damage. Long-term oral administration of B. longum-Endo significantly decreased tumor formation rate, tumor number, and tumor size. Moreover, the effect of B. longum-Endo on gut microbiota dysbiosis was also confirmed by 16S rRNA sequencing analysis. The levels of potentially beneficial bacteria, such as Lactobacillus, Bifidobacterium, Allobaculum, and Parabateroides, were increased in the B. longum-Endo group compared to the model and B. longum groups. Meanwhile, levels of potentially pathogenic bacteria including Desulfovibrio, Helicobacter, and Enterorhabdus were decreased. Taken together, these results suggested that oral administration of recombinant B. longum-Endo strain may be a promising therapeutic strategy for IBD and colitis-associated cancer.
Collapse
Affiliation(s)
- Zhiqian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Enqing Cui
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuhui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Gen-Xing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Gen-Xing Xu,
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- Hongqin Zhuang,
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
- Jiangsu Target Pharma Laboratories Inc., Changzhou, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Zi-Chun Hua,
| |
Collapse
|
26
|
Kang Y, Zhai X, Lu S, Vuletic I, Wang L, Zhou K, Peng Z, Ren Q, Xie Z. A Hybrid Imaging Platform(CT/PET/FMI) for Evaluating Tumor Necrosis and Apoptosis in Real-Time. Front Oncol 2022; 12:772392. [PMID: 35814447 PMCID: PMC9257022 DOI: 10.3389/fonc.2022.772392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodality imaging is an advanced imaging tool for monitoring tumor behavior and therapy in vivo. In this study, we have developed a novel hybrid tri-modality system that includes two molecular imaging methods: positron emission computed tomography (PET) and fluorescence molecular imaging (FMI) and the anatomic imaging modality X-ray computed tomography (CT). The following paper describes the system development. Also, its imaging performance was tested in vitro (phantom) and in vivo, in Balb/c nude mice bearing a head and neck tumor xenograft treated with novel gene therapy [a new approach to the delivery of recombinant bacterial gene (IL-24-expressing strain)]. Using the tri-modality imaging system, we simultaneously monitored the therapeutic effect, including the apoptotic and necrotic induction within the tumor in vivo. The apoptotic induction was examined in real-time using an 18F-ML-10 tracer; the cell death was detected using ICG. A CT was used to evaluate the anatomical situation. An increased tumor inhibition (including tumor growth and tumor cell apoptosis) was observed in the treatment group compared to the control groups, which further confirmed the therapeutic effect of a new IL-24-expressing strain gene therapy on the tumor in vivo. By being able to offer concurrent morphological and functional information, our system is able to characterize malignant tissues more accurately. Therefore, this new tri-modality system (PET/CT/FMI) is an effective imaging tool for simultaneously investigating and monitoring tumor progression and therapy outcomes in vivo.
Collapse
Affiliation(s)
- Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| | - Xiaohui Zhai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ivan Vuletic
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Lin Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Kun Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Bejing, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| | - Zhaoheng Xie
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| |
Collapse
|
27
|
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol 2022; 12:891187. [PMID: 35574361 PMCID: PMC9095937 DOI: 10.3389/fonc.2022.891187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Di Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Tang
- School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
28
|
Pesce M, Seguella L, Del Re A, Lu J, Palenca I, Corpetti C, Rurgo S, Sanseverino W, Sarnelli G, Esposito G. Next-Generation Probiotics for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23105466. [PMID: 35628274 PMCID: PMC9141965 DOI: 10.3390/ijms23105466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Correspondence: ; Tel.: +39-06-4991-2948
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Jie Lu
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China;
| | - Irene Palenca
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Chiara Corpetti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| |
Collapse
|
29
|
Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunol 2022; 15:408-417. [PMID: 35194180 PMCID: PMC9063729 DOI: 10.1038/s41385-022-00491-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (Trms) predominantly reside within tissue and are critical for providing rapid protection against invasive viruses, fungi and bacteria. Given that tissues are heavily impacted and shaped by the microbiota, it stands to reason that Trms are also influenced by the microbiota that inhabits barrier sites. The influence of the microbiota is largely mediated by microbial production of metabolites which are crucial to the immune response to both viral infection and cancerous tumors. In addition to the effects of metabolites, antigens derived from the microbiota can activate T cell responses. While microbiota-specific T cells may assist in tissue repair, control of infection and anti-tumor immunity, the actual 'memory' potential of these cells remains unclear. Here, we hypothesize that memory responses to antigens from the microbiota must be 'licensed' by inflammatory signals activated by invasion of the host by microorganisms.
Collapse
|
30
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
31
|
Gupta KH, Nowicki C, Giurini EF, Marzo AL, Zloza A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9121497. [PMID: 34960243 PMCID: PMC8707929 DOI: 10.3390/vaccines9121497] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.
Collapse
Affiliation(s)
- Kajal H. Gupta
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christina Nowicki
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eileena F. Giurini
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L. Marzo
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
32
|
Allemailem KS. Innovative Approaches of Engineering Tumor-Targeting Bacteria with Different Therapeutic Payloads to Fight Cancer: A Smart Strategy of Disease Management. Int J Nanomedicine 2021; 16:8159-8184. [PMID: 34938075 PMCID: PMC8687692 DOI: 10.2147/ijn.s338272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional therapies for cancer eradication like surgery, radiotherapy, and chemotherapy, even though most widely used, still suffer from some disappointing outcomes. The limitations of these therapies during cancer recurrence and metastasis demonstrate the need for better alternatives. Some bacteria preferentially colonize and proliferate inside tumor mass; thus these bacteria can be used as ideal candidates to deliver antitumor therapeutic agents. The bacteria like Bacillus spp., Clostridium spp., E. coli, Listeria spp., and Salmonella spp. can be reprogrammed to produce, transport, and deliver anticancer agents, eg, cytotoxic agents, prodrug converting enzymes, immunomodulators, tumor stroma targeting agents, siRNA, and drug-loaded nanoformulations based on clinical requirements. In addition, these bacteria can be genetically modified to express various functional proteins and targeting ligands that can enhance the targeting approach and controlled drug-delivery. Low tumor-targeting and weak penetration power deep inside the tumor mass limits the use of anticancer drug-nanoformulations. By using anticancer drug nanoformulations and other therapeutic payloads in combination with antitumor bacteria, it makes a synergistic effect against cancer by overcoming the individual limitations. The tumor-targeting bacteria can be either used as a monotherapy or in addition with other anticancer therapies like photothermal therapy, photodynamic therapy, and magnetic field therapy to accomplish better clinical outcomes. The toxicity issues on normal tissues is the main concern regarding the use of engineered antitumor bacteria, which requires deeper research. In this article, the mechanism by which bacteria sense tumor microenvironment, role of some anticancer agents, and the recent advancement of engineering bacteria with different therapeutic payloads to combat cancers has been reviewed. In addition, future prospective and some clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
33
|
Effect of Bifidobacterium longum subsp. longum on the proliferative and tight-junction activities of Human Fetal Colon Epithelial Cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Influence of gut and intratumoral microbiota on the immune microenvironment and anti-cancer therapy. Pharmacol Res 2021; 174:105966. [PMID: 34728366 DOI: 10.1016/j.phrs.2021.105966] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022]
Abstract
Microbiota has been implicated in the regulation of tumor progression and therapeutic efficacy. However, the effect of microbiota on disease progression is context dependent, differing according to tumor types, therapeutic regimens, and composition of the microbiota, calling for a deeper understanding of host-microbiome interactions. Previous studies have demonstrated that gut microbiota influences disease progression by regulating local and systemic immunity. Notably, with the advent of next-generation sequencing technology, intratumoral microbiota has also been found and constitutes an important component of the tumor microenvironment. In this review, we summarize recent knowledge about the identification of intra-tumor microbiota and discuss the role of gut and intratumoral microbiota in solid tumors in the angle of immune microenvironment interaction. Furthermore, we discuss how these findings may benefit current anti-cancer approaches. Key problems to be solved in ongoing and future research are highlighted.
Collapse
|
35
|
Bacterial bioluminescence assay for bioanalysis and bioimaging. Anal Bioanal Chem 2021; 414:75-83. [PMID: 34693470 DOI: 10.1007/s00216-021-03695-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Bioluminescence occurs through a chemical reaction in organisms that spontaneously produce light. Luminescent bacteria are unique among bioluminescent organisms. Their bioluminescence intensity is an indicator of their metabolic activity, which can directly reflect the influence of environmental factors on cell viability. Moreover, the whole bioluminescence process is totally gene encoded without the addition of extra substrates. As a result, bacterial bioluminescence has been a powerful tool for whole-cell biosensors and bio-reporters in bioanalysis and bioimaging. This review aims to cover the applications of wild-type and recombinant luminescent bacteria to detect the toxicity of environmental pollutants and biological molecules. The bacterial bioluminescence analytical assay has characteristics such as high sensitivity, short-term detection, and easy operation. Meanwhile, due to the development of gene engineering and optical technology, bacterial luciferase as a reporter protein has been successfully expressed in prokaryotic and eukaryotic cells, tissues, and organs of animals. The major applications for bacterial luciferase-based bioluminescence imaging, such as infectious diseases, cancer therapy, and stem cell tracing, are discussed in this review.
Collapse
|
36
|
Del Río Castillo AE, De León-Rodriguez A, Terrones M, Barba de la Rosa AP. Multi-walled carbon nanotubes enhance the genetic transformation of Bifidobacterium longum. CARBON 2021; 184:902-909. [DOI: 10.1016/j.carbon.2021.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Polyethylenimine (PEI)-modified poly (lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with tumor-homing bacteria facilitate high intensity focused ultrasound-mediated tumor ablation. Biochem Biophys Res Commun 2021; 571:104-109. [PMID: 34314995 DOI: 10.1016/j.bbrc.2021.07.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
The acoustic propagation characteristic of ultrasound determines that the energy of ultrasound beam will decrease with the increase of its propagation depth in the body. Similarly, the energy of High Intensity Focused Ultrasound (HIFU) will be attenuated with the increase of HIFU propagation depth in the body. Ensuring sufficient ultrasound energy deposition in the HIFU ablation region for tumor ablation is usually achieved by increasing the ultrasound irradiation power or prolonging the ultrasound ablation time. However, these two methods may damage the normal tissue adjacent to the HIFU ablation region. Herein, we constructed the nanoparticles conjugated with tumor-homing bacteria as the biological tumor-homing synergist to facilitate HIFU-mediated tumor ablation avoiding the potential safety risk. In our strategy, Bifidobacterium bifidum (B.bifidum) was selectively colonized in the hypoxic region of solid tumors after been injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein due to its anaerobic growth characteristic. The amount of B. bifidum with negative surface potential in the hypoxic region of solid tumors was increased by its anaerobic proliferation. Polyethylenimine (PEI) -modified Poly (lactic-co-glycolic) acid nanoparticles loaded sodium bicarbonate (PEI-PLGA-NaHCO3-NPs) with positive surface potential injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein displayed the tumor-homing ability by the electrostatic adsorption with B. bifidum colonized solid tumors. PEI-PLGA-NaHCO3-NPs could release NaHCO3 to produce carbon dioxide (CO2) as cavitation nuclei inside the acidic microenvironment of solid tumors. When HIFU irradiated solid tumors contained with more cavitation nuclei, the ultrasound energy deposition at the tumor region was increased to destroy the tumors more effectively. Meanwhile, the improved efficiency of HIFU-mediated tumor ablation reduced the dependence of the tumor ablation on the ultrasound energy dose, which improved the safety of HIFU-mediated tumor ablation to the non-targeted ablation tissue. This tumor-homing synergist shows the potential application value on the HIFU-mediated tumor ablation in the clinical.
Collapse
|
38
|
Tang Y, Chen C, Jiang B, Wang L, Jiang F, Wang D, Wang Y, Yang H, Ou X, Du Y, Wang Q, Zou J. Bifidobacterium bifidum-Mediated Specific Delivery of Nanoparticles for Tumor Therapy. Int J Nanomedicine 2021; 16:4643-4659. [PMID: 34267516 PMCID: PMC8275162 DOI: 10.2147/ijn.s315650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hypoxia is considered to be obstructive to tumor treatment, but the reduced oxygen surroundings provide a suitable habitat for Bifidobacterium bifidum (BF) to colonize. The anaerobe BF selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. Therefore, BF may be a potential targeting agent which could be used effectively in tumor treatment. We aimed to determine whether a novel BF-mediated strategy, that was designed to deliver AP-PFH/PLGA NPs (aptamers CCFM641-5-functionalized Perfluorohexane (PFH) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles) by aptamer-directed approach into solid tumor based on the tumor-targeting ability of BF, could improve efficiency of high intensity focused ultrasound (HIFU) treatment of breast cancer. Methods We synthesized AP-PFH/PLGA NPs using double emulsion method and carbodiimide method. Then, we evaluated targeting ability of AP-PFH/PLGA NPs to BF in vivo. Finally, we studied the efficacy of HIFU ablation based on BF plus AP-PFH/PLGA NPs (BF-mediated HIFU ablation) in tumor. Results The elaborately designed AP-PFH/PLGA NPs can target BF colonized in tumor to achieve high tumor accumulation, which can significantly enhance HIFU therapeutic efficiency. We also found that, compared with traditional chemotherapy, this therapy not only inhibits tumor growth, but also significantly prolongs the survival time of mice. More importantly, this treatment strategy has no obvious side effects. Conclusion We successfully established a novel therapy method, BF-mediated HIFU ablation, which provides an excellent platform for highly efficient and non-invasive therapy of tumor.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Disen Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Ou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
39
|
Shioya K, Matsumura T, Seki Y, Shimizu H, Nakamura T, Taniguchi S. Potentiated antitumor effects of APS001F/5-FC combined with anti-PD-1 antibody in a CT26 syngeneic mouse model. Biosci Biotechnol Biochem 2021; 85:324-331. [PMID: 33604645 DOI: 10.1093/bbb/zbaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023]
Abstract
APS001F is a strain of Bifidobacterium longum genetically engineered to express cytosine deaminase that converts 5-fluorocytosine (5-FC) to 5-fluorouracil. In the present study, antitumor effects of APS001F plus 5-FC (APS001F/5-FC) in combination with anti-PD-1 monoclonal antibody were investigated using a CT26 syngeneic mouse model. Both of dosing of APS001F/5-FC before and after anti-PD-1 mAb in the combination dosing exhibited antitumor effects as well as prolonged survival over the nontreated control. The survival rate in the combination therapy significantly increased over the monotherapy with APS001F/5-FC and that with anti-PD-1 mAb. Regulatory T cells among CD4+ T cells in tumor decreased in the combination therapy, while the ratio of CD8+ T cells was maintained in all groups. Taken these results together, APS001F/5-FC not only demonstrates a direct antitumor activity, but also immunomodulatory effects once localized in the hypoxic region of the tumor, which allows anti-PD-1 mAb to exert potentiated antitumor effects.
Collapse
Affiliation(s)
| | | | - Yuji Seki
- Anaeropharma Science, Inc., Chiyoda-ku, Tokyo, Japan
| | | | | | - Shun'ichiro Taniguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
40
|
Taniguchi S. In Situ Delivery and Production System ( iDPS) of Anti-Cancer Molecules with Gene-Engineered Bifidobacterium. J Pers Med 2021; 11:jpm11060566. [PMID: 34204302 PMCID: PMC8233750 DOI: 10.3390/jpm11060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
To selectively and continuously produce anti-cancer molecules specifically in malignant tumors, we have established an in situ delivery and production system (iDPS) with Bifidobacterium as a micro-factory of various anti-cancer agents. By focusing on the characteristic hypoxia in cancer tissue for a tumor-specific target, we employed a gene-engineered obligate anaerobic and non-pathogenic bacterium, Bifidobacterium, as a tool for systemic drug administration. This review presents and discusses the anti-tumor effects and safety of the iDPS production of numerous anti-cancer molecules and addresses the problems to be improved by directing attention mainly to the hallmark vasculature and so-called enhanced permeability and retention effect of tumors.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto City 390-8621, Japan
| |
Collapse
|
41
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
42
|
Yang K, Hou Y, Zhang Y, Liang H, Sharma A, Zheng W, Wang L, Torres R, Tatebe K, Chmura SJ, Pitroda SP, Gilbert JA, Fu YX, Weichselbaum RR. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 2021; 218:e20201915. [PMID: 33496784 PMCID: PMC7844434 DOI: 10.1084/jem.20201915] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
The antitumor effects of ionizing radiation (IR) are mediated in part through activation of innate and adaptive immunity. Here we report that gut microbiota influences tumor control following IR. Vancomycin decreased the abundance of butyrate-producing gut bacteria and enhanced antitumor responses to IR. Oral administration of Lachnospiraceae, a family of vancomycin-sensitive bacteria, was associated with increased systemic and intratumoral butyric acid levels and impaired the efficacy of IR in germ-free (GF) mice. Local butyrate inhibited STING-activated type I IFN expression in dendritic cells (DCs) through blockade of TBK1 and IRF3 phosphorylation, which abrogated IR-induced tumor-specific cytotoxic T cell immune responses without directly protecting tumor cells from radiation. Our findings demonstrate that the selective targeting of butyrate-producing microbiota may provide a novel therapeutic option to enhance tumor radiation sensitivity.
Collapse
Affiliation(s)
- Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuan Zhang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Anukriti Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Rolando Torres
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Steven J. Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Jack A. Gilbert
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| |
Collapse
|
43
|
Min JJ, Thi-Quynh Duong M, Ramar T, You SH, Kang SR. Theranostic Approaches Using Live Bacteria. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
44
|
Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.
Collapse
Affiliation(s)
- Miffy Hok Yan Cheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
45
|
Kelly VW, Liang BK, Sirk SJ. Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synth Biol 2020; 9:3184-3201. [PMID: 33205966 DOI: 10.1021/acssynbio.0c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern medicine has long studied the mechanism and impact of pathogenic microbes on human hosts, but has only recently shifted attention toward the complex and vital roles that commensal and probiotic microbes play in both health and dysbiosis. Fueled by an enhanced appreciation of the human-microbe holobiont, the past decade has yielded countless insights and established many new avenues of investigation in this area. In this review, we discuss advances, limitations, and emerging frontiers for microbes as agents of health maintenance, disease prevention, and cure. We highlight the flexibility of microbial therapeutics across disease states, with special consideration for the rational engineering of microbes toward precision medicine outcomes. As the field advances, we anticipate that tools of synthetic biology will be increasingly employed to engineer functional living therapeutics with the potential to address longstanding limitations of traditional drugs.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin K. Liang
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. Eur J Pharmacol 2020; 887:173596. [PMID: 32979353 DOI: 10.1016/j.ejphar.2020.173596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/02/2023]
Abstract
Bifidobacterium is a nonpathogenic strain of anaerobic bacteria that selectively localizes and proliferates in tumors. It has emerged as a specific carrier of anticancer proteins against malignant tumors. Claudins are tetraspanin transmembrane proteins that form tight junctions. Claudin-4 is overexpressed in certain epithelial malignant cancers. The C-terminal fragment of the Clostridium perfringens enterotoxin (C-CPE), an exotoxin without the cytotoxic domain, strongly binds to claudin-4. The C-CPE fusion toxin (C-CPE-PE23), which targets claudin-4, strongly suppresses tumor growth; however, C-CPE fusion toxins exhibit hepatic toxicity. In this study, we successfully generated a strain of Bifidobacterium longum that secreted C-CPE-PE23 (B. longum-C-CPE-PE23) and was specific to and cross reactive with human and mouse claudin-4. We evaluated the therapeutic potential of this strain against triple-negative breast cancer using a mouse model. C-CPE-PE23 decreased cell viability in a dose-dependent manner in human and mouse breast cancer cell lines. After intravenous injection, Bifidobacterium was specifically distributed in the tumors of mice bearing breast cancer tumors. Moreover, B. longum-C-CPE-PE23 significantly suppressed tumor growth in mice with breast cancer without serious side effects, such as weight loss or hepatic and renal damage. We suggest that B. longum-C-CPE-PE23 is a good candidate for breast cancer treatment. Bifidobacterium could also be used as a drug delivery system for hepatotoxic agents.
Collapse
|
47
|
Irfan M, Delgado RZR, Frias-Lopez J. The Oral Microbiome and Cancer. Front Immunol 2020; 11:591088. [PMID: 33193429 PMCID: PMC7645040 DOI: 10.3389/fimmu.2020.591088] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
48
|
Xu D, Zou W, Luo Y, Gao X, Jiang B, Wang Y, Jiang F, Xiong J, Chen C, Tang Y, Qiao H, Li H, Zou J. Feasibility between Bifidobacteria Targeting and Changes in the Acoustic Environment of tumor Tissue for Synergistic HIFU. Sci Rep 2020; 10:7772. [PMID: 32385414 PMCID: PMC7210962 DOI: 10.1038/s41598-020-64661-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
High intensity focused ultrasound (HIFU) has been recently shown as a rapidly developing new technique for non-invasive ablation of local tumors whose therapeutic efficiency can be significantly improved by changing the tissue acoustic environment (AET). Currently, the method of changing AET is mainly to introduce a medium with high acoustic impedance, but there are some disadvantages such as low retention of the introduced medium in the target area and a short residence time during the process. In our strategy, anaerobic bacterium Bifidobacterium longum (B. longum) which can colonize selectively in hypoxic regions of the animal body was successfully localized and shown to proliferate in the hypoxic zone of tumor tissue, overcoming the above disadvantages. This study aimed to explore the effects of Bifidobacteria on AET (including the structure and acoustic properties of tumor tissues) and HIFU ablation at different time. The results show that the injection of Bifidobacteria increased the collagen fibre number, elastic modulus and sound velocity and decreased neovascularization in tumor tissues. The number of collagen fibres and neovascularization decreased significantly over time. Under the same HIFU irradiation intensity, the B. longum injection increased the coagulative necrosis volume and decreased the energy efficiency factor (EEF). This study confirmed that Bifidobacteria can change the AET and increase the deposition of ultrasonic energy and thereby the efficiency of HIFU. In addition, the time that Bifidobacteria stay in the tumor area after injection is an important factor. This research provides a novel approach for synergistic biologically targeted HIFU therapy.
Collapse
Affiliation(s)
- Die Xu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wenjuan Zou
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Yong Luo
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Gao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Xiong
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Chun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hai Qiao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Huanan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
49
|
Zhang X, Wu L, Xu Y, Yu H, Chen Y, Zhao H, Lei J, Zhou Y, Zhang J, Wang J, Peng J, Jiang L, Sheng H, Li Y. Microbiota-derived SSL6 enhances the sensitivity of hepatocellular carcinoma to sorafenib by down-regulating glycolysis. Cancer Lett 2020; 481:32-44. [PMID: 32246956 DOI: 10.1016/j.canlet.2020.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Enhancing the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib (SFN) is an essential clinical bottleneck to be solved. Here we report that the expression of CD47 negatively correlated with HCC sensitivity to SFN. The microbiota-derived Staphylococcal superantigen-like protein 6 (SSL6) inhibited CD47 and promoted SFN-induced apoptosis of HCC cells Huh-7 and MHCC97H. Mechanistically, the sensitivity of HCC cells to SFN was inhibited by elevated Warburg effect (glycolysis), and SSL6 down-regulated PI3K/Akt-mediated glycolysis by blocking CD47. Knockdown of CD47 also dampened glycolysis and sensitized HCC cells to SFN. Moreover, SFN-resistant HCC cells exhibited enhanced glycolysis and CD47 expression. SSL6 significantly re-sensitized the resistant HCC cells to SFN. More importantly, we identified the anti-tumor effect of SSL6 in combination with SFN in HCC-bearing mice. Our results clarify the mechanism by which SSL6 enhances SFN sensitivity in HCC cells, providing a molecular basis for combination targeted therapy with microbiota-derived SSL6 to treat HCC.
Collapse
Affiliation(s)
- Xiao Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Wu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hua Yu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Chen
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huakan Zhao
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Juan Lei
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Zhou
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiangang Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jingchun Wang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jin Peng
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lu Jiang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Halei Sheng
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
50
|
Wang Y, Chen C, Luo Y, Xiong J, Tang Y, Yang H, Wang L, Jiang F, Gao X, Xu D, Li H, Wang Q, Zou J. Experimental Study of Tumor Therapy Mediated by Multimodal Imaging Based on a Biological Targeting Synergistic Agent. Int J Nanomedicine 2020; 15:1871-1888. [PMID: 32256065 PMCID: PMC7085950 DOI: 10.2147/ijn.s238398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The high-intensity focused ultrasound (HIFU) ablation of tumors is inseparable from synergistic agents and image monitoring, but the existing synergistic agents have the defects of poor targeting and a single imaging mode, which limits the therapeutic effects of HIFU. The construction of a multifunctional biological targeting synergistic agent with high biosafety, multimodal imaging and targeting therapeutic performance has great significance for combating cancer. Methods Multifunctional biological targeting synergistic agent consisting of Bifidobacterium longum (B. longum), ICG and PFH coloaded cationic lipid nanoparticles (CL-ICG-PFH-NPs) were constructed for targeting multimode imaging, synergistic effects with HIFU and imaging-guided ablation of tumors, which was evaluated both in vitro and in vivo. Results Both in vitro and in vivo systematical studies validated that the biological targeting synergistic agent can simultaneously achieve tumor-biotargeted multimodal imaging, HIFU synergism and multimodal image monitoring in HIFU therapy. Importantly, the electrostatic adsorption method and the targeting of B. longum to tumor tissues allow the CL-ICG-PFH-NPs to be retained in the tumor tissue, achieve the targeting ability of synergistic agent. Multimodal imaging chose the best treatment time according to the distribution of nanoparticles in the body to guide the efficient and effective treatment of HIFU. CL-ICG-PFH-NPs could serve as a phase change agent and form microbubbles that can facilitate HIFU ablation by mechanical effects, acoustic streaming and shear stress. This lays a foundation for the imaging and treatment of tumors. Conclusion In this work, a biological targeting synergistic agent was successfully constructed with good stability and physicochemical properties. This biological targeting synergistic agent can not only provide information for early diagnosis of tumors but also realize multimodal imaging monitoring during HIFU ablation simultaneously with HIFU treatment, which improves the shortcomings of HIFU treatment and has broad application prospects.
Collapse
Affiliation(s)
- Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Die Xu
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|