1
|
Li H, Tian C, Chen J, Xia Y. The fusion protein of scorpion neurotoxin BjαIT and Galanthus nivalis agglutinin (GNA) enhanced the injection insecticidal activity against silkworms, but only has lethal activity against newly hatched larva when administered orally. World J Microbiol Biotechnol 2024; 40:326. [PMID: 39299979 DOI: 10.1007/s11274-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Fusing insect derived neurotoxic peptides with Galanthus nivalis agglutinin (GNA) has been shown to enhance the insecticidal activity of the neuropeptides, especially when administered orally. This study produced a recombinant scorpion insect specific neurotoxin BjαIT, GNA, and a fusion protein BjαIT/GNA using Pichia pastoris as an expression host. Recombinant rBjαIT/GNA was found to be easily degraded during expression in yeast which and produced a main protein product with a molecular weight of approximately 14 kDa. Cytotoxicity results showed that rBjαIT, rGNA, and rBjαIT/GNA had no toxicity to mammalian NIH/3T3 cells. Adding rBjαIT or rBjαIT/GNA at a concentration as low as 1 ng/mL to insect cell culture medium inhibited the proliferation of insect Sf9 cells, with rBjαIT exhibiting stronger cytotoxicity, while 20 ng/mL rGNA did not inhibit the proliferation of Sf9 cells. Silkworm larval injection results showed that rBjαIT/GNA was the most toxic of the three proteins, followed by rBjαIT, and rGNA. When rBjαIT/GNA was injected at a concentration of 0.129 nmol/g body weight 46.7% of silkworm died within 48 h. Feeding newly hatched silkworms with rBjαIT/GNA at a leaf surface concentration of 40 µg/cm2 resulted in 76.7% mortality within 24 h. However, rBjαIT/GNA showed almost no oral insecticidal activity against second instar silkworms. The results indicated that rBjαIT/GNA has stronger injection insecticidal activity and feeding insecticidal activity than rBjαIT and rGNA individually, making it more suitable for biological control.
Collapse
Affiliation(s)
- Hongbo Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, China.
- Department of Biochemistry and Molecular Biology School of Medicine, Jishou University, Jishou, Hunan, 416000, China.
| | - Cheng Tian
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology School of Medicine, Jishou University, Jishou, Hunan, 416000, China
| | - Yuanxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
2
|
Xue Q, Swevers L, Taning CNT. Drosophila X virus-like particles as delivery carriers for improved oral insecticidal efficacy of scorpion Androctonus australis peptide against the invasive fruit fly, Drosophila suzukii. INSECT SCIENCE 2024; 31:847-858. [PMID: 37681406 DOI: 10.1111/1744-7917.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
Insect-specific neurotoxic peptides derived from the venoms of scorpions and spiders can cause acute paralysis and death when injected into insects, offering a promising insecticidal component for insect pest control. However, effective delivery systems are required to help neurotoxic peptides pass through the gut barrier into the hemolymph, where they can act. Here, we investigated the potential of a novel nanocarrier, Drosophila X virus-like particle (DXV-VLP), for delivering a neurotoxin from the scorpion Androctonus australis Hector (AaIT) against the invasive pest fruit fly, Drosophila suzukii. Our results show that the fusion proteins of DXV polyproteins with AaIT peptide at their C-termini could be sufficiently produced in Lepidoptera Hi5 cells in a soluble form using the recombinant baculovirus expression system, and could self-assemble into VLPs with similar particle morphology and size to authentic DXV virions. In addition, the AaIT peptides displayed on DXV-VLPs retained their toxicity, as demonstrated in injection bioassays that resulted in severe mortality (72%) in adults after 72 h. When fed to adults, mild mortality was observed in the group treated with DXV-AaIT (38%), while no mortality occurred in the group treated with AaIT peptide, thus indicating the significant role of DXV-VLPs in delivering AaIT peptides. Overall, this proof-of-concept study demonstrates for the first time that VLPs can be exploited to enhance oral delivery of insect-specific neurotoxic peptides in the context of pest control. Moreover, it provides insights for further improvements and potentially the development of neurotoxin-based bioinsecticides and/or transgenic crops for insect pest control.
Collapse
Affiliation(s)
- Qi Xue
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
4
|
Khoshdel Nezamiha F, Imani S, Arabi Mianroodi R, Tirgari S, Shahbazzadeh D. OdTx12/GNA, a chimeric variant of a β excitatory toxin from Odontobuthus doriae, reveals oral toxicity towards Locusta migratoria and Tenebrio molitor. Toxicon 2021; 202:13-19. [PMID: 34537212 DOI: 10.1016/j.toxicon.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
OdTx12, a beta excitatory toxin from Odontobothus doriae had previously been identified and characterized. It had been shown that OdTx12 causes significant lethal effects on insects by injection but does not show any toxicity on mice. Due to the natural ineffectiveness of scorpion toxins to act as oral toxins, OdTx12 was fused to Galanthus nivalis agglutinin (GNA), a protein with the potential to cross the insect gut. The sequence of OdTx12/GNA gene was chemically synthesized, cloned in Escherichia coli, and expressed. The effect of the purified fusion protein (OdTx12/GNA) was assessed on the insect and mammalian cell lines, insect larvae and mice. Toxicity assay on insect cell culture (SF9 cell line) showed comparable toxicity between OdTx12 and OdTx12/GNA (LD50 of 0.0030 and 0.0048 μM, respectively). Also very similar mortality rates were observed by injecting OdTx12 and OdTx12/GNA to Locusta migratoria and Tenebrio molitor. Oral administration of OdTx12/GNA, after five days of feeding, resulted in 96.6% and 98.3% mortality of L. migratoria and T. molitor larvae with an LC50 of 0.69 and 0.43 nmol/g of insect food, respectively, while OdTx12 alone did not cause any toxic effects on the larvae orally, suggesting the role of GNA in delivering the toxin to the insect's haemolymph. No toxicity or mortality was observed after toxicity testing of OdTx12/GNA on a mammalian cell line (HEP-2) or any mortality in vivo, by testing the protein in the laboratory mouse. Herein, we demonstrated that the fusion protein OdTx12/GNA could be considered an effective toxin for the biological control of insects.
Collapse
Affiliation(s)
| | - Sohrab Imani
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Arabi Mianroodi
- R&D Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Delavar Shahbazzadeh
- Department of Medical Biotechnology of Iran, Venom and Therapeutic Biomolecules Lab, Institute Pasteur of Iran, Tehran, Iran
| |
Collapse
|
5
|
Application of the Scorpion Neurotoxin AaIT against Insect Pests. Int J Mol Sci 2019; 20:ijms20143467. [PMID: 31311095 PMCID: PMC6678123 DOI: 10.3390/ijms20143467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Androctonus australis Hector insect toxin (AaIT), an insect-selective toxin, was identified in the venom of the scorpion Androctonus australis. The exclusive and specific target of the toxin is the voltage-gated sodium channels of the insect, resulting in fast excitatory paralysis and even death. Because of its strict toxic selectivity and high bioactivity, AaIT has been widely used in experiments exploring pest bio-control. Recombinant expression of AaIT in a baculovirus or a fungus can increase their virulence to insect pests and diseases vectors. Likewise, transgenic plants expressing AaIT have notable anti-insect activity. AaIT is an efficient toxin and has great potential to be used in the development of commercial insecticides.
Collapse
|
6
|
Cytotoxic and lethal effects of recombinant β-BUTX-Lqq1a peptide against Lepidopteran insects and cell lines. Toxicol In Vitro 2019; 60:44-50. [PMID: 31082490 DOI: 10.1016/j.tiv.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 11/24/2022]
Abstract
Extensive usage of synthetic chemical pesticides have collateral effect in harming the health, environment and development of resistance in insect pests. Scorpion produces variety of molecules that are specific to insects, mammals and to both. Insect specific molecules act as potential candidature as an alternative to synthetic chemical pesticides. We have successfully expressed and purified recombinant Scorpion Leiurus quinquestriatus quinquestriaus β-BUTX-Lqq1a toxin in bacterial system. Cytotoxic activity assay with the help of insect cell line Sf-21 from Spodoptera frugiperda reveals that mean IC50 1.72-3.0 μg ml -1 significantly reduced the cell proliferation when compared with control. Microscopic examination of treated Sf-21 cell lines also showed changes in the cell morphology such as cell membrane blebbing, cell shrinkage and granulated apoptotic bodies. When β-BUTX-Lqq1a was hemocoelly injected with various doses, significant reduction in survival of Helicoverpa armigera (LC50 = 0.13 μg insect-1) and Spodoptera litura (LC50 = 0.147 μg insect -1) were noticeable with immediate paralysis, and reduced feeding when compared with control. Toxicity with purified recombinant β-BUTX-Lqq1a protein towards insect cell line Sf-21 and major agricultural pest was demonstrated by various bioassays. Cytotoxicity and insect bioassay demonstrated the potential use of β-BUTX-Lqq1a protein as an effective insecticide against lepidopteran insects. These results strongly suggest that the development of rational insecticidal molecule against with significant promise.
Collapse
|
7
|
Li H, Xia Y. High-yield production of spider short-chain insecticidal neurotoxin Tx4(6-1) in Pichia pastoris and bioactivity assays in vivo. Protein Expr Purif 2018; 154:66-73. [PMID: 30292807 DOI: 10.1016/j.pep.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Short-chain insecticidal neurotoxin Tx4(6-1) from the spider Phoneutria nigriventer can be prepared by reversed-phase high-performance liquid-chromatography (HPLC) fractionation of PhTx4, but this is difficult and represents an obstacle preventing analyses of its insecticidal activity against agricultural insect pests. Herein, we performed secretory expression of recombinant Tx4(6-1) using Pichia pastoris strain X33 as the host, and screened transformants using enzyme-linked immunosorbent assay (ELISA). In flasks, ∼5 mg/l rTx4(6-1) was expressed as a secreted protein following induction with methanol, and this was increased to 45 mg/l rTx4(6-1) in a fed-batch reactor. Approximately 4 mg of high-purity rTx4(6-1) was purified from a 400 ml fed-batch culture supernatant by Ni+-nitriloacetic acid affinity chromatography, followed by carboxymethyl (CM) sepharose ion-exchange chromatography. Purified rTx4(6-1) was determined by mass spectrometry (MS) analysis, revealing a molecular weight (MW) of 7660.5 Da, larger than the expected size due to O-linked glycosylation. Insect bioactivity tests of rTx4(6-1)-treated fifth-instar silkworm larvae (Bombyx mori Linnaeus) showed neurotoxin symptoms such as contraction paralysis, abdominal contraction, and mouth movement syndrome, with a half lethal dose at 12 h post-injection of ∼4.5-8.5 μg/g body weight. Dietary toxicity was not observed in silkworm larvae.
Collapse
Affiliation(s)
- Hongbo Li
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China; Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| | - Yuxian Xia
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
8
|
Li H, Xia Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J Microbiol Biotechnol 2018; 34:104. [PMID: 29951705 DOI: 10.1007/s11274-018-2484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
Abstract
Scorpion long-chain insect selective neurotoxin AaIT has the potential to be used against agricultural insect pests. However, there is still a lack of a heterologous gene expression system that can express AaIT efficiently. Here, using X33 as the host strain and pPICZαA as the expression vector, one transformant had the highest expression of recombinant AaIT (rAaIT) was obtained, and secreted as high as 240 mg/l rAaIT in fed-batch fermentation. Secretory rAaIT was purified by Ni2+-nitriloacetic affinity and CM chromatography, and 8 mg of high purity rAaIT were purified from 200 ml fed-batch fermentation cultures. Injecting silkworm (Bombyx mori Linnaeus) and Galleria mellonella larvae with rAaIT resulted in obvious neurotoxin symptoms and led to death. These results demonstrate that a large amount of anti-insect active rAaIT could be prepared efficiently.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China. .,The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
9
|
Li H, Xia Y. Recombinant production of the insecticidal scorpion toxin BjαIT in Escherichia coli. Protein Expr Purif 2017; 142:62-67. [PMID: 28988146 DOI: 10.1016/j.pep.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/28/2023]
Abstract
Scorpion long-chain insect neurotoxins have important potential application value in agricultural pest control. The difficulty of obtaining natural toxins is the major obstacle preventing analyses of their insecticidal activity against more agricultural insect pests. Here we cloned the insect neurotoxin BjαIT gene into the pET32 expression vector and expressed the resulting thioredoxin (Trx)-BjαIT fusion protein in Escherichia coli. Soluble Trx-BjαIT was expressed at a high level when induced at 18 °C with 0.1 mM isopropyl β-d-1-thiogalactopyranoside, and it was purified by Ni2+-nitriloacetic acid affinity chromatography. After cleaving the Trx tag with recombinant enterokinase, the digestion products were purified by CM Sepharose FF ion-exchange chromatography, and 1.5 mg of purified recombinant BjαIT (rBjαIT) was obtained from 100 ml of induced bacterial cells. Injecting rBjαIT induced obvious neurotoxic symptoms and led to death in locust (Locusta migratoria) larvae. Dietary toxicity was not observed in locusts. The results demonstrate that active rBjαIT could be obtained efficiently from an E. coli expression system, which is helpful for determining its insecticidal activity against agricultural insect pests.
Collapse
Affiliation(s)
- Hongbo Li
- The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing 400030, China
| | - Yuxian Xia
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
10
|
邓 胜, 邓 茗, 陈 嘉, 郑 丽, 彭 鸿. [Larvicidal activity of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or B.t.i toxin Cyt2Ba against mosquito larvae and formulations for enhancing the effects]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:750-754. [PMID: 28669947 PMCID: PMC6744137 DOI: 10.3969/j.issn.1673-4254.2017.06.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To assess the larvicidal effects of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or Bacillus thuringiensis subsp israelensis (B.t.i) toxin Cyt2Ba against the second instar larvae of Culex pipiensquinquefasciatus and Aedes albopictus and compare different formulations for their larvicidal effects. METHODS The AaIT- or Cyt2Ba-coding sequences were cloned into pET28a(+) and the recombinant plasmids were transformed into E. coli BL21(DE3). After induction with IPTG, the recombinant proteins expressed by the recombinant E. coli were detected and identified by SDS-PAGE and Western blotting, respectively. The larvicidal activity of the bacterial suspension was tested at different concentrations against mosquitoes. The effective engineered bacteria were prepared into dry powder with different formulations, and their larvicidal activity was tested. RESULTS AaIT and Cyt2Ba proteins were successfully expressed in E. coli. The recombinant AaIT protein showed no virulence to the mosquito larvae. The suspension of the recombinant E. coli expressing Cyt2Ba protein exhibited a stronger killing effect on Aedes albopictus larvae than on Culex pipiens quinquefasciatus larvae at 48 h (P<0.001) with LC50 of 3.00×106 cells/mL and 1.25×107 cells/mL, respectively. The dry powder of the engineered bacteria formulated with yeast extract, wheat flour or white pepper powder at the mass ratio of 1:1 showed the strongest killing effect on mosquito larvae (P=0.044), and the formulation with white pepper powder produced a stronger killing effect than formulations with yeast extract or wheat flour (P=0.002). CONCLUSION The B.t.i Cyt2Ba protein expressed in E. coli BL21(DE3) shows a good larvicidal activity against mosquitoes, and appropriate formulations of the engineered bacteria can enhance its efficiency in mosquito control.
Collapse
Affiliation(s)
- 胜群 邓
- />南方医科大学公共卫生学院病原生物学系//广东省热带病研究重点实验室,广东 广州 510515Department of Pathogen Biology/Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 茗芝 邓
- />南方医科大学公共卫生学院病原生物学系//广东省热带病研究重点实验室,广东 广州 510515Department of Pathogen Biology/Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 嘉婷 陈
- />南方医科大学公共卫生学院病原生物学系//广东省热带病研究重点实验室,广东 广州 510515Department of Pathogen Biology/Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 丽兰 郑
- />南方医科大学公共卫生学院病原生物学系//广东省热带病研究重点实验室,广东 广州 510515Department of Pathogen Biology/Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 鸿娟 彭
- />南方医科大学公共卫生学院病原生物学系//广东省热带病研究重点实验室,广东 广州 510515Department of Pathogen Biology/Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Tianpei X, Li D, Qiu P, Luo J, Zhu Y, Li S. Scorpion peptide LqhIT2 activates phenylpropanoid pathways via jasmonate to increase rice resistance to rice leafrollers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 230:1-11. [PMID: 25480003 DOI: 10.1016/j.plantsci.2014.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 05/09/2023]
Abstract
LqhIT2 is an insect-specific toxin peptide identified in Leiurus quinquestriatus hebraeus that can be toxic to lepidoptera pests. However, whether LqhIT2 induces insect resistance in rice, and how the LqhIT2 influences the biochemical metabolism of rice plants remains unknown. Here, purified LqhIT2-GST fusion protein had toxicity to rice leafrollers. Meanwhile, in vitro and field trials showed that LqhIT2 transgenic rice plants were less damaged by rice leafrollers compared to the wild type plants. Introducing LqhIT2 primed the elevated expression of lipoxygenase, a key component of the jasmonic acid biosynthetic pathway, together with enhanced linolenic acid, cis-(+)-12-oxophytodienoic acid, jasmonic acid, and jasmonic acid-isoleucine levels. In addition, phenylalanine ammonia-lyase, a key gene of the phenylpropanoid pathway, was up-regulated. Correspondingly, the contents of downstream products of the phenylpropanoid pathway such as flavonoids and lignins, were also increased in LqhIT2 transgenic plants. These changes were paralleled by decreased starch, glucose, and glucose-6-phosphate accumulation, the key metabolites of glycolysis pathway that supplies the raw material and intermediate carbon products for phenylpropanoids biosyntheses. These findings suggest that, in addition to its own toxicity against pests, LqhIT2 activate the phenylpropanoid pathway via jasmonate-mediated priming, which subsequently increases flavonoid and lignin content and improves insect resistance in rice.
Collapse
Affiliation(s)
- Xiuzi Tianpei
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Dong Li
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China
| | - Ping Qiu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jie Luo
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China.
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Fu Y, Yang R, Chen W, Wu Z, Liang A, Hu F. Functional study of active residues scorpion insect toxin BmK IT from Buthus martensii Karsch. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Luo F, Lu R, Zhou H, Hu F, Bao G, Huang B, Li Z. Metabolic effect of an exogenous gene on transgenic Beauveria bassiana using liquid chromatography-mass spectrometry-based metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7008-7017. [PMID: 23822565 DOI: 10.1021/jf401703b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetic modification of Beauveria bassiana with the scorpion neurotoxin aaIT gene can distinctly increase its insecticidal activity, whereas the effect of this exogenous gene on the metabolism of B. bassiana is unknown until now. Thus, we investigate the global metabolic profiling of mycelia and conidia of transgenic and wild-type B. bassiana by liquid chromatography-mass spectrometry (LC-MS). Principal component analysis (PCA) and orthogonal projection to latent structure discriminant analysis (OPLS-DA) reveal clear discrimination of wild-type mycelia and conidia from transgenic mycelia and conidia. The decrease of glycerophospholipids, carnitine, and fatty acids and the increase of oxylipins, glyoxylate, pyruvic acid, acetylcarnitine, fumarate, ergothioneine, and trehalose in transgenic mycelia indicate the enhanced oxidative reactions. In contrast, most metabolites related to oxidative stress are not altered significantly in conidia, which implies that there will be no significant oxidative stress reaction when the aaIT gene is quiescent in cells.
Collapse
Affiliation(s)
- Feifei Luo
- Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Recombinant scorpion insect excitatory toxin BmK IT accelerates the growth of insect Spodoptera frugiperda 9 cells. Mol Cell Biochem 2011; 351:93-8. [DOI: 10.1007/s11010-011-0715-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
15
|
Hashimoto Y, Zhang S, Blissard GW. Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. BMC Biotechnol 2010; 10:50. [PMID: 20602790 PMCID: PMC2906426 DOI: 10.1186/1472-6750-10-50] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/05/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production. RESULTS Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth (Ascalapha odorata; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector. In comparisons with low-passage High Five (BTI-Tn-5B1-4) cells, infected Ao38 cells produced beta-galactosidase and SEAP at levels higher (153% and 150%, respectively) than those measured from High Five cells. Analysis of N-glycans of SEAP produced in Ao38 cells revealed two N-glycosylation sites and glycosylation patterns similar to those reported for High Five and Sf9 cells. Glycopeptide isoforms consisted of pauci- or oligomannose, with and without fucose on N-acetylglucosamine(s) linked to asparagine residues. Estimates of Ao38 cell volume suggest that Ao38 cells are approximately 2.5x larger than Sf9 cells but only approximately 74% of the size of High Five cells. Ao38 cells were highly susceptible to AcMNPV infection, similar to infectivity of Sf9 cells. Production of infectious AcMNPV budded virions from Ao38 cells peaked at approximately 4.5 x 10(7) IU/ml, exceeding that from High Five cells while lower than that from Sf9 cells. Ao38 cells grew rapidly in stationary culture with a population doubling time of 20.2 hr, and Ao38 cells were readily adapted to serum-free medium (Sf-900III) and to a suspension culture system. Analysis of Ao38 and a parental Ascalapha odorata cell line indicated that these lines were free of the alphanodavirus that was recently identified as an adventitious agent in High Five cell lines. CONCLUSIONS Ao38 cells represent a highly productive new insect cell line that will be useful for heterologous protein expression and other applications in biotechnology.
Collapse
Affiliation(s)
- Yoshifumi Hashimoto
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca NY 14853 USA
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, Tower Road, Ithaca NY 14853 USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca NY 14853 USA
| |
Collapse
|
16
|
Li H, Xia Y. High expression and rapid purification of recombinant scorpion anti-insect neurotoxin AaIT. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mukherjee AK. Correlation between the phospholipids domains of the target cell membrane and the extent of Naja kaouthia PLA2-induced membrane damage: Evidence of distinct catalytic and cytotoxic sites in PLA2 molecules. Biochim Biophys Acta Gen Subj 2007; 1770:187-95. [PMID: 17127009 DOI: 10.1016/j.bbagen.2006.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Two phospholipase A(2) (PLA(2)) enzymes (NK-PLA(2)-A and NK-PLA(2)-B) were purified from the venom of the monocled cobra Naja kaouthia. The molecular weights of NK-PLA(2)-A and NK-PLA(2)-B, as estimated by mass spectrometry, were 13,619 and 13,303 Da respectively. Both phospholipases were highly thermostable, had maximum catalytic activity at basic pH, and showed preferential hydrolysis of phosphatidylcholine. Intravenous injection of either PLA(2) up to a dose of 10 mg/kg body weight was non-toxic to mice and did not show neurotoxic symptoms. The N. kaouthia PLA(2)s displayed anticoagulant and cytotoxic activity, but poor hemolytic activity. Both the PLA(2)s were more toxic to Sf9 and Tn cells compared to VERO cells. NK-PLA(2) exhibited selective lysis of wild-type baculovirus-infected Sf9 cells compared to normal cells. Amino acid modification studies and heating experiments suggest that separate sites in the NK-PLA(2) molecules are responsible for their catalytic, anticoagulant and cytotoxic activities.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam, India.
| |
Collapse
|