1
|
Badder LM, Davies JA, Meniel VS, Marušková M, Salvador-Barbero B, Bayliss RJ, Phesse TJ, Hogan C, Parker AL. The αvβ6 integrin specific virotherapy, Ad5 NULL-A20.FCU1, selectively delivers potent "in-tumour" chemotherapy to pancreatic ductal adenocarcinoma. Br J Cancer 2024; 131:1694-1706. [PMID: 39369056 PMCID: PMC11555051 DOI: 10.1038/s41416-024-02869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) represent an unmet clinical need. Approximately 90% of PDACs express high levels of αvβ6 integrin. We have previously described Ad5NULL-A20, an adenovirus vector with ablated native means of cell entry and retargeted to αvβ6 integrin by incorporation of an A20 peptide. METHODS Here, we incorporate suicide genes FCY1 and FCU1 encoding for cytosine deaminase (CDase) or a combination of CDase and UPRTase, capable of catalysing a non-toxic prodrug, 5-FC into the chemotherapeutic 5-FU and downstream metabolites, into replication-deficient Ad5 and Ad5NULL-A20. RESULTS We show that Ad5NULL-A20 enables the transfer of suicide genes to αvβ6 integrin-positive PDAC cells which, in combination with 5-FC, results in cell death in vitro which is further mediated by a bystander effect in non-transduced cells. Intratumoural delivery of Ad5NULL-A20.FCU1 in combination with intraperitoneal delivery of 5-FC further results in tumour growth inhibition in a cell line xenograft in vivo. Using clinically-relevant 3D organoid models, we show selective transduction and therapeutic efficacy of FCU1 transgenes in combination with 5-FC. CONCLUSION Taken together these data provide the preclinical rationale for combined Ad5NULL-A20.FCU1 plus 5-FC as a promising targeted therapy to mediate "in-tumour chemotherapy" and merits further investigation for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Luned M Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - James A Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Valerie S Meniel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Rebecca J Bayliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Marquette CA, Petiot E, Spindler A, Ebel C, Nzepa M, Moreau B, Erbs P, Balloul JM, Quemeneur E, Zaupa C. 3D bioprinted CRC model brings to light the replication necessity of an oncolytic vaccinia virus encoding FCU1 gene to exert an efficient anti-tumoral activity. Front Oncol 2024; 14:1384499. [PMID: 39091906 PMCID: PMC11292208 DOI: 10.3389/fonc.2024.1384499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The oncolytic virus represents a promising therapeutic strategy involving the targeted replication of viruses to eliminate cancer cells, while preserving healthy ones. Despite ongoing clinical trials, this approach encounters significant challenges. This study delves into the interaction between an oncolytic virus and extracellular matrix mimics (ECM mimics). A three-dimensional colorectal cancer model, enriched with ECM mimics through bioprinting, was subjected to infection by an oncolytic virus derived from the vaccinia virus (oVV). The investigation revealed prolonged expression and sustained oVV production. However, the absence of a significant antitumor effect suggested that the virus's progression toward non-infected tumoral clusters was hindered by the ECM mimics. Effective elimination of tumoral cells was achieved by introducing an oVV expressing FCU1 (an enzyme converting the prodrug 5-FC into the chemotherapeutic compound 5-FU) alongside 5-FC. Notably, this efficacy was absent when using a non-replicative vaccinia virus expressing FCU1. Our findings underscore then the crucial role of oVV proliferation in a complex ECM mimics. Its proliferation facilitates payload expression and generates a bystander effect to eradicate tumors. Additionally, this study emphasizes the utility of 3D bioprinting for assessing ECM mimics impact on oVV and demonstrates how enhancing oVV capabilities allows overcoming these barriers. This showcases the potential of 3D bioprinting technology in designing purpose-fit models for such investigations.
Collapse
Affiliation(s)
- Christophe A. Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne, France
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne, France
| | | | | | - Mael Nzepa
- Transgene SA, Illkirch-Graffenstaden, France
| | | | | | | | | | | |
Collapse
|
3
|
Crausaz M, Monneret G, Conti F, Lukaszewicz AC, Marchand JB, Martin P, Inchauspé G, Venet F. A novel virotherapy encoding human interleukin-7 improves ex vivo T lymphocyte functions in immunosuppressed patients with septic shock and critically ill COVID-19. Front Immunol 2022; 13:939899. [PMID: 36045686 PMCID: PMC9422896 DOI: 10.3389/fimmu.2022.939899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
A majority of patients with sepsis surviving the first days in intensive care units (ICU) enter a state of immunosuppression contributing to their worsening. A novel virotherapy based on the non-propagative Modified Virus Ankara (MVA) expressing the human interleukin-7 (hIL-7) cytokine fused to an Fc fragment, MVA-hIL-7-Fc, was developed and shown to enhance innate and adaptive immunity and confer survival advantages in murine sepsis models. Here, we assessed the capacity of hIL-7-Fc produced by the MVA-hIL-7-Fc to improve ex vivo T lymphocyte functions from ICU patients with sepsis. Primary hepatocytes were transduced with the MVA-hIL-7-Fc or an empty MVA, and cell supernatants containing the secreted hIL-7-Fc were harvested for in vitro and ex vivo studies. Whole blood from ICU patients [septic shock = 15, coronavirus disease 2019 (COVID-19) = 30] and healthy donors (n = 36) was collected. STAT5 phosphorylation, cytokine production, and cell proliferation were assessed upon T cell receptor (TCR) stimulation in presence of MVA-hIL-7-Fc-infected cell supernatants. Cells infected by MVA-hIL-7-Fc produced a dimeric, glycosylated, and biologically active hIL-7-Fc. Cell supernatants containing the expressed hIL-7-Fc triggered the IL-7 pathway in T lymphocytes as evidenced by the increased STAT5 phosphorylation in CD3+ cells from patients and healthy donors. The secreted hIL-7-Fc improved Interferon-γ (IFN-γ) and/or Tumor necrosis factor-α (TNF-α) productions and CD4+ and CD8+ T lymphocyte proliferation after TCR stimulation in patients with bacterial and viral sepsis. This study demonstrates the capacity of the novel MVA-hIL-7-Fc-based virotherapy to restore ex vivo T cells immune functions in ICU patients with sepsis and COVID-19, further supporting its clinical development.
Collapse
Affiliation(s)
- Morgane Crausaz
- Department of Infectious Diseases, Transgene SA, Lyon, France
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie, Lyon, France
| | - Filippo Conti
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 Pathophysiology of injury-induced immunosuppression (PI3), Lyon 1 University/Hospices Civils de Lyon/bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'anesthésie-réanimation, Lyon, France
| | | | - Perrine Martin
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | | | - Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
4
|
Lélu K, Dubois C, Evlachev A, Crausaz M, Baldazza M, Kehrer N, Brandely R, Schlesinger Y, Silvestre N, Marchand JB, Bastien B, Leung-Theung-Long S, Unsinger J, Martin P, Inchauspé G. Viral Delivery of IL-7 Is a Potent Immunotherapy Stimulating Innate and Adaptive Immunity and Confers Survival in Sepsis Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:99-117. [PMID: 35667841 DOI: 10.4049/jimmunol.2101145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022]
Abstract
Persistence of an immunosuppressive state plays a role in septic patient morbidity and late mortality. Both innate and adaptive pathways are impaired, pointing toward the need for immune interventions targeting both arms of the immune system. We developed a virotherapy using the nonpropagative modified vaccinia virus Ankara (MVA), which harbors the intrinsic capacity to stimulate innate immunity, to deliver IL-7, a potent activator of adaptive immunity. The rMVA-human IL-7 (hIL-7)-Fc encoding the hIL-7 fused to the human IgG2-Fc was engineered and shown to express a dimeric, glycosylated, and biologically active cytokine. Following a single i.v. injection in naive mice, the MVA-hIL-7-Fc increased the number of total and activated B, T, and NK cells but also myeloid subpopulations (Ly6Chigh, Ly6Cint, and Ly6Cneg cells) in both lung and spleen. It triggered differentiation of T cells in central memory, effector memory, and acute effector phenotypes and enhanced polyfunctionality of T cells, notably the number of IFN-γ-producing cells. The MVA vector contributed significantly to immune cell activation, particularly of NK cells. The MVA-hIL-7-Fc conferred a significant survival advantage in the cecal ligation and puncture (CLP) and Candida albicans sepsis models. It significantly increased cell numbers and activation in both spleen and lung of CLP mice. Comparatively, in naive and CLP mice, the rhIL-7-Fc soluble counterpart overall induced less vigorous, shorter lasting, and narrower immune activities than did the MVA-hIL-7-Fc and favored TNF-α-producing cells. The MVA-hIL-7-Fc represents a novel class of immunotherapeutic with clinical potential for treatment of septic patients.
Collapse
Affiliation(s)
- Karine Lélu
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Clarisse Dubois
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Alexei Evlachev
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Morgane Crausaz
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Marie Baldazza
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Nadine Kehrer
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | - Renée Brandely
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | - Yasmin Schlesinger
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | - Nathalie Silvestre
- Department of Vectorology, Transgene SA, Illkirch-Graffenstraden, France
| | | | - Bérangère Bastien
- Department of Medical Affairs, Transgene SA, Illkirch-Graffenstraden, France
| | | | - Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO.,Department of Medicine, Washington University School of Medicine, St. Louis, MO; and.,Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Perrine Martin
- Department of Infectious Diseases, Transgene SA, Lyon, France
| | | |
Collapse
|
5
|
Ramos RN, Tosch C, Kotsias F, Claudepierre MC, Schmitt D, Remy-Ziller C, Hoffmann C, Ricordel M, Nourtier V, Farine I, Laruelle L, Hortelano J, Spring-Giusti C, Sedlik C, Le Tourneau C, Hoffmann C, Silvestre N, Erbs P, Bendjama K, Thioudellet C, Quemeneur E, Piaggio E, Rittner K. Pseudocowpox virus, a novel vector to enhance the therapeutic efficacy of antitumor vaccination. Clin Transl Immunology 2022; 11:e1392. [PMID: 35573979 PMCID: PMC9081486 DOI: 10.1002/cti2.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022] Open
Abstract
Objective Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T‐cell response. Methods We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN‐α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN‐α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC‐induced T‐cell suppression, without being offensive to activated T cells. A PCPV‐based vaccine, encoding the HPV16 E7 protein (PCPV‐E7), stimulated strong antigen‐specific T‐cell responses in TC1 tumor‐bearing mice. Complete regression of tumors was obtained in a CD8+ T‐cell‐dependent manner after intratumoral injection of PCPV‐E7, followed by intravenous injection of the cancer vaccine MVA‐E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor‐bearing mice, generating tumor‐specific T‐cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV‐E7 effectively stimulated IFN‐γ production by T cells from tumor‐draining lymph nodes of HPV+‐infected cancer patients. Conclusion We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime‐boost regimens.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Present address: Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) São Paulo Brazil.,Present address: Instituto D'Or de Ensino e Pesquisa São Paulo Brazil
| | | | - Fiorella Kotsias
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | | | | | | | | | | | | | | | | | | | | - Christine Sedlik
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i) Institut Curie Paris and Saint-Cloud France
| | - Caroline Hoffmann
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Department of Surgical Oncology Institut Curie PSL Research University Paris France
| | | | | | | | | | | | - Eliane Piaggio
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | |
Collapse
|
6
|
Béguin J, Gantzer M, Farine I, Foloppe J, Klonjkowski B, Maurey C, Quéméneur É, Erbs P. Safety, biodistribution and viral shedding of oncolytic vaccinia virus TG6002 administered intravenously in healthy beagle dogs. Sci Rep 2021; 11:2209. [PMID: 33500518 PMCID: PMC7838210 DOI: 10.1038/s41598-021-81831-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Oncolytic virotherapy is an emerging strategy that uses replication-competent viruses to kill tumor cells. We have reported the oncolytic effects of TG6002, a recombinant oncolytic vaccinia virus, in preclinical human xenograft models and canine tumor explants. To assess the safety, biodistribution and shedding of TG6002 administered by the intravenous route, we conducted a study in immune-competent healthy dogs. Three dogs each received a single intravenous injection of TG6002 at 105 PFU/kg, 106 PFU/kg or 107 PFU/kg, and one dog received three intravenous injections at 107 PFU/kg. The injections were well tolerated without any clinical, hematological or biochemical adverse events. Viral genomes were only detected in blood at the earliest sampling time point of one-hour post-injection at 107 PFU/kg. Post mortem analyses at day 35 allowed detection of viral DNA in the spleen of the dog which received three injections at 107 PFU/kg. Viral genomes were not detected in the urine, saliva or feces of any dogs. Seven days after the injections, a dose-dependent antibody mediated immune response was identified. In conclusion, intravenous administration of TG6002 shows a good safety profile, supporting the initiation of clinical trials in canine cancer patients as well as further development as a human cancer therapy.
Collapse
Affiliation(s)
- Jérémy Béguin
- Transgene, Illkirch-Graffenstaden, France
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
- Department of Internal Medicine, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | | | | - Bernard Klonjkowski
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Christelle Maurey
- Department of Internal Medicine, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | |
Collapse
|
7
|
Gallardo F, Schmitt D, Brandely R, Brua C, Silvestre N, Findeli A, Foloppe J, Top S, Kappler-Gratias S, Quentin-Froignant C, Morin R, Lagarde JM, Bystricky K, Bertagnoli S, Erbs P. Fluorescent Tagged Vaccinia Virus Genome Allows Rapid and Efficient Measurement of Oncolytic Potential and Discovery of Oncolytic Modulators. Biomedicines 2020; 8:biomedicines8120543. [PMID: 33256205 PMCID: PMC7760631 DOI: 10.3390/biomedicines8120543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
As a live biologic agent, oncolytic vaccinia virus has the ability to target and selectively amplify at tumor sites. We have previously reported that deletion of thymidine kinase and ribonucleotide reductase genes in vaccinia virus can increase the safety and efficacy of the virus. Here, to allow direct visualization of the viral genome in living cells, we incorporated the ANCH target sequence and the OR3-Santaka gene in the double-deleted vaccinia virus. Infection of human tumor cells with ANCHOR3-tagged vaccinia virus enables visualization and quantification of viral genome dynamics in living cells. The results show that the ANCHOR technology permits the measurement of the oncolytic potential of the double deleted vaccinia virus. Quantitative analysis of infection kinetics and of viral DNA replication allow rapid and efficient identification of inhibitors and activators of oncolytic activity. Our results highlight the potential application of the ANCHOR technology to track vaccinia virus and virtually any kind of poxvirus in living cells.
Collapse
Affiliation(s)
- Franck Gallardo
- NeoVirTech SAS, 31106 Toulouse, France; (S.T.); (S.K.-G.); (C.Q.-F.)
- Correspondence: (F.G.); (P.E.)
| | - Doris Schmitt
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Renée Brandely
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Catherine Brua
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Nathalie Silvestre
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Annie Findeli
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Johann Foloppe
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
| | - Sokunthea Top
- NeoVirTech SAS, 31106 Toulouse, France; (S.T.); (S.K.-G.); (C.Q.-F.)
| | | | | | - Renaud Morin
- Imactiv-3D SAS, 31106 Toulouse, France; (R.M.); (J.-M.L.)
| | | | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, UPS, CNRS, 31400 Toulouse, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | | | - Philippe Erbs
- Transgene SA, 67405 Illkirch-Graffenstaden, France; (D.S.); (R.B.); (C.B.); (N.S.); (A.F.); (J.F.)
- Correspondence: (F.G.); (P.E.)
| |
Collapse
|
8
|
Delaunay T, Nader J, Grard M, Farine I, Hedwig V, Foloppe J, Blondy T, Violland M, Pouliquen D, Grégoire M, Boisgerault N, Erbs P, Fonteneau JF. High Oncolytic Activity of a Double-Deleted Vaccinia Virus Copenhagen Strain against Malignant Pleural Mesothelioma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:573-578. [PMID: 32995481 PMCID: PMC7501423 DOI: 10.1016/j.omto.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/19/2020] [Indexed: 12/01/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a cancer of the pleura that lacks efficient treatment. Oncolytic immunotherapy using oncolytic vaccinia virus (VV) may represent an alternative therapeutic approach for the treatment of this malignancy. Here, we studied the oncolytic activity of VV thymidine kinase (TK)-ribonucleotide reductase (RR)-/green fluorescent protein (GFP) against MPM. This virus is a VV from the Copenhagen strain that is deleted of two genes encoding the TK (J2R) and the RR (I4L) and that express the GFP. First, we show in vitro that VVTK-RR-/GFP efficiently infects and kills the twenty-two human MPM cell lines used in this study. We also show that the virus replicates in all eight tested MPM cell lines, however, with approximately a 10-fold difference in the amplification level from one cell line to another. Then, we studied the therapeutic efficiency of VVTK-RR-/GFP in non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice that bear peritoneal human MPM tumors. One intraperitoneal infection of VVTK-RR-/GFP reduces the tumor burden and significantly increases mice survival compared to untreated animals. Thus, VVTK-RR- may be a promising oncolytic virus (OV) for the oncolytic immunotherapy of MPM.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Joelle Nader
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Marion Grard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | | | | | | | - Thibaut Blondy
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Mathilde Violland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Daniel Pouliquen
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | - Nicolas Boisgerault
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| | | | - Jean-François Fonteneau
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.,Labex IGO, Immunology Graft Oncology, 44007 Nantes, France
| |
Collapse
|
9
|
Béguin J, Foloppe J, Maurey C, Laloy E, Hortelano J, Nourtier V, Pichon C, Cochin S, Cordier P, Huet H, Quemeneur E, Klonjkowski B, Erbs P. Preclinical Evaluation of the Oncolytic Vaccinia Virus TG6002 by Translational Research on Canine Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:57-66. [PMID: 33072863 PMCID: PMC7533293 DOI: 10.1016/j.omto.2020.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for the treatment of cancer. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1, which encodes a bifunctional chimeric protein that efficiently catalyzes the direct conversion of the nontoxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. In translational research, canine tumors and especially mammary cancers are relevant surrogates for human cancers and can be used as preclinical models. Here, we report that TG6002 is able to replicate in canine tumor cell lines and is oncolytic in such cells cultured in 2D or 3D as well as canine mammary tumor explants. Furthermore, intratumoral injections of TG6002 lead to inhibition of the proliferation of canine tumor cells grafted into mice. 5-fluorocytosine treatment of mice significantly improves the anti-tumoral activity of TG6002 infection, a finding that can be correlated with its conversion into 5-fluorouracil within infected fresh canine tumor biopsies. In conclusion, our study suggests that TG6002 associated with 5-fluorocytosine is a promising therapy for human and canine cancers.
Collapse
Affiliation(s)
- Jérémy Béguin
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
- Corresponding author: Jérémy Béguin, UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 7 Avenue du Général de Gaulle, Maisons-Alfort 94700, France.
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Maurey
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Eve Laloy
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Julie Hortelano
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Virginie Nourtier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Pichon
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Sandrine Cochin
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Pascale Cordier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Hélène Huet
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Eric Quemeneur
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Bernard Klonjkowski
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Corresponding author: Philippe Erbs, Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France.
| |
Collapse
|
10
|
Foloppe J, Kempf J, Futin N, Kintz J, Cordier P, Pichon C, Findeli A, Vorburger F, Quemeneur E, Erbs P. The Enhanced Tumor Specificity of TG6002, an Armed Oncolytic Vaccinia Virus Deleted in Two Genes Involved in Nucleotide Metabolism. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:1-14. [PMID: 31011628 PMCID: PMC6461584 DOI: 10.1016/j.omto.2019.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
Abstract
Oncolytic vaccinia viruses are currently in clinical development. However, the safety and the tumor selectivity of these oncolytic viruses must be improved. We previously constructed a first-generation oncolytic vaccinia virus by expressing the suicide gene FCU1 inserted in the J2R locus that encodes thymidine kinase. We demonstrated that the combination of this thymidine-kinase-deleted vaccinia virus and the FCU1/5-fluocytosine system is a potent vector for cancer therapy. Here, we developed a second generation of vaccinia virus, named TG6002, expressing FCU1 and with targeted deletions of the J2R gene and the I4L gene, which encodes the large subunit of the ribonucleotide reductase. Compared to the previously used single thymidine-kinase-deleted vaccinia virus, TG6002 is highly attenuated in normal cells, yet it displays tumor-selective replication and tumor cell killing. TG6002 replication is highly dependent on cellular ribonucleotide reductase levels and is less pathogenic than the single-deleted vaccinia virus. Tumor-selective viral replication, prolonged therapeutic levels of 5-fluorouracil in tumors, and significant antitumor effects were observed in multiple human xenograft tumor models after systemic injection of TG6002 and 5-fluorocytosine. TG6002 displays a convincing safety profile and is a promising candidate for treatment of cancer in humans.
Collapse
|
11
|
Ricordel M, Foloppe J, Pichon C, Findeli A, Tosch C, Cordier P, Cochin S, Quémeneur E, Camus-Bouclainville C, Bertagnoli S, Erbs P. Oncolytic properties of non-vaccinia poxviruses. Oncotarget 2018; 9:35891-35906. [PMID: 30542506 PMCID: PMC6267605 DOI: 10.18632/oncotarget.26288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccinia virus, a member of the Poxviridae family, has been extensively used as an oncolytic agent and has entered late stage clinical development. In this study, we evaluated the potential oncolytic properties of other members of the Poxviridae family. Numerous tumor cell lines were infected with ten non-vaccinia poxviruses to identify which virus displayed the most potential as an oncolytic agent. Cell viability indicated that tumor cell lines were differentially susceptible to each virus. Raccoonpox virus was the most potent of the tested poxviruses and was highly effective in controlling cell growth in all tumor cell lines. To investigate further the oncolytic capacity of the Raccoonpox virus, we have generated a thymidine kinase (TK)-deleted recombinant Raccoonpox virus expressing the suicide gene FCU1. This TK-deleted Raccoonpox virus was notably attenuated in normal primary cells but replicated efficiently in numerous tumor cell lines. In human colon cancer xenograft model, a single intratumoral inoculation of the recombinant Raccoonpox virus, in combination with 5-fluorocytosine administration, produced relevant tumor growth control. The results demonstrated significant antitumoral activity of this new modified Raccoonpox virus armed with FCU1 and this virus could be considered to be included into the growing armamentarium of oncolytic virotherapy for cancer.
Collapse
Affiliation(s)
- Marine Ricordel
- Transgene SA, Illkirch-Graffenstaden 67405, France.,Current address: Polyplus-transfection SA, Illkirch-Graffenstaden 67400, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fiedler JD, Fishman MR, Brown SD, Lau J, Finn MG. Multifunctional Enzyme Packaging and Catalysis in the Qβ Protein Nanoparticle. Biomacromolecules 2018; 19:3945-3957. [DOI: 10.1021/acs.biomac.8b00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jason D. Fiedler
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maxwell R. Fishman
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven D. Brown
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jolene Lau
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. G. Finn
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Vaccinia Virus Shuffling: deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers (Basel) 2018; 10:cancers10070231. [PMID: 29996551 PMCID: PMC6070928 DOI: 10.3390/cancers10070231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/04/2023] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising approach for cancer treatment with the potential to be less toxic and more efficient than classic cancer therapies. Various types of OVs in clinical development, including Vaccinia virus (VACV)-derived OVs, have shown good safety profiles, but limited therapeutic efficacy as monotherapy in some cancer models. Many different methods have been employed to improve the oncolytic potency of OVs. In this study, we used a directed evolution process, pooling different strains of VACV, including Copenhagen, Western Reserve and Wyeth strains and the attenuated modified vaccinia virus Ankara (MVA), to generate a new recombinant poxvirus with increased oncolytic properties. Through selective pressure, a chimeric VACV, deVV5, with increased cancer cell killing capacity and tumor selectivity in vitro was derived. The chimeric viral genome contains sequences of all parental strains. To further improve the tumor selectivity and anti-tumor activity of deVV5, we generated a thymidine kinase (TK)-deleted chimeric virus armed with the suicide gene FCU1. This TK-deleted virus, deVV5-fcu1 replicated efficiently in human tumor cells, and was notably attenuated in normal primary cells. These studies demonstrate the potential of directed evolution as an efficient way to generate recombinant poxviruses with increased oncolytic potency, and with high therapeutic index to improve cancer therapy.
Collapse
|
14
|
Husseini F, Delord JP, Fournel-Federico C, Guitton J, Erbs P, Homerin M, Halluard C, Jemming C, Orange C, Limacher JM, Kurtz JE. Vectorized gene therapy of liver tumors: proof-of-concept of TG4023 (MVA-FCU1) in combination with flucytosine. Ann Oncol 2018; 28:169-174. [PMID: 28177438 DOI: 10.1093/annonc/mdw440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background TG4023 is a modified vaccinia virus Ankara (MVA) containing the yeast-originated transgene FCU1, expressing cytosine deaminase and uracil phosphoribosyltransferase enzymes that transform the prodrug flucytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) and 5-fluorouridine-5′-monophosphate, respectively. This first-in-human study aimed to assess the maximum tolerated dose (MTD) of intratumoral (IT) TG4023 and the safety, feasibility, and proof-of-concept (PoC) of TG4023/5-FC combination to deliver high 5-FU concentrations in tumors. Patients and Methods Cancer patients without further therapeutic option and with at least one injectable primary or metastatic liver tumor underwent on day 1 a percutaneous IT injection of TG4023 at doses of 107, 108, or 4.108 plaque forming units (p.f.u.) using ultrasound imaging guidance, after a dose-limiting toxicities (DLTs)-driven 3 + 3 dose-escalating design. On day 2, patients were given intravenous and/or oral 5-FC at a dose of 200 mg/kg/day for 14 days and were followed for safety through day 43. Tumor response was assessed at week 6, according to RECIST. Plasma and tumor 5-FU concentrations were measured to establish the PoC. Results In total, 16 patients completed treatment with TG4023 and 5-FC. One DLT/7 patients (ALT/aspartate aminotransferase transient increase) was observed at 4 × 108 p.f.u.; MTD was therefore not reached. The most frequent adverse events were pyrexia, asthenia, vomiting, and decreased appetite. Eight of 16 patients had stable disease. Mean 5-FU concentrations in plasma were 1.9 ± 2.6 ng/ml and 56 ± 30 ng/g in tumors. Seroconversion for anti-FCU1 antibodies was found for one patient from each cohort (16%, overall). Conclusions This phase I study demonstrated that IT injections of TG4023 were feasible and well tolerated; MTD was defined as 4 × 108 p.f.u. Therapeutic 5-FU concentrations in tumors established the virus-directed enzyme-prodrug therapy PoC. Clinicaltrials.gov Number NCT00978107.
Collapse
Affiliation(s)
- F Husseini
- Onco-Hematology and Immunology Department, Pasteur Hospital, Colmar
| | - J-P Delord
- Clinical Research Unit, University Institute of Cancer, Oncopole, Toulouse
| | | | - J Guitton
- Laboratory of Therapeutic Targeting in Oncology, Biology Center South, Lyon-Sud Hospital, Pierre-Bénite
| | - P Erbs
- Departments of Oncolytic Virus Research
| | - M Homerin
- Medical Affairs, Transgene SA, Illkirch-Graffenstaden
| | - C Halluard
- Medical Affairs, Transgene SA, Illkirch-Graffenstaden
| | - C Jemming
- Medical Affairs, Transgene SA, Illkirch-Graffenstaden
| | - C Orange
- Medical Affairs, Transgene SA, Illkirch-Graffenstaden
| | - J-M Limacher
- Medical Affairs, Transgene SA, Illkirch-Graffenstaden
| | - J-E Kurtz
- Hematology and Oncology Department, University Hospitals of Strasbourg, Hautepierre Hospital, Strasbourg, France
| |
Collapse
|
15
|
Ricordel M, Foloppe J, Pichon C, Sfrontato N, Antoine D, Tosch C, Cochin S, Cordier P, Quemeneur E, Camus-Bouclainville C, Bertagnoli S, Erbs P. Cowpox Virus: A New and Armed Oncolytic Poxvirus. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:1-11. [PMID: 28951885 PMCID: PMC5607123 DOI: 10.1016/j.omto.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
Oncolytic virus therapy has recently been recognized as a promising new therapeutic approach for cancer treatment. In this study, we are proposing for the first time to evaluate the in vitro and in vivo oncolytic capacities of the Cowpox virus (CPXV). To improve the tumor selectivity and oncolytic activity, we developed a thymidine kinase (TK)-deleted CPXV expressing the suicide gene FCU1, which converts the non-toxic prodrug 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) and 5-fluorouridine-5′-monophosphate (5-FUMP). This TK-deleted virus replicated efficiently in human tumor cell lines; however, it was notably attenuated in normal primary cells, thus displaying a good therapeutic index. Furthermore, this new recombinant poxvirus rendered cells sensitive to 5-FC. In vivo, after systemic injection in mice, the TK-deleted variant caused significantly less mortality than the wild-type strain. A biodistribution study demonstrated high tumor selectivity and low accumulation in normal tissues. In human xenograft models of solid tumors, the recombinant CPXV also displayed high replication, inducing relevant tumor growth inhibition. This anti-tumor effect was improved by 5-FC co-administration. These results demonstrated that CPXV is a promising oncolytic vector capable of expressing functional therapeutic transgenes.
Collapse
Affiliation(s)
- Marine Ricordel
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Johann Foloppe
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Christelle Pichon
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Nathalie Sfrontato
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Delphine Antoine
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Caroline Tosch
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Sandrine Cochin
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Pascale Cordier
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Eric Quemeneur
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | | | | | - Philippe Erbs
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| |
Collapse
|
16
|
Haddad D. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery. Front Oncol 2017; 7:96. [PMID: 28589082 PMCID: PMC5440573 DOI: 10.3389/fonc.2017.00096] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 01/08/2023] Open
Abstract
Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV) strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy.
Collapse
Affiliation(s)
- Dana Haddad
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Heinrich B, Klein J, Delic M, Goepfert K, Engel V, Geberzahn L, Lusky M, Erbs P, Preville X, Moehler M. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes. Onco Targets Ther 2017; 10:2389-2401. [PMID: 28496337 PMCID: PMC5422459 DOI: 10.2147/ott.s126320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP) and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF) or transforming 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU). We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs) and the interaction with the autologous cytotoxic T lymphocyte (CTL) clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1), markers of immunogenic cell death (ICD), could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse melanoma cells and induce additional immunostimulatory effects to promote antitumor immune response. Further investigation in vivo is needed to consolidate the data.
Collapse
Affiliation(s)
- B Heinrich
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - J Klein
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Delic
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - K Goepfert
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - V Engel
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - L Geberzahn
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Lusky
- Transgene SA, Illkirch-Graffenstaden
| | - P Erbs
- Transgene SA, Illkirch-Graffenstaden
| | | | - M Moehler
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
18
|
Wang J, Arulanandam R, Wassenaar R, Falls T, Petryk J, Paget J, Garson K, Cemeus C, Vanderhyden BC, Wells RG, Bell JC, Le Boeuf F. Enhancing Expression of Functional Human Sodium Iodide Symporter and Somatostatin Receptor in Recombinant Oncolytic Vaccinia Virus for In Vivo Imaging of Tumors. J Nucl Med 2016; 58:221-227. [PMID: 27635026 DOI: 10.2967/jnumed.116.180463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a novel tool in our therapeutic arsenals for fighting cancer. As a live biologic agent, OV has the ability to target and selectively amplify at the tumor sites. We have reported that a vaccinia-based OV (Pexa-Vec) has shown good efficacy in preclinical models and in clinical trials. To give an additional tool to clinicians to allow both treatment of the tumor and improved visualization of tumor margins, we developed new viral-based platforms with 2 specific gene reporters. METHODS We incorporated the human sodium iodide symporter (hNIS) and the human somatostatin receptor 2 (hSSR2) in the vaccinia-based OV and tested viral constructs for their abilities to track and treat tumor development in vivo. RESULTS Early and high-level expression of hNIS is detrimental to the recombinant virus, leading to the aggregation of hNIS protein and early cell death. Putting hNIS under a late synthetic promoter allowed a higher functional expression of the protein and much stronger 123I or 99Tc uptake. In vivo, the hNIS-containing virus infected and amplified in the tumor site, showing a better efficacy than the parental virus. The hNIS expression at the tumor site allowed for the imaging of viral infection and tumor regression. Similarly, hSSR2-containing OV vaccinia infected and lysed cancer cells. CONCLUSION When tumor-bearing mice were given hNIS- and hSSR2-containing OV, 99Tc and 111In signals coalesced at the tumor, highlighting the power of using these viruses for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahu Wang
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Richard Wassenaar
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Theresa Falls
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Julia Petryk
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Judith Paget
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Garson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Catia Cemeus
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - R Glenn Wells
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fabrice Le Boeuf
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus. Mol Ther 2016; 24:1627-33. [PMID: 27375160 PMCID: PMC5113106 DOI: 10.1038/mt.2016.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/21/2016] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P < 0.0001) or 10,000-fold (P < 0.001), respectively. Similar increases in the number of vaccinia virus genomes recovered from tumors were also observed. In survival studies, the application of cup mediated cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV.
Collapse
|
21
|
Fend L, Remy-Ziller C, Foloppe J, Kempf J, Cochin S, Barraud L, Accart N, Erbs P, Fournel S, Préville X. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology 2015; 5:e1080414. [PMID: 27057460 PMCID: PMC4801465 DOI: 10.1080/2162402x.2015.1080414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Oncolytic virotherapy is an emergent promising therapeutic approach for the treatment of cancer. We have constructed a vaccinia virus (WR strain) deleted for thymidine kinase (TK) and ribonucleotide reductase (RR) genes that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. We evaluated this construct (VV-FCU1) in the orthotopic model of renal carcinoma (RenCa). Systemic administration of VV-FCU1 resulted in orthotopic tumor growth inhibition, despite temporary expression of viral proteins. VV-FCU1 treatment was associated with an infiltration of tumors by CD8+ T lymphocytes and a decrease in the proportion of infiltrating Tregs, thus modifying the ratio of CD8+/CD4+ Treg in favor of CD8+cytotoxic T cells. We demonstrated that VV-FCU1 treatment prolonged survival of animals implanted with RenCa cells in kidney. Depletion of CD8+ T cells abolished the therapeutic effect of VV-FCU1 while depletion of CD4+ T cells enhanced its protective activity. Administration of the prodrug 5-fluorocytosine (5-FC) resulted in a sustained control of tumor growth but did not extend survival. This study shows the importance of CD4+ and CD8+ T cells in vaccinia virus-mediated oncolytic virotherapy and suggests that this approach may be evaluated for the treatment of human renal cell carcinoma.
Collapse
Affiliation(s)
- Laetitia Fend
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Christelle Remy-Ziller
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Johann Foloppe
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Juliette Kempf
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Sandrine Cochin
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Luc Barraud
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Nathalie Accart
- Novartis Institutes for Biomedical Research, Analytical Sciences and Imaging , WSJ386, Basel, Switzerland
| | - Philippe Erbs
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Sylvie Fournel
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Biovectorologie, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie , 74 Route du Rhin- BP60024 , Illkirch-Graffenstaden Cedex, France
| | - Xavier Préville
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| |
Collapse
|
22
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
23
|
Acres B, Bonnefoy JY. Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev Vaccines 2014; 7:889-93. [DOI: 10.1586/14760584.7.7.889] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
25
|
Lange S, Lampe J, Bossow S, Zimmermann M, Neubert W, Bitzer M, Lauer UM. A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Hum Gene Ther 2013; 24:554-64. [PMID: 23550539 DOI: 10.1089/hum.2012.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cholangiocarcinoma (CC) is curable only in early stages by complete surgical resection. Thus, in advanced disease stages in which a complete removal of the tumor mass is no longer possible and palliative chemotherapy achieves only modest success, therapeutics employing new methods of action are desperately needed. Oncolytic viruses employed in clinical studies have been shown to spread preferentially in cancer cells. Beyond that, virotherapeutic cell killing can be enhanced by virus-based expression of suicide genes. We engineered a measles vaccine virus (MeV) vector expressing super cytosine deaminase (SCD), a fusion protein of yeast cytosine deaminase and uracil phosphoribosyltransferase, which converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) and subsequently to 5-fluorouridine-monophosphate. This novel vector was evaluated using three different human-derived CC cell lines. In vitro, all CC cell lines were found to be permissive to MeV infection. Partial blocking of MeV-mediated oncolysis could be overcome by employment of the SCD transgene together with administration of 5-FC. In vivo, intratumoral application of SCD-armed MeV together with a systemic 5-FC treatment showed a significant reduction in tumor size in a TFK-1 xenograft mouse model when compared with virus-only treatment. In a second animal experiment employing a HuCCT1 xenograft tumor model, an enhanced SCD-armed MeV vector, in which the SCD transgene was expressed from a different genomic position, led not only to reduced tumor volumes, but also to a significant survival benefit. On the basis of these encouraging preclinical data on employment of SCD-armed MeV for the virotherapeutic treatment of chemotherapy-resistant CC, a clinical virotherapy trial is set up currently.
Collapse
Affiliation(s)
- Sebastian Lange
- Department of Gastroenterology and Hepatology, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
The immunogenicity of the tumor-associated antigen α-fetoprotein is enhanced by a fusion with a transmembrane domain. J Biomed Biotechnol 2012; 2012:878657. [PMID: 22500109 PMCID: PMC3304459 DOI: 10.1155/2012/878657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/16/2023] Open
Abstract
Aim. To investigate the ability of recombinant modified vaccinia virus Ankara (rMVA) vector to induce an immune response against a well-tolerated self-antigen. Methods. rMVA vectors expressing different form of α-fetoprotein (AFP) were produced and characterized. Naïve mice were vaccinated with MVA vectors expressing the AFP antigen in either a secreted, or a membrane-bound, or an intracellular form. The immune response was monitored by an IFNΓ ELISpot assay and antibody detection. Results. Vaccination with the membrane-associated form of AFP induced a stronger CD8+ T-cell response compared to the ones obtained with the MVA encoding the secreted or the intracellular forms of AFP. Moreover, the vaccination with the membrane-bound AFP elicited the production of AFP-specific antibodies. Conclusions. The AFP transmembrane form is more immunogenic. Expressing a membrane-bound form in the context of an MVA vaccination could enhance the immunogenicity of a self-antigen.
Collapse
|
27
|
Rintoul JL, Wang J, Gammon DB, van Buuren NJ, Garson K, Jardine K, Barry M, Evans DH, Bell JC. A selectable and excisable marker system for the rapid creation of recombinant poxviruses. PLoS One 2011; 6:e24643. [PMID: 21931792 PMCID: PMC3169633 DOI: 10.1371/journal.pone.0024643] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 08/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene. CONCLUSION/SIGNIFICANCE The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications.
Collapse
Affiliation(s)
- Julia L. Rintoul
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Jiahu Wang
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Don B. Gammon
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Nicholas J. van Buuren
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Kenneth Garson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Karen Jardine
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michele Barry
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - John C. Bell
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
- * E-mail:
| |
Collapse
|
28
|
Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JDI. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest 2011; 29:501-10. [PMID: 21843052 PMCID: PMC3260009 DOI: 10.3109/07357907.2011.606248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The p53 gene product is an attractive target for tumor immunotherapy. The present study aims to understand the potential of MVAp53 vaccine to induce expansion of p53-specific cytotoxic T lymphocyte ex vivo in cancer patients. The result indicated that 14 of 23 cancer patients demonstrated p53-specific IFN-γ production, degranulation, cell proliferation, and lysis of p53 overexpressed human tumor cell lines. These experiments show that MVAp53 stimulation has the potential to induce the expansion of p53-specific cytotoxic T lymphocyte from the memory T cell repertoire. The data suggest that MVAp53 vaccine is an ideal candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Yun Song
- Division of Translational Vaccine Research, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
Guse K, Cerullo V, Hemminki A. Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther 2011; 11:595-608. [DOI: 10.1517/14712598.2011.558838] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Seubert CM, Stritzker J, Hess M, Donat U, Sturm JB, Chen N, Hof JMV, Krewer B, Tietze LF, Gentschev I, Szalay AA. Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a β-galactosidase-activatable prodrug seco-analog of duocarmycin SA. Cancer Gene Ther 2011; 18:42-52. [PMID: 20829890 PMCID: PMC3007590 DOI: 10.1038/cgt.2010.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 05/10/2010] [Accepted: 07/19/2010] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cause of cancer-related death worldwide, thus remaining a crucial health problem among women despite advances in conventional therapy. Therefore, new alternative strategies are needed for effective diagnosis and treatment. One approach is the use of oncolytic viruses for gene-directed enzyme prodrug therapy. Here, the lacZ-carrying vaccinia virus (VACV) strain GLV-1h68 was used in combination with a β-galactosidase-activatable prodrug derived from a seco-analog of the natural antibiotic duocarmycin SA. Tumor cell infection with the VACV strain GLV-1h68 led to production of β-galactosidase, essential for the conversion of the prodrug to the toxic compound. Furthermore, drug-dependent cell kill and induction of the intrinsic apoptosis pathway in tumor cells was also observed on combination therapy using the prodrug and the GLV-1h68 strain, despite the fact that VACV strains encode antiapoptotic proteins. Moreover, GI-101A breast cancer xenografts were effectively treated by the combination therapy. In conclusion, the combination of a β-galactosidase-activatable prodrug with a tumor-specific vaccinica virus strain encoding this enzyme, induced apoptosis in cultures of the human GI-101A breast cancer cells, in which a synergistic oncolytic effect was observed. Moreover, in vivo, additional prodrug treatment had beneficial effects on tumor regression in GLV-1h68-treated GI-101A-xenografted mice.
Collapse
Affiliation(s)
- C M Seubert
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - J Stritzker
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Genelux Corporation, San Diego, CA, USA
| | - M Hess
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - U Donat
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - J B Sturm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - N Chen
- Genelux Corporation, San Diego, CA, USA
| | - J M von Hof
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - B Krewer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - L F Tietze
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - I Gentschev
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Genelux Corporation, San Diego, CA, USA
| | - A A Szalay
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Genelux Corporation, San Diego, CA, USA
- Department of Radiation Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Dias JD, Liikanen I, Guse K, Foloppe J, Sloniecka M, Diaconu I, Rantanen V, Eriksson M, Hakkarainen T, Lusky M, Erbs P, Escutenaire S, Kanerva A, Pesonen S, Cerullo V, Hemminki A. Targeted Chemotherapy for Head and Neck Cancer with a Chimeric Oncolytic Adenovirus Coding for Bifunctional Suicide Protein FCU1. Clin Cancer Res 2010; 16:2540-9. [DOI: 10.1158/1078-0432.ccr-09-2974] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Breton E, Goetz C, Kintz J, Accart N, Aubertin G, Grellier B, Erbs P, Rooke R, Constantinesco A, Choquet P. In vivo preclinical low-field MRI monitoring of tumor growth following a suicide-gene therapy in an orthotopic mice model of human glioblastoma. C R Biol 2010; 333:220-5. [PMID: 20338540 DOI: 10.1016/j.crvi.2009.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to monitor in vivo with low field MRI growth of a murine orthotopic glioma model following a suicide gene therapy. METHODS The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (MVA) vector encoding for a suicide gene (FCU1) that transforms a non toxic prodrug 5-fluorocytosine (5-FC) to its highly cytotoxic derivatives 5-fluorouracil (5-FU) and 5'-fluorouridine-5'monophosphate (5'-FUMP). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing orthotopic human glioblastoma (U87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n=4), sham group treated with 5-FC only (n=4), sham group with injection of MVA-FCU1 vector only (n=4), therapy group administered with MVA-FCU1 vector and 5-FC (n=4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. RESULTS Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p<0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of MVA-FCU1 vector in combination with 2 weeks per os 5-FC administration was demonstrated. CONCLUSION Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of orthotopic glioblastoma.
Collapse
Affiliation(s)
- Elodie Breton
- Service de biophysique et médecine nucléaire, hôpital de Hautepierre, CHRU de Strasbourg, 1, avenue Molière, 67098 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Positive selection of gene-modified cells increases the efficacy of pancreatic cancer suicide gene therapy. Mol Cancer Ther 2009; 8:3098-107. [DOI: 10.1158/1535-7163.mct-09-0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Hutchens MA, Luker KE, Sonstein J, Núñez G, Curtis JL, Luker GD. Protective effect of Toll-like receptor 4 in pulmonary vaccinia infection. PLoS Pathog 2008; 4:e1000153. [PMID: 18802464 PMCID: PMC2529451 DOI: 10.1371/journal.ppat.1000153] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/13/2008] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses are essential for controlling poxvirus infection. The threat of a bioterrorist attack using Variola major, the smallpox virus, or zoonotic transmission of other poxviruses has renewed interest in understanding interactions between these viruses and their hosts. We recently determined that TLR3 regulates a detrimental innate immune response that enhances replication, morbidity, and mortality in mice in response to vaccinia virus, a model pathogen for studies of poxviruses. To further investigate Toll-like receptor signaling in vaccinia infection, we first focused on TRIF, the only known adapter protein for TLR3. Unexpectedly, bioluminescence imaging showed that mice lacking TRIF are more susceptible to vaccinia infection than wild-type mice. We then focused on TLR4, the other Toll-like receptor that signals through TRIF. Following respiratory infection with vaccinia, mice lacking TLR4 signaling had greater viral replication, hypothermia, and mortality than control animals. The mechanism of TLR4-mediated protection was not due to increased release of proinflammatory cytokines or changes in total numbers of immune cells recruited to the lung. Challenge of primary bone marrow macrophages isolated from TLR4 mutant and control mice suggested that TLR4 recognizes a viral ligand rather than an endogenous ligand. These data establish that TLR4 mediates a protective innate immune response against vaccinia virus, which informs development of new vaccines and therapeutic agents targeted against poxviruses. Toll-like receptors are a class of transmembrane proteins that detect the presence of infectious organisms and activate host innate and adaptive immune responses. Vaccinia virus is the prototypic poxvirus, and it is used as both a model and a vaccine for the virus that causes smallpox. We recently reported that Toll-like receptor 3 (TLR3), which recognizes double-stranded RNA, acts in vaccinia infection in a way that is detrimental to the host. TLR3 relays its signal to the nucleus using the adaptor protein TRIF. In this paper, we report that mice lacking TRIF are more susceptible to vaccinia infection than wild-type controls. TLR4 also uses TRIF to relay its signals. We report our findings that TLR4 has a protective effect in vaccinia infection. Mice with a nonfunctional mutant version of TLR4 are more susceptible to vaccinia infection than wild-type controls. The protection that TLR4 affords is not due to effects on secretion of proinflammatory cytokines or type I interferon, and the receptor also does not uniquely regulate recruitment of white blood cells to the site of infection. Rather, TLR4 recognizes a molecule in or on vaccinia virus to bring about a protective response that may be due to an ability to diminish the degree of inflammation caused by vaccinia infection.
Collapse
Affiliation(s)
- Martha A Hutchens
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | |
Collapse
|
35
|
Prodrug cancer gene therapy. Cancer Lett 2008; 270:191-201. [PMID: 18502571 DOI: 10.1016/j.canlet.2008.04.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 12/26/2022]
Abstract
There is no effective treatment for late stage and metastatic cancers of colorectal, prostate, pancreatic, breast, glioblastoma and melanoma cancers. Novel treatment modalities are needed for these late stage patients because cytotoxic chemotherapy offers only palliation, usually accompanied with systemic toxicities and poor quality of life. Gene directed enzyme prodrug therapy (GDEPT), which concentrates the cytotoxic effect in the tumor site may be one alternative. This review provides an explanation of the GDEPT principle, focusing on the development, application and potential of various GDEPTs. Current gene therapy limitations are in efficient expression of the therapeutic gene and in tumor-specific targeting. Therefore, the current status of research related to the enhancement of in situ GDEPT delivery and tumor-specific targeting of vectors is assessed. Finally, GDEPT versions of stem cell based gene therapy as another potential treatment modality for progressed tumors and metastases are discussed. Combinations of traditional, targeted, and stem cell directed gene therapy could significantly advance the treatment of cancer.
Collapse
|
36
|
Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008; 15:1361-71. [PMID: 18480846 DOI: 10.1038/gt.2008.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have generated a thymidine kinase gene-deleted vaccinia virus (VV) (Copenhagen strain) that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. Intratumoral inoculation of this thymidine kinase gene-deleted VV encoding FCU1 (VV-FCU1) in the presence of systemically administered prodrug 5-fluorocytosine (5-FC) produced statistically significant reductions in the growth of subcutaneous human colon cancer in nude mice compared with thymidine kinase gene-deleted VV treatments or with control 5-fluorouracil alone. A limitation of prodrug therapies has often been the requirement for the direct injection of the virus into relatively large, accessible tumors. Here we demonstrate vector targeting of tumors growing subcutaneously following systemic administration of VV-FCU1. More importantly we also demonstrate that the systemic injection of VV-FCU1 in nude mice bearing orthotopic liver metastasis of a human colon cancer, with concomitant administration of 5-FC, leads to substantial tumor growth retardation. In conclusion, the insertion of the fusion FCU1 suicide gene potentiates the oncolytic efficiency of the thymidine kinase gene-deleted VV and represents a potentially efficient means for gene therapy of distant metastasis from colon and other cancers.
Collapse
|
37
|
Abdullah M, Rahmah AU, Sinskey A, Rha C. Cell engineering and molecular pharming for biopharmaceuticals. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2008; 2:49-61. [PMID: 19662143 PMCID: PMC2709479 DOI: 10.2174/1874104500802010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/20/2008] [Accepted: 04/21/2008] [Indexed: 01/23/2023]
Abstract
Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted.
Collapse
Affiliation(s)
- M.A Abdullah
- Department of Chemical Engineering, Universiti Teknologi Petronas, Tronoh, Perak, Malaysia
| | - Anisa ur Rahmah
- Department of Chemical Engineering, Universiti Teknologi Petronas, Tronoh, Perak, Malaysia
| | - A.J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C.K Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|