1
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami-Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39292199 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Hong Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Michael Sinz
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amin Rostami-Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
- Certara Predictive Technologies, Certara UK, Sheffield, UK
| | | | - Lu Gaohua
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Russell LE, Claw KG, Aagaard KM, Glass SM, Dasgupta K, Nez FL, Haimbaugh A, Maldonato BJ, Yadav J. Insights into pharmacogenetics, drug-gene interactions, and drug-drug-gene interactions. Drug Metab Rev 2024:1-19. [PMID: 39154360 DOI: 10.1080/03602532.2024.2385928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
This review explores genetic contributors to drug interactions, known as drug-gene and drug-drug-gene interactions (DGI and DDGI, respectively). This article is part of a mini-review issue led by the International Society for the Study of Xenobiotics (ISSX) New Investigators Group. Pharmacogenetics (PGx) is the study of the impact of genetic variation on pharmacokinetics (PK), pharmacodynamics (PD), and adverse drug reactions. Genetic variation in pharmacogenes, including drug metabolizing enzymes and drug transporters, is common and can increase the risk of adverse drug events or contribute to reduced efficacy. In this review, we summarize clinically actionable genetic variants, and touch on methodologies such as genotyping patient DNA to identify genetic variation in targeted genes, and deep mutational scanning as a high-throughput in vitro approach to study the impact of genetic variation on protein function and/or expression in vitro. We highlight the utility of physiologically based pharmacokinetic (PBPK) models to integrate genetic and chemical inhibitor and inducer data for more accurate human PK simulations. Additionally, we analyze the limitations of historical ethnic descriptors in pharmacogenomics research. Altogether, the work herein underscores the importance of identifying and understanding complex DGI and DDGIs with the intention to provide better treatment outcomes for patients. We also highlight current barriers to wide-scale implementation of PGx-guided dosing as standard or care in clinical settings.
Collapse
Affiliation(s)
- Laura E Russell
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| | - Katrina G Claw
- Division of Biomedical Informatics and Personalized Medicine, CO Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kaja M Aagaard
- Division of Biomedical Informatics and Personalized Medicine, CO Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah M Glass
- Preclinical Sciences and Translational Safety, Janssen Research &Development, San Diego, CA, USA
| | - Kuheli Dasgupta
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - F Leah Nez
- Division of Biomedical Informatics and Personalized Medicine, CO Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Haimbaugh
- Division of Biomedical Informatics and Personalized Medicine, CO Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| |
Collapse
|
3
|
Hegde PV, Morse BL. Mechanistic Account of Distinct Change in Organic Anion Transporting Polypeptide 1B (OATP1B) Substrate Pharmacokinetics during OATP1B-Mediated Drug-Drug Interactions Using Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos 2024; 52:886-898. [PMID: 38740464 DOI: 10.1124/dmd.124.001708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
The role of transporters in drug clearance is widely acknowledged, directly and indirectly by facilitating tissue/enzyme exposure. Through the latter, transporters also affect volume of distribution. Drug-drug interactions (DDIs) involving organic anion transporting polypeptides (OATPs) 1B1/1B3 and SLCO1B1 pharmacogenetics lead to altered pharmacokinetics of OATP1B substrates; however, several factors may confound direct interpretation of pharmacokinetic parameters from these clinical studies using noncompartmental analysis (NCA). A review of clinical data herein indicates a single dose of OATP1B inhibitor rifampin almost never leads to increased substrate half-life but often a decrease and that most clinical OATP1B substrates are CYP3A4 substrates and/or undergo enterohepatic cycling (EHC). Using hypothetically simple OATP1B substrate physiologically based pharmacokinetic (PBPK) models, simulated effect of rifampin differed from specific OATP1B inhibition due to short rifampin half-life causing dissipation of OATP1B inhibition over time combined with CYP3A4 induction. Calculated using simulated tissue data, volume of distribution indeed decreased with OATP1B inhibition and was expectedly limited to the contribution of liver volume. However, an apparent and counterintuitive effect of rifampin on volume greater than that on clearance resulted for CYP3A4 substrates using NCA. The effect of OATP1B inhibition and rifampin on OATP1B substrate models incorporating EHC plus or minus renal clearance was distinct compared with simpler models. Using PBPK models incorporating reversible lactone metabolism for clinical OATP1B substrates atorvastatin and pitavastatin, DDIs reporting decreased half-life with rifampin were reproduced. These simulations provide an explanation for the distinct change in OATP1B substrate pharmacokinetics observed in clinical studies, including changes in volume of distribution and additional mechanisms. SIGNIFICANCE STATEMENT: Transporters are involved in drug clearance and volume of distribution, and distinct changes in OATP1B substrate pharmacokinetics are observed with OATP1B inhibitor rifampin. Using hypothetical and validated PBPK models and simulations, this study addresses the limitations of single-dose rifampin and complicated clinical OATP1B substrate disposition in evaluating the pharmacokinetic parameters of OATP1B substrates during rifampin drug-drug interactions (DDIs). These models account for change in volume of distribution and identify additional mechanisms underlying apparent pharmacokinetic changes in OATP1B DDIs.
Collapse
Affiliation(s)
- Pooja V Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Bridget L Morse
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
4
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
5
|
Liang X, Koleske ML, Yang J, Lai Y. Building a Predictive PBPK Model for Human OATP Substrates: a Strategic Framework for Early Evaluation of Clinical Pharmacokinetic Variations Using Pitavastatin as an Example. AAPS J 2024; 26:13. [PMID: 38182946 DOI: 10.1208/s12248-023-00882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (Vss). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CLint,active, CLint,passive, and CLint,bile, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized Ki values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Megan L Koleske
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Jesse Yang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA.
| |
Collapse
|
6
|
Bigossi M, Maroteau C, Dawed AY, Taylor A, Srinivasan S, Melhem AL, Pearson ER, Pola R, Palmer CNA, Siddiqui MK. A gene risk score using missense variants in SLCO1B1 is associated with earlier onset statin intolerance. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:536-545. [PMID: 37253618 PMCID: PMC10509567 DOI: 10.1093/ehjcvp/pvad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS The efficacy of statin therapy is hindered by intolerance to the therapy, leading to discontinuation. Variants in SLCO1B1, which encodes the hepatic transporter OATB1B1, influence statin pharmacokinetics, resulting in altered plasma concentrations of the drug and its metabolites. Current pharmacogenetic guidelines require sequencing of the SLCO1B1 gene, which is more expensive and less accessible than genotyping. In this study, we aimed to develop an easy, clinically implementable functional gene risk score (GRS) of common variants in SLCO1B1 to identify patients at risk of statin intolerance. METHODS AND RESULTS A GRS was developed from four common variants in SLCO1B1. In statin users from Tayside, Scotland, UK, those with a high-risk GRS had increased odds across three phenotypes of statin intolerance [general statin intolerance (GSI): ORGSI 2.42; 95% confidence interval (CI): 1.29-4.31, P = 0.003; statin-related myopathy: ORSRM 2.51; 95% CI: 1.28-4.53, P = 0.004; statin-related suspected rhabdomyolysis: ORSRSR 2.85; 95% CI: 1.03-6.65, P = 0.02]. In contrast, using the Val174Ala genotype alone or the recommended OATP1B1 functional phenotypes produced weaker and less reliable results. A meta-analysis with results from adjudicated cases of statin-induced myopathy in the PREDICTION-ADR Consortium confirmed these findings (ORVal174Ala 1.99; 95% CI: 1.01-3.95, P = 0.048; ORGRS 1.76; 95% CI: 1.16-2.69, P = 0.008). For those requiring high-dose statin therapy, the high-risk GRS was more consistently associated with the time to onset of statin intolerance amongst the three phenotypes compared with Val174Ala (GSI: HRVal174Ala 2.49; 95% CI: 1.09-5.68, P = 0.03; HRGRS 2.44; 95% CI: 1.46-4.08, P < 0.001). Finally, sequence kernel association testing confirmed that rare variants in SLCO1B1 are associated with the risk of intolerance (P = 0.02). CONCLUSION We provide evidence that a GRS based on four common SLCO1B1 variants provides an easily implemented genetic tool that is more reliable than the current recommended practice in estimating the risk and predicting early-onset statin intolerance.
Collapse
Affiliation(s)
- Margherita Bigossi
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Cyrielle Maroteau
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford OX3 7FZ, UK
| | - Adem Y Dawed
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alasdair Taylor
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Sundararajan Srinivasan
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alaa’ Lufti Melhem
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Ewan R Pearson
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Colin N A Palmer
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Moneeza K Siddiqui
- Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, DundeeDD1 9SY, UK
| |
Collapse
|
7
|
Marzolini C, Cavassini M, Braun DL, Hachfeld A, Bernasconi E, Calmy A, Schmid P, Battegay M, Elzi L. Effect of SLCO1B1 c.521T>C polymorphism on the lipid response to statins in people living with HIV on a boosted protease inhibitor-containing regimen. Br J Clin Pharmacol 2023; 89:2739-2746. [PMID: 37101315 DOI: 10.1111/bcp.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS We previously observed that some individuals on HIV boosted protease inhibitor-containing regimen do not achieve their lipid targets despite elevated statin concentrations. This study evaluated whether the common single polymorphism c.521T>C in SLCO1B1, associated with reduced statin uptake in the liver, could explain this observation. METHODS People living with HIV in the Swiss HIV Cohort Study were eligible if they were on a boosted protease inhibitor concomitantly with a statin for at least 6 months and if their SLCO1B1 genotype was available. Furthermore, their lipids had to be documented before and after the introduction of the statin. The statin efficacy was defined as % change in total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol and triglycerides levels after statin initiation compared to pretreatment levels. Lipid response was adjusted for differences in potency and dose between statins. RESULTS In total, 88 people living with HIV were included, of whom 58, 28 and 2 carried the SLCO1B1 TT, TC and CC genotypes, respectively. The change in lipid levels after statin initiation tended to be lower in carriers of the polymorphism although the difference was not statistically significant (TT vs. TC/CC: total cholesterol: -11.7 vs. -4.8%; low-density lipoprotein- cholesterol: -20.6 vs. -7.4%; high-density lipoprotein-cholesterol: 1.6 vs. 0%; triglycerides: -11.5 vs. -7.9%). In the multiple linear regression, change in total cholesterol was inversely correlated with the total cholesterol level prestatin treatment (coefficient -6.60, 95% confidence interval: -9.63 to -3.56, P < .001). CONCLUSION The lipid-lowering effect of statins tended to be attenuated by SLCO1B1 polymorphism and progressively declined as total cholesterol under the boosted protease inhibitor treatment decreased.
Collapse
Affiliation(s)
- Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Anna Hachfeld
- Department of Infectious Diseases, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Patrick Schmid
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luigia Elzi
- Division of Infectious Diseases, Regional Hospital Bellinzona, Bellinzona, Switzerland
| |
Collapse
|
8
|
Jeon Y, Kwon SM, Rhee H, Yoo JE, Chung T, Woo HG, Park YN. Molecular and radiopathologic spectrum between HCC and intrahepatic cholangiocarcinoma. Hepatology 2023; 77:92-108. [PMID: 35124821 DOI: 10.1002/hep.32397] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Primary liver cancers (LCs), including HCC and intrahepatic cholangiocarcinoma (iCCA), are derived from a common developmental lineage, conferring a molecular spectrum between them. To elucidate the molecular spectrum, we performed an integrative analysis of transcriptome profiles associated with patients' radiopathologic features. APPROACH AND RESULTS We identified four LC subtypes (LC1-LC4) from RNA-sequencing profiles, revealing intermediate subtypes between HCC and iCCA. LC1 is a typical HCC characterized by active bile acid metabolism, telomerase reverse transcriptase promoter mutations, and high uptake of gadoxetic acid in MRI. LC2 is an iCCA-like HCC characterized by expression of the progenitor cell-like trait, tumor protein p53 mutations, and rim arterial-phase hyperenhancement in MRI. LC3 is an HCC-like iCCA, mainly small duct (SD) type, associated with HCC-related etiologic factors. LC4 is further subclassified into LC4-SD and LC4-large duct iCCAs according to the pathological features, which exhibited distinct genetic variations (e.g., KRAS , isocitrate dehydrogenase 1/2 mutation, and FGF receptor 2 fusion), stromal type, and prognostic outcomes. CONCLUSIONS Our integrated view of the molecular spectrum of LCs can identify subtypes associated with transcriptomic, genomic, and radiopathologic features, providing mechanistic insights into heterogeneous LC progression.
Collapse
Affiliation(s)
- Youngsic Jeon
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung , Republic of Korea
| | - So Mee Kwon
- Department of Physiology , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Taek Chung
- Department of Biomedical Systems Informatics , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology , Ajou University School of Medicine , Suwon , Republic of Korea
- Department of Biomedical Science , Graduate School , Ajou University , Suwon , Republic of Korea
| | - Young Nyun Park
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
9
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
10
|
Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metab Pharmacokinet 2022; 44:100449. [DOI: 10.1016/j.dmpk.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
11
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Deng F, Tuomi SK, Neuvonen M, Hirvensalo P, Kulju S, Wenzel C, Oswald S, Filppula AM, Niemi M. Comparative Hepatic and Intestinal Efflux Transport of Statins. Drug Metab Dispos 2021; 49:750-759. [PMID: 34162690 DOI: 10.1124/dmd.121.000430] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that lipid-lowering statins are transported by various ATP-binding cassette (ABC) transporters. However, because of varying methods, it is difficult to compare the transport profiles of statins. Therefore, we investigated the transport of 10 statins or statin metabolites by six ABC transporters using human embryonic kidney cell-derived membrane vesicles. The transporter protein expression levels in the vesicles were quantified with liquid chromatography-tandem mass spectrometry and used to scale the measured clearances to tissue levels. In our study, apically expressed breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp) transported atorvastatin, fluvastatin, pitavastatin, and rosuvastatin. Multidrug resistance-associated protein 3 (MRP3) transported atorvastatin, fluvastatin, pitavastatin, and, to a smaller extent, pravastatin. MRP4 transported fluvastatin and rosuvastatin. The scaled clearances suggest that BCRP contributes to 87%-91% and 84% of the total active efflux of rosuvastatin in the small intestine and the liver, respectively. For atorvastatin, the corresponding values for P-gp-mediated efflux were 43%-79% and 66%, respectively. MRP3, on the other hand, may contribute to 23%-26% and 25%-37% of total active efflux of atorvastatin, fluvastatin, and pitavastatin in jejunal enterocytes and liver hepatocytes, respectively. These data indicate that BCRP may play an important role in limiting the intestinal absorption and facilitating the biliary excretion of rosuvastatin and that P-gp may restrict the intestinal absorption and mediate the biliary excretion of atorvastatin. Moreover, the basolateral MRP3 may enhance the intestinal absorption and sinusoidal hepatic efflux of several statins. Taken together, the data show that statins differ considerably in their efflux transport profiles. SIGNIFICANCE STATEMENT: This study characterized and compared the transport of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin acid and four atorvastatin metabolites by six ABC transporters (BCRP, MRP2, MRP3, MRP4, MRP8, P-gp). Based on in vitro findings and protein abundance data, the study concludes that BCRP, MRP3, and P-gp have a major impact in the efflux of various statins. Together with in vitro metabolism, uptake transport, and clinical data, our findings are applicable for use in comparative systems pharmacology modeling of statins.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Suvi-Kukka Tuomi
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Sami Kulju
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Christoph Wenzel
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Stefan Oswald
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| |
Collapse
|
13
|
Gebremichael LG, Suppiah V, Wiese MD, Mackenzie L, Phillips C, Williams DB, Roberts MS. Efficacy and safety of statins in ethnic differences: a lesson for application in Indigenous Australian patient care. Pharmacogenomics 2021; 22:553-571. [PMID: 34120458 DOI: 10.2217/pgs-2020-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although statins are effective in treating high cholesterol, adverse effects do occur with their use. Efficacy and tolerability vary among statins in different ethnic groups. Indigenous Australians have a high risk for cardiovascular and kidney diseases. Prescribing statins to Indigenous Australians with multi-morbidity requires different strategies to increase efficacy and reduce their toxicity. Previous studies have reported that Indigenous Australians are more susceptible to severe statin-induced myopathies. However, there is a lack of evidence in the underlying genetic factors in this population. This review aims to identify: inter-ethnic differences in the efficacy and safety of statins; major contributing factors accounting for any identified differences; and provide an overview of statin-induced adverse effects in Indigenous Australians.
Collapse
Affiliation(s)
- Lemlem G Gebremichael
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Vijayaprakash Suppiah
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia.,Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael D Wiese
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Lorraine Mackenzie
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Craig Phillips
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Desmond B Williams
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S Roberts
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia.,Therapeutics Research Centre, Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.,Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville, SA 5011, Australia
| |
Collapse
|
14
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
15
|
Mochizuki T, Mizuno T, Maeda K, Kusuhara H. Current progress in identifying endogenous biomarker candidates for drug transporter phenotyping and their potential application to drug development. Drug Metab Pharmacokinet 2020; 37:100358. [PMID: 33461054 DOI: 10.1016/j.dmpk.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
Drug transporters play important roles in the elimination of various compounds from the blood. Genetic variation and drug-drug interactions underlie the pharmacokinetic differences for the substrates of drug transporters. Some endogenous substrates of drug transporters have emerged as biomarkers to assess differences in drug transporter activity-not only in animals, but also in humans. Metabolomic analysis is a promising approach for identifying such endogenous substrates through their metabolites. The appropriateness of metabolites is supported by studies in vitro and in vivo, both in animals and through pharmacogenomic or drug-drug interaction studies in humans. This review summarizes current progress in identifying such endogenous biomarkers and applying them to drug transporter phenotyping.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Japan.
| |
Collapse
|
16
|
Lehtisalo M, Keskitalo JE, Tornio A, Lapatto-Reiniluoto O, Deng F, Jaatinen T, Viinamäki J, Neuvonen M, Backman JT, Niemi M. Febuxostat, But Not Allopurinol, Markedly Raises the Plasma Concentrations of the Breast Cancer Resistance Protein Substrate Rosuvastatin. Clin Transl Sci 2020; 13:1236-1243. [PMID: 32453913 PMCID: PMC7719384 DOI: 10.1111/cts.12809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Xanthine oxidase inhibitors febuxostat and allopurinol are commonly used in the treatment of gout. Febuxostat inhibits the breast cancer resistance protein (BCRP) in vitro. Rosuvastatin is a BCRP substrate and genetic variability in BCRP markedly affects rosuvastatin pharmacokinetics. In this study, we investigated possible effects of febuxostat and allopurinol on rosuvastatin pharmacokinetics. In a randomized crossover study with 3 phases, 10 healthy volunteers ingested once daily placebo for 7 days, 300 mg allopurinol for 7 days, or placebo for 3 days, followed by 120 mg febuxostat for 4 days, and a single 10 mg dose of rosuvastatin on day 6. Febuxostat increased the peak plasma concentration and area under the plasma concentration‐time curve of rosuvastatin 2.1‐fold (90% confidence interval 1.8–2.6; P = 5 × 10−5) and 1.9‐fold (1.5–2.5; P = 0.001), but had no effect on rosuvastatin half‐life or renal clearance. Allopurinol, on the other hand, did not affect rosuvastatin pharmacokinetics. In vitro, febuxostat inhibited the ATP‐dependent uptake of rosuvastatin into BCRP‐overexpressing membrane vesicles with a half‐maximal inhibitory concentration of 0.35 µM, whereas allopurinol showed no inhibition with concentrations up to 200 µM. Taken together, the results suggest that febuxostat increases rosuvastatin exposure by inhibiting its BCRP‐mediated efflux in the small intestine. Febuxostat may, therefore, serve as a useful index inhibitor of BCRP in drug‐drug interaction studies in humans. Moreover, concomitant use of febuxostat may increase the exposure to BCRP substrate drugs and, thus, the risk of dose‐dependent adverse effects.
Collapse
Affiliation(s)
- Minna Lehtisalo
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Jenni E Keskitalo
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Outi Lapatto-Reiniluoto
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Feng Deng
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | | | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Nakaoka T, Uetake Y, Kaneko KI, Niwa T, Ochiai H, Irie S, Suezaki Y, Otsuka N, Hayashinaka E, Wada Y, Cui Y, Maeda K, Kusuhara H, Sugiyama Y, Hosoya T, Watanabe Y. Practical Synthesis of [ 18F]Pitavastatin and Evaluation of Hepatobiliary Transport Activity in Rats by Positron Emission Tomography. Mol Pharm 2020; 17:1884-1898. [PMID: 32271581 DOI: 10.1021/acs.molpharmaceut.9b01284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted a PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatus in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.
Collapse
Affiliation(s)
- Takayoshi Nakaoka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuta Uetake
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ken-Ichi Kaneko
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Niwa
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hidenori Ochiai
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshie Suezaki
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsumi Otsuka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takamitsu Hosoya
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
18
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
19
|
Hougaard Christensen MM, Bruun Haastrup M, Øhlenschlaeger T, Esbech P, Arnspang Pedersen S, Bach Dunvald AC, Bjerregaard Stage T, Pilsgaard Henriksen D, Thestrup Pedersen AJ. Interaction potential between clarithromycin and individual statins-A systematic review. Basic Clin Pharmacol Toxicol 2019; 126:307-317. [PMID: 31628882 DOI: 10.1111/bcpt.13343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
Abstract
The high prevalence of statin and clarithromycin utilization creates potential for overlapping use. The objectives of this MiniReview were to investigate the evidence base for drug-drug interactions between clarithromycin and currently marketed statins and to present management strategies for these drug combinations. We conducted a systematic literature review following PRISMA guidelines with English language studies retrieved from PubMed and EMBASE (from inception through March 2019). We included 29 articles (16 case reports, 5 observational, 5 clinical pharmacokinetic and 3 in vitro studies). Based on mechanistic/clinical studies involving clarithromycin or the related macrolide erythromycin (both strong inhibitors of CYP3A4 and of hepatic statin uptake transporters OATP1B1 and OATP1B3), clarithromycin is expected to substantially increase systemic exposure to simvastatin and lovastatin (>5-fold increase in area under the plasma concentration-time curve (AUC)), moderately increase AUCs of atorvastatin and pitavastatin (2- to 4-fold AUC increase) and slightly increase pravastatin exposure (≈2-fold AUC increase) while having little effect on fluvastatin or rosuvastatin. The 16 cases of statin-clarithromycin adverse drug reactions (rhabdomyolysis (n = 14) or less severe clinical myopathy) involved a CYP3A4-metabolized statin (simvastatin, lovastatin or atorvastatin). In line, a cohort study found concurrent use of clarithromycin and CYP3A4-metabolized statins to be associated with a doubled risk of hospitalization with rhabdomyolysis or other statin-related adverse events as compared with azithromycin-statin co-administration. If clarithromycin is necessary, we recommend (a) avoiding co-administration with simvastatin, lovastatin or atorvastatin; (b) withholding or dose-reducing pitavastatin; (c) continuing pravastatin therapy with caution, limiting pravastatin dose to 40 mg daily; and (d) continuing fluvastatin or rosuvastatin with caution.
Collapse
Affiliation(s)
- Mette Marie Hougaard Christensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maija Bruun Haastrup
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Øhlenschlaeger
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Peter Esbech
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Sidsel Arnspang Pedersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | | | - Tore Bjerregaard Stage
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Daniel Pilsgaard Henriksen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
Iwaki Y, Lee W, Sugiyama Y. Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships. Expert Opin Drug Metab Toxicol 2019; 15:897-911. [PMID: 31648563 DOI: 10.1080/17425255.2019.1681399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Statins are prescribed widely for cholesterol-lowering therapy, but it is known that their efficacy and safety profiles vary, despite the shared pharmacophore and pharmacological target. The immense body of related clinical and preclinical data offers a unique opportunity to explore the possible factors underlying inter-statin and inter-individual variabilities.Area covered: Clinical and preclinical data from various statins were compiled with regard to the efficacy (cholesterol-lowering effect) and safety (muscle toxicity). Based on the compiled data, dose- and exposure-response relationships were explored to obtain mechanistic and quantitative insights into the variations in the efficacy and safety profiles of statins.Expert opinion: Our analyses indicated that the inter-statin variability in the cholesterol-lowering effect may be mainly attributable to variations in potency of inhibition of the pharmacological target, rather than variations in drug exposure at the site of drug action. However, the drug exposure at the sites of drug action (i.e., the liver for efficacy and the muscle for safety) may contribute to the differences in the efficacy and safety observed in individual patients.
Collapse
Affiliation(s)
- Yuki Iwaki
- Clinical Pharmacology, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Scherf-Clavel O, Kinzig M, Stoffel MS, Fuhr U, Sörgel F. Quantification of adefovir and pitavastatin in human plasma and urine by LC-MS/MS: A useful tool for drug-drug interaction studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121718. [DOI: 10.1016/j.jchromb.2019.121718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023]
|
22
|
Bile Duct Obstruction Leads to Increased Intestinal Expression of Breast Cancer Resistance Protein With Reduced Gastrointestinal Absorption of Imatinib. J Pharm Sci 2019; 108:3130-3137. [DOI: 10.1016/j.xphs.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
23
|
Li R, Barton HA. Explaining Ethnic Variability of Transporter Substrate Pharmacokinetics in Healthy Asian and Caucasian Subjects with Allele Frequencies of OATP1B1 and BCRP: A Mechanistic Modeling Analysis. Clin Pharmacokinet 2019; 57:491-503. [PMID: 28653144 PMCID: PMC5856892 DOI: 10.1007/s40262-017-0568-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis contradicts the data collected from compounds that are OATP1B1 substrates but not breast cancer resistance protein (BCRP) substrates. Objective The objective of this study is to evaluate a hypothesis that is physiologically reasonable and more consistent with clinical observations. Methods We evaluated if allele frequencies of two transporters (OATP1B1 and BCRP) are key contributors to ethnic variability. In this hypothesis, the same genotype leads to the same activity independent of ethnicity, in contrast to the previous hypothesis of intrinsic ethnic variability in OATP1B1 activity. As a validation, we perform mechanistic pharmacokinetic modeling for SLCO1B1 (encoding OATP1B1) and ABCG2 (encoding BCRP) genotyped pharmacokinetic data from 18 clinical studies with healthy Caucasian and/or Asian subjects. Results Simulations based on the current hypothesis reasonably describe SLCO1B1 and ABCG2 genotyped pharmacokinetic time course data for five transporter substrates (atorvastatin, pitavastatin, pravastatin, repaglinide, and rosuvastatin) in Caucasian and Asian populations. Conclusion This hypothesis covers the observations that can (e.g., ethnic differences in rosuvastatin pharmacokinetics) or cannot (e.g., lack of differences for pitavastatin pharmacokinetics) be explained by the previous hypothesis. It helps to characterize sources of ethnic variability and provides a foundation for predicting ethnic variability in transporter substrate pharmacokinetics. Electronic supplementary material The online version of this article (doi:10.1007/s40262-017-0568-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Li
- Systems Modeling and Simulation, Medicine Design, World Wide Research and Development, Pfizer Inc., Cambridge, MA, USA.
| | - Hugh A Barton
- Translational Modeling and Simulation, Biomedicine Design, World Wide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
24
|
Malfará BN, Benzi JRDL, de Oliveira Filgueira GC, Zanelli CF, Duarte G, de Carvalho Cavalli R, de Moraes NV. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod Toxicol 2019; 85:1-5. [PMID: 30659932 DOI: 10.1016/j.reprotox.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 01/16/2023]
Abstract
Nifedipine, a known substrate to breast cancer resistance protein (ABCG2/BCRP), is used for the treatment of hypertension during breastfeeding. This study aimed to evaluate the effect of ABCG2 c.421C>A on nifedipine transfer to breast milk (BM) in hypertensive women. Nineteen hypertensive breastfeeding women treated with 20 mg nifedipine every 12 hours were investigated. Blood and BM samples were collected simultaneously 15-30 days after delivery and at least 15 days after drug treatment. Patients genotyped as ABCG2 c.421CC showed nifedipine plasma and BM concentrations ranging from 8.32-178.1 ng/mL and 4.8-58.5 ng/mL, respectively. ABCG2 c.421C>A showed a trend towards significance (p = 0.0793) on nifedipine in BM, with concentrations approximately 3 times higher in the heterozygous 421 CA (29 ng/mL) in comparison to 421 CC (10.5 ng/mL). Nifedipine BM/plasma ratio was significantly lower in 421CC when compared to 421CA (p = 0.01). In conclusion, ABCG2 c.421C>A polymorphism is associated with higher transfer of nifedipine to BM.
Collapse
Affiliation(s)
- Bianca Nayra Malfará
- Department of Natural Products and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | | | - Cleslei Fernando Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Natália Valadares de Moraes
- Department of Natural Products and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
25
|
Xue Y, Ma C, Hanna I, Pan G. Intestinal Transporter-Associated Drug Absorption and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:361-405. [DOI: 10.1007/978-981-13-7647-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Tan ML, Zhao P, Zhang L, Ho YF, Varma MVS, Neuhoff S, Nolin TD, Galetin A, Huang SM. Use of Physiologically Based Pharmacokinetic Modeling to Evaluate the Effect of Chronic Kidney Disease on the Disposition of Hepatic CYP2C8 and OATP1B Drug Substrates. Clin Pharmacol Ther 2018; 105:719-729. [PMID: 30074626 PMCID: PMC8246729 DOI: 10.1002/cpt.1205] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) differentially affects the pharmacokinetics (PK) of nonrenally cleared drugs via certain pathways (e.g., cytochrome P450 (CYP)2D6); however, the effect on CYP2C8‐mediated clearance is not well understood because of overlapping substrate specificity with hepatic organic anion‐transporting polypeptides (OATPs). This study used physiologically based pharmacokinetic (PBPK) modeling to delineate potential changes in CYP2C8 or OATP1B activity in patients with CKD. Drugs analyzed are predominantly substrates of CYP2C8 (rosiglitazone and pioglitazone), OATP1B (pitavastatin), or both (repaglinide). Following initial model verification, pharmacokinetics (PK) of these drugs were simulated in patients with severe CKD considering changes in glomerular filtration rate (GFR), plasma protein binding, and activity of either CYP2C8 and/or OATP1B in a stepwise manner. The PBPK analysis suggests that OATP1B activity could be decreased up to 60% in severe CKD, whereas changes to CYP2C8 are negligible. This improved understanding of CKD effect on clearance pathways could be important to inform the optimal use of nonrenally eliminated drugs in patients with CKD.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Quantitative Sciences, Global Health-Integrated Development, Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yunn-Fang Ho
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Manthena V S Varma
- Pharmacokinetics, Pharmacodynamics & Metabolism Department-New Chemical Entities, Pfizer Inc., Groton, Connecticut, USA
| | | | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, and Department of Medicine Renal-Electrolyte Division, Schools of Pharmacy and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Heath Sciences, University of Manchester, Manchester, UK
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
27
|
Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos 2018; 46:1886-1899. [PMID: 30266733 DOI: 10.1124/dmd.118.083030] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
The widespread expression and polyspecificity of the multidrug ABCG2 efflux transporter make it an important determinant of the pharmacokinetics of a variety of substrate drugs. Null ABCG2 expression has been linked to the Junior blood group. Polymorphisms affecting the expression or function of ABCG2 may have clinically important roles in drug disposition and efficacy. The most well-studied single nucleotide polymorphism (SNP), Q141K (421C>A), is shown to decrease ABCG2 expression and activity, resulting in increased total drug exposure and decreased resistance to various substrates. The effect of Q141K can be rationalized by inspection of the ABCG2 structure, and the effects of this SNP on protein processing may make it a target for pharmacological intervention. The V12M SNP (34G>A) appears to improve outcomes in cancer patients treated with tyrosine kinase inhibitors, but the reasons for this are yet to be established, and this residue's role in the mechanism of the protein is unexplored by current biochemical and structural approaches. Research into the less-common polymorphisms is confined to in vitro studies, with several polymorphisms shown to decrease resistance to anticancer agents such as SN-38 and mitoxantrone. In this review, we present a systematic analysis of the effects of ABCG2 polymorphisms on ABCG2 function and drug pharmacokinetics. Where possible, we use recent structural advances to present a molecular interpretation of the effects of SNPs and indicate where we need further in vitro experiments to fully resolve how SNPs impact ABCG2 function.
Collapse
Affiliation(s)
- Niall Heyes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Parth Kapoor
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
28
|
CYP2C9 and OATP1B1 genetic polymorphisms affect the metabolism and transport of glimepiride and gliclazide. Sci Rep 2018; 8:10994. [PMID: 30030468 PMCID: PMC6054689 DOI: 10.1038/s41598-018-29351-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/10/2018] [Indexed: 02/02/2023] Open
Abstract
The therapeutic use of glimepiride and gliclazide shows substantial inter-individual variation in pharmacokinetics and pharmacodynamics in human populations, which might be caused by genetic differences among individuals. The aim of this study was to assess the effect of CYP2C9 and OATP1B1 genetic polymorphisms on the metabolism and transport of glimepiride and gliclazide. The uptake of glimepiride and gliclazide was measured in OATP1B1*1a, *5 and *15-HEK293T cells, and their metabolism was measured using CYP2C9*1, *2 and *3 recombinase by LC-MS. Glimepiride in OATP1B1*1a, *5 and *15-HEK293T cells had Vmax values of 155 ± 18.7, 80 ± 9.6, and 84.5 ± 8.2 pmol/min/mg, while gliclazide had Vmax values of 15.7 ± 4.6, 7.2 ± 2.5, and 8.7 ± 2.4 pmol/min/mg, respectively. The clearance of glimepiride and gliclazide in OATP1B1*5 and *15 was significantly reduced compared to the wild-type. Glimepiride in the presence of CYP2C9*1, *2 and *3 recombinase had Vmax values of 21.58 ± 7.78, 15.69 ± 5.59, and 9.17 ± 3.03 nmol/min/mg protein, while gliclazide had Vmax values of 15.73 ± 3.11, 10.53 ± 4.06, and 6.21 ± 2.94 nmol/min/mg protein, respectively. The clearance of glimepiride and gliclazide in CYP2C9*2 and *3 was significantly reduced compared to the wild-type. These findings collectively indicate that OATP1B1*5 and *15 and CYP2C9*2 and *3 have a significant effect on the transport and metabolism of glimepiride and gliclazide.
Collapse
|
29
|
Kaewboonlert N, Thitisopee W, Sirintronsopon W, Porntadavity S, Jeenduang N. Lack of association between SLCO1B1 polymorphisms and lipid-lowering response to simvastatin therapy in Thai hypercholesterolaemic patients. J Clin Pharm Ther 2018; 43:647-655. [PMID: 29575099 DOI: 10.1111/jcpt.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
WHAT IS KNOWN SLCO1B1 polymorphisms have been reported to affect the responses to statin therapy. However, the association of these polymorphisms and lipid-lowering responses has been inconsistent. OBJECTIVE To investigate the effect of SLCO1B1 c.388A>G, c.521T>C and g.89595T>C polymorphisms on the lipid-lowering response to simvastatin therapy in Thai hypercholesterolaemic patients. METHODS Three hundred and 91 hypercholesterolaemic patients in Southern Thailand were enrolled and treated with simvastatin 20 or 40 mg per day. Among them, 191 and 200 patients were treated for 3 and 12 months, respectively. Serum lipids were measured before and after the treatment. SLCO1B1 c.388A>G, c.521T>C and g.89595T>C polymorphisms were analysed using polymerase chain reaction-high-resolution melting (PCR-HRM). RESULTS The allele frequencies of the SLCO1B1 c.388A>G, c.521T>C and g.89595T>C polymorphisms in Thai hypercholesterolaemic patients were 74.9%, 11.8% and 37.2%, respectively. After treatment with 20-40 mg simvastatin daily for 3 and 12 months, TC, TG and LDL-C concentrations were significantly lower than at baseline (P < .05). However, there was no a significant change in serum HDL-C after simvastatin treatment for 3 and 12 months (P > .05). Moreover, there was no association between SLCO1B1 c.388A>G, c.521T>C and g.89595T>C polymorphisms and lipid-lowering response to 3 and 12 months of either 20 or 40 mg/day simvastatin treatment. WHAT IS NEW AND CONCLUSION SLCO1B1 c.388A>G, c.521T>C and g.89595T>C polymorphisms may not be useful as genetic markers of lipid-lowering response to simvastatin therapy in Thai hypercholesterolaemic patients.
Collapse
Affiliation(s)
- N Kaewboonlert
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - W Thitisopee
- Department of Medicine, Thasala Hospital, Nakhon Si Thammarat, Thailand
| | | | - S Porntadavity
- Faculty of Medical Technology, Department of Clinical Chemistry, Mahidol University, Bangkok, Thailand
| | - N Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
30
|
Karibe T, Imaoka T, Abe K, Ando O. Curcumin as an In Vivo Selective Intestinal Breast Cancer Resistance Protein Inhibitor in Cynomolgus Monkeys. Drug Metab Dispos 2018; 46:667-679. [PMID: 29358184 DOI: 10.1124/dmd.117.078931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 01/16/2023] Open
Abstract
To estimate the clinical impact of pharmacokinetic modulation via breast cancer resistance protein (BCRP), in vivo approaches in nonclinical settings are desired in drug development. Clinical observation has identified curcumin as a promising candidate for in vivo selective BCRP inhibition, in addition to several well known inhibitors, such as lapatinib and pantoprazole. This study aimed to confirm the inhibitory efficacy of curcumin on gastrointestinal BCRP function in cynomolgus monkeys and to perform comparisons with lapatinib and pantoprazole. Oral area under the plasma concentration-time curve (AUC) and bioavailability of well known BCRP (sulfasalazine and rosuvastatin), P-glycoprotein (fexofenadine, aliskiren, and talinolol), and CYP3A (midazolam) substrates were investigated in the presence and absence of inhibitors. Oral exposures of sulfasalazine and rosuvastatin were markedly elevated by curcumin with minimal changes in systemic clearance, whereas pharmacokinetic alterations after fexofenadine, aliskiren, and talinolol oral exposure were limited. Curcumin increased oral midazolam exposure without affecting systemic clearance, presumably owing to partial inhibition of intestinal CYP3A. Lapatinib increased the oral AUC for sulfasalazine to a greater extent than curcumin did, whereas pantoprazole had a smaller effect. However, lapatinib also exerted significant effects on fexofenadine, failed to selectively discriminate between BCRP and P-glycoprotein inhibition, and had an effect on oral midazolam exposure comparable with that of curcumin. Thus, pharmacokinetic evaluation in monkeys demonstrated that pretreatment with curcumin as an in vivo selective BCRP inhibitor was more appropriate than pretreatment with lapatinib and pantoprazole for the assessment of the impact of BCRP on gastrointestinal absorption in nonrodent models.
Collapse
Affiliation(s)
- Tsuyoshi Karibe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomoki Imaoka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Koji Abe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Osamu Ando
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
31
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
32
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
33
|
|
34
|
Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L, Benet LZ. Rosuvastatin Pharmacokinetics in Asian and White Subjects Wild Type for Both OATP1B1 and BCRP Under Control and Inhibited Conditions. J Pharm Sci 2017; 106:2751-2757. [PMID: 28385543 DOI: 10.1016/j.xphs.2017.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023]
Abstract
The Food and Drug Administration recommends rosuvastatin dosage reductions in Asian patients because pharmacokinetic studies have demonstrated an approximate 2-fold increase in median exposure to rosuvastatin in Asian subjects compared with Caucasian controls. Yet, no explanation for this ethnic difference has been confirmed. Here we show that rosuvastatin exposure in Asians and Whites does not differ significantly when all subjects are wild-type carriers for both solute carrier organic anion transporter 1B1 *1a and ATP-binding cassette subfamily G member 2 c.421 transporters in a 2-arm, randomized, cross-over rosuvastatin pharmacokinetics study in healthy white and Asian volunteers. For single rosuvastatin doses, AUC0-48 were 92.5 (±36.2) and 83.5 (±32.2) ng/mL × h and Cmax were 10.0 (±4.1) and 7.6 (±3.0) ng/mL for Asians and Whites, respectively. When transporters were inhibited by intravenous rifampin, rosuvastatin AUC0-48 and Cmax also showed no ethnic differences. Our study suggests that both SLCO1B1 and ABCG2 polymorphisms are better predictors of rosuvastatin exposure than ethnicity alone and could be considered in precision medicine dosing of rosuvastatin.
Collapse
Affiliation(s)
- Hsin-Fang Wu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143
| | - Nadya Hristeva
- School of Pharmacy, University of California, San Francisco, San Francisco, California 94143
| | - Jae Chang
- Drug Metabolism and Pharmacokinetics, Genentech Inc. South San Francisco, California 94080
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics, Genentech Inc. South San Francisco, California 94080
| | - Ruina Li
- Drug Metabolism and Pharmacokinetics, Genentech Inc. South San Francisco, California 94080
| | - Lynda Frassetto
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143.
| |
Collapse
|
35
|
Lee HH, Ho RH. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol 2017; 83:1176-1184. [PMID: 27936281 DOI: 10.1111/bcp.13207] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
OATP1B1 (SLCO1B1) is predominantly expressed at the basolateral membrane of hepatocytes and is critically important for the hepatic uptake and clearance of numerous drug substrates and endogenous compounds. In general, the organic anion transporting polypeptides (OATP; SLCO) represent a superfamily of uptake transporters that mediate the sodium-independent transport of a diverse range of amphipathic organic compounds including bile salts, steroid conjugates, thyroid hormones, anionic peptides, numerous drugs and other xenobiotic substances. OATP1B1 is highly polymorphic and a number of relevant and ethnically dependent polymorphisms have been identified and functionally characterized. In particular, the SLCO1B1 521T>C and 388A>G polymorphisms are commonly occurring variants in ethnically diverse populations and numerous in vitro and clinical studies have evaluated the consequences of these variants to interindividual differences in drug disposition and response. OATP1B1 is particularly important for the disposition of HMG-CoA reductase inhibitors, or statins, as it is known to efficiently transport most statins to their site of action within hepatocytes. Many studies have focused on the consequences of OATP1B1 variants to statin disposition in vitro and in vivo and would suggest that genetic variability in SLCO1B1 has important implications for statin pharmacokinetics, risk for statin-induced myopathy, and modulation of statin treatment response. This review describes what is currently known regarding SLCO1B1 genotype, OATP1B1 protein expression and interindividual and interethnic consequences to drug disposition, with particular focus on statin pharmacokinetics and implications for drug response and toxicity.
Collapse
Affiliation(s)
- Hannah H Lee
- Department of Pediatrics, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Richard H Ho
- Department of Pediatrics, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Pitavastatin and Atorvastatin to Predict Drug-Drug Interactions (DDIs). Eur J Drug Metab Pharmacokinet 2016; 42:689-705. [DOI: 10.1007/s13318-016-0383-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics 2016; 25:595-608. [PMID: 26367500 DOI: 10.1097/fpc.0000000000000176] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The effects of various polymorphisms in cytochrome P450 (CYP) enzyme and transporter genes on the pharmacokinetics (PK) of simvastatin were evaluated in healthy Korean men. METHODS Plasma concentration data for simvastatin and simvastatin acid were pooled from four phase I studies comprising 133 participants. The polymorphisms CYP2D6*4, CYP2D6*5, CYP2D6*14, CYP2D6*41, CYP3A5*3, CYP2C19*2, CYP2C19*3, CYP2A6*7, and CYP2A6*9; SLCO1B1 rs4149056, rs2306283, and rs4149015; ABCB1 rs1128503, rs2032582, and rs1045642; and ABCG2 rs2231142 were evaluated in each participant. Noncompartmental PK results were compared by genotype. RESULTS CYP2D6*5 and CYP2D6*14 were found to be associated with a higher area under the curve (AUC) for simvastatin, whereas the AUC of simvastatin acid was significantly increased in patients with the SLCO1B1 rs4149056, ABCG2 rs2231142, and CYP2D6*41 allele variants. Patients with the CYP2D6*41 variant showed a higher peak serum concentration (Cmax) of both simvastatin and simvastatin acid. The SLCO1B1 rs4149056 and rs4149015 polymorphisms were associated with an increased AUC ratio (i.e. ratio of simvastatin acid to simvastatin), whereas the SLCO1B1 rs4149056 and CYP2D6*5 variants were related to a higher Cmax ratio. CONCLUSION The CYP2D6*5, CYP2D6*14, CYP2D6*41, CYP3A5*3, SLCO1B1 rs4149056 and rs4149015, and ABCG2 rs2231142 genetic polymorphisms are associated with the PK of both simvastatin and simvastatin acid. This could potentially be used as a basis for individualized simvastatin therapy by predicting the clinical outcomes of this treatment.
Collapse
|
38
|
Kim SJ, Yoshikado T, Ieiri I, Maeda K, Kimura M, Irie S, Kusuhara H, Sugiyama Y. Clarification of the Mechanism of Clopidogrel-Mediated Drug-Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information. ACTA ACUST UNITED AC 2016; 44:1622-32. [PMID: 27457785 DOI: 10.1124/dmd.116.070276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/22/2016] [Indexed: 11/22/2022]
Abstract
Clopidogrel is reported to be associated with cerivastatin-induced rhabdomyolysis, and clopidogrel and its metabolites are capable of inhibiting CYP2C8 and OATP 1B1 in vitro. The objective of the present study was to identify the mechanism of clopidogrel-mediated drug-drug interactions (DDIs) on the pharmacokinetics of OATP1B1 and/or CYP2C8 substrates in vivo. A clinical cassette small-dose study using OATPs, CYP2C8, and OATP1B1/CYP2C8 probe drugs (pitavastatin, pioglitazone, and repaglinide, respectively) with or without the coadministration of either 600 mg rifampicin (an inhibitor for OATPs), 200 mg trimethoprim (an inhibitor for CYP2C8), or 300 mg clopidogrel was performed, and the area under the concentration-time curve (AUC) ratios (AUCRs) for probe substrates were predicted using a static model. Clopidogrel increased the AUC of pioglitazone (2.0-fold) and repaglinide (3.1-fold) but did not significantly change the AUC of pitavastatin (1.1-fold). In addition, the AUC of pioglitazone M4, a CYP2C8-mediated metabolite of pioglitazone, was reduced to 70% of the control by coadministration of clopidogrel. The predicted AUCRs using the mechanism-based inhibition of CYP2C8 by clopidogrel acyl-β-glucuronide were similar to the observed AUCRs, and the predicted AUCR (1.1) of repaglinide using only the inhibition of OATP1B1 did not reach the observed AUCR (3.1). In conclusion, a single 300 mg of clopidogrel mainly inhibits CYP2C8-mediated metabolism by clopidogrel acyl-β-glucuronide, but its effect on the pharmacokinetics of OATP1B1 substrates is negligible. Clopidogrel is expected to have an effect not only on CYP2C8 substrates, but also dual CYP2C8/OATP1B1 substrates as seen in the case of repaglinide.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Ichiro Ieiri
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Kazuya Maeda
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Miyuki Kimura
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Shin Irie
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Hiroyuki Kusuhara
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| |
Collapse
|
39
|
Momper JD, Tsunoda SM, Ma JD. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans. J Clin Pharmacol 2016; 56 Suppl 7:S82-98. [DOI: 10.1002/jcph.736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Jeremiah D. Momper
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Shirley M. Tsunoda
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Joseph D. Ma
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| |
Collapse
|
40
|
Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, Kjellsson MC. Mechanistic Modeling of Pitavastatin Disposition in Sandwich-Cultured Human Hepatocytes: A Proteomics-Informed Bottom-Up Approach. Drug Metab Dispos 2016; 44:505-16. [DOI: 10.1124/dmd.115.066746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
|
41
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
42
|
Prueksaritanont T, Chu X, Evers R, Klopfer SO, Caro L, Kothare PA, Dempsey C, Rasmussen S, Houle R, Chan G, Cai X, Valesky R, Fraser IP, Stoch SA. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol 2015; 78:587-98. [PMID: 24617605 DOI: 10.1111/bcp.12377] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/05/2014] [Indexed: 12/14/2022] Open
Abstract
AIMS Rosuvastatin and pitavastatin have been proposed as probe substrates for the organic anion-transporting polypeptide (OATP) 1B, but clinical data on their relative sensitivity and selectivity to OATP1B inhibitors are lacking. A clinical study was therefore conducted to determine their relative suitability as OATP1B probes using single oral (PO) and intravenous (IV) doses of the OATP1B inhibitor rifampicin, accompanied by a comprehensive in vitro assessment of rifampicin inhibitory potential on statin transporters. METHODS The clinical study comprised of two separate panels of eight healthy subjects. In each panel, subjects were randomized to receive a single oral dose of rosuvastatin (5 mg) or pitavastatin (1 mg) administered alone, concomitantly with rifampicin (600 mg) PO or IV. The in vitro transporter studies were performed using hepatocytes and recombinant expression systems. RESULTS Rifampicin markedly increased exposures of both statins, with greater differential increases after PO vs. IV rifampicin only for rosuvastatin. The magnitudes of the increases in area under the plasma concentration-time curve were 5.7- and 7.6-fold for pitavastatin and 4.4- and 3.3-fold for rosuvastatin, after PO and IV rifampicin, respectively. In vitro studies showed that rifampicin was an inhibitor of OATP1B1 and OATP1B3, breast cancer resistance protein and multidrug resistance protein 2, but not of organic anion transporter 3. CONCLUSIONS The results indicate that pitavastatin is a more sensitive and selective and thus preferred clinical OATP1B probe substrate than rosuvastatin, and that a single IV dose of rifampicin is a more selective OATP1B inhibitor than a PO dose.
Collapse
|
43
|
Peng KW, Bacon J, Zheng M, Guo Y, Wang MZ. Ethnic variability in the expression of hepatic drug transporters: absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metab Dispos 2015; 43:1045-55. [PMID: 25926430 DOI: 10.1124/dmd.115.063362] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Hepatic OATPs 1B1, 1B3 and 2B1, as well as P-gp, play important roles in regulating liver uptake and biliary excretion of drugs. The intrinsic ethnic variability in OATP1B1-mediated hepatic uptake of statins has been proposed to underlie the ethnic variability in plasma exposures of statins between Caucasians and Asians. Using a targeted quantitative proteomic approach, we determined hepatic protein concentrations of OATP1B1, OATP1B3, OATP2B1, P-gp, and PMCA4 (a housekeeping protein) in a panel of human livers (n = 141) and compared protein expression across Caucasian, Asian, African-American, and unidentified donors. Using an optimized protocol that included sodium deoxycholate as a membrane protein solubilizer, the hepatic protein expression levels (mean ± S.D.) of these transporters across all livers were determined to be 15.0 ± 6.0, 16.1 ± 8.1, 4.1 ± 1.3, 0.6 ± 0.2, and 2.4 ± 1.0 fmol/μg of total membrane protein, respectively. The scaling factor was 3.5 mg of total membrane protein in 100 mg of wet liver tissue. OATP1B1 protein expression was significantly associated with the c.388A>G (rs2306283, N130D) single nucleotide polymorphism. When compared across ethnicity, the hepatic expression levels of OATP1B1 and OATP1B3 were unexpectedly higher in Asians relative to Caucasians, suggesting that hepatic OATP expression alone does not explain the increased systemic statin levels in Asians compared with Caucasians. These findings may help improve physiologically based pharmacokinetic modeling to predict statin pharmacokinetic profiles and enable extrapolation of pharmacokinetic data of OATP substrates across ethnic groups.
Collapse
Affiliation(s)
- Kuan-wei Peng
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (K.P., M.Z.W.); Eli Lilly & Company, Indianapolis, Indiana (J.B., Y.G.); and School of Medicine, Stanford University, Stanford, California (M.Z.)
| | - James Bacon
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (K.P., M.Z.W.); Eli Lilly & Company, Indianapolis, Indiana (J.B., Y.G.); and School of Medicine, Stanford University, Stanford, California (M.Z.)
| | - Ming Zheng
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (K.P., M.Z.W.); Eli Lilly & Company, Indianapolis, Indiana (J.B., Y.G.); and School of Medicine, Stanford University, Stanford, California (M.Z.)
| | - Yingying Guo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (K.P., M.Z.W.); Eli Lilly & Company, Indianapolis, Indiana (J.B., Y.G.); and School of Medicine, Stanford University, Stanford, California (M.Z.)
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (K.P., M.Z.W.); Eli Lilly & Company, Indianapolis, Indiana (J.B., Y.G.); and School of Medicine, Stanford University, Stanford, California (M.Z.)
| |
Collapse
|
44
|
Pu Z, Zhang X, Chen Q, Yuan X, Xie H. Establishment of an expression platform of OATP1B1 388GG and 521CC genetic polymorphism and the therapeutic effect of tamoxifen in MCF-7 cells. Oncol Rep 2015; 33:2420-8. [PMID: 25812934 DOI: 10.3892/or.2015.3864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/10/2015] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to evaluate the gene polymorphisms of organic anion transporting polypeptide 1B1 (OATP1B1) in predicting the therapeutic efficacy of tamoxifen (TAM) for MCF-7. Established plasmids OATP1Bl wild-type 388GG and 521CC were transfected into MCF-7 cells and used to determine whether the gene polymorphisms affected the therapeutic efficacy of TAM for MCF-7. The established plasmids pcDNA3.1(-)-OATP1B1 wild-type 388GG and 521CC were digested by restriction enzymes and analyzed by gene sequencing. The gene polymorphisms of OATP1Bl in MCF-7 breast cancer cells were examined by RT-PCR and western blot analysis. The results showed that the mutations of OATP1B1 388GG and 521CC led to a decrease of the inhibition and apoptotic rates of MCF-7 cells, albeit not significantly compared to the OATP1B1 group. The G₀/G₁ phase length ratio was reduced, and the S and G₂M phases were increased in the OATP1B1 388GG and 521CC groups, although not significantly compared to the OATP1B1 group. The mutations of OATP1B1 388GG and 521CC inhibited the activity of OATP1B1 protein, restrained the turnover capacity of OATP1B1 and reduced the entrance of TAM into MCF-7 cells, resulting in weakened efficacy of TAM in the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhichen Pu
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Province Center for Drug Clinical Evaluation, Wuhu, Anhui 241001, P.R. China
| | - Xuefeng Zhang
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Province Center for Drug Clinical Evaluation, Wuhu, Anhui 241001, P.R. China
| | - Qun Chen
- Department of Pharmacy, Wuhu Chinese Medicine Hospital, Wuhu, Anhui 241001, P.R. China
| | - Xiaolong Yuan
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Province Center for Drug Clinical Evaluation, Wuhu, Anhui 241001, P.R. China
| | - Haitang Xie
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Province Center for Drug Clinical Evaluation, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
45
|
Hochman J, Tang C, Prueksaritanont T. Drug–Drug Interactions Related to Altered Absorption and Plasma Protein Binding: Theoretical and Regulatory Considerations, and an Industry Perspective. J Pharm Sci 2015; 104:916-29. [DOI: 10.1002/jps.24306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/28/2023]
|
46
|
Tanaka Y, Kitamura Y, Maeda K, Sugiyama Y. Quantitative Analysis of the ABCG2 c.421C>A Polymorphism Effect on In Vivo Transport Activity of Breast Cancer Resistance Protein (BCRP) Using an Intestinal Absorption Model. J Pharm Sci 2015; 104:3039-48. [PMID: 25639366 DOI: 10.1002/jps.24366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022]
Abstract
ABCG2 c.421C>A is one of the most frequent polymorphisms in ABCG2, which encodes the breast cancer resistance protein (BCRP). Clinical pharmacogenetic studies have shown that the plasma area under the concentration-time curve (AUC) values after oral administration of BCRP substrate drugs are significantly higher in subjects homozygous for the c.421C>A polymorphism (421AA) than in wild-type subjects (421CC). The aim of this study was to quantitatively estimate the in vivo decrease of BCRP function caused by the c.421C>A polymorphism based on clinical pharmacokinetic data. Assuming that the pharmacokinetic alteration is accounted for by intestinal BCRP, the ratio of the transport activity of the mutated BCRP to that of the wild-type was optimized by comparing calculations from an intestinal absorption model and clinical pharmacokinetic data. In conclusion, the in vivo intestinal BCRP transport activity in 421AA subjects is estimated to be approximately 23% of that in the 421CC subjects.
Collapse
Affiliation(s)
- Yuta Tanaka
- Discovery Research Laboratories, Kyorin Pharmaceutical Company, Ltd, Tochigi, Japan
| | - Yoshiaki Kitamura
- Discovery Research Laboratories, Kyorin Pharmaceutical Company, Ltd, Tochigi, Japan
| | - Kazuya Maeda
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama, Japan
| |
Collapse
|
47
|
Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metab Dispos 2015; 43:490-509. [DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Evaluation of the Usefulness of Breast Cancer Resistance Protein (BCRP) Knockout Mice and BCRP Inhibitor-Treated Monkeys to Estimate the Clinical Impact of BCRP Modulation on the Pharmacokinetics of BCRP Substrates. Pharm Res 2014; 32:1634-47. [DOI: 10.1007/s11095-014-1563-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
49
|
Wang YJ, Zhang YK, Kathawala RJ, Chen ZS. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance. Cancers (Basel) 2014; 6:1925-52. [PMID: 25268163 PMCID: PMC4276951 DOI: 10.3390/cancers6041925] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.
Collapse
Affiliation(s)
- Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
50
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS JOURNAL 2014; 17:65-82. [PMID: 25236865 DOI: 10.1208/s12248-014-9668-6] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
The human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter. It was so named because it was initially cloned from a multidrug-resistant breast cancer cell line where it was found to confer resistance to chemotherapeutic agents such as mitoxantrone and topotecan. Since its discovery in 1998, the substrates of BCRP have been rapidly expanding to include not only therapeutic agents but also physiological substances such as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide) and uric acid. Likewise, at least hundreds of BCRP inhibitors have been identified. Among normal human tissues, BCRP is highly expressed on the apical membranes of the placental syncytiotrophoblasts, the intestinal epithelium, the liver hepatocytes, the endothelial cells of brain microvessels, and the renal proximal tubular cells, contributing to the absorption, distribution, and elimination of drugs and endogenous compounds as well as tissue protection against xenobiotic exposure. As a result, BCRP has now been recognized by the FDA to be one of the key drug transporters involved in clinically relevant drug disposition. We published a highly-accessed review article on BCRP in 2005, and much progress has been made since then. In this review, we provide an update of current knowledge on basic biochemistry and pharmacological functions of BCRP as well as its relevance to drug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington, 98195-7610, USA,
| | | |
Collapse
|