1
|
Huo H, Bao H. Comparative study on the anti-tumor effect of steroids derived from different organisms in H22 tumor-bearing mice and analysis of their mechanisms. Eur J Pharmacol 2024; 963:176269. [PMID: 38096966 DOI: 10.1016/j.ejphar.2023.176269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
This study aimed to comparatively investigate the anti-tumor mechanisms of steroids including ergosterol, β-sitosterol, cholesterol, and fucosterol. The model of H22 tumor-bearing mice was constructed based on histopathological data and biochemical parameters, while serums were subjected to metabolomics analysis to study the potential anti-tumor mechanisms. The results indicated that the four steroids exhibited different degrees of anti-tumor effects on H22 mice. The tumor inhibition rates were 63.25% for ergosterol, 56.41% for β-sitosterol, 61.54% for cholesterol, and 72.65% for fucosterol. Metabolomic analyses revealed that 87, 71, and 129 differential metabolites were identified in ergosterol, cholesterol, and fucosterol treatment groups, respectively. The fucosterol treatment group had the highest number of differential metabolites. At the same time, it mainly inhibited purine and amino acid metabolism to exert anti-tumor effects. Ergosterol enhanced immunity and affected pyruvate metabolism, and cholesterol inhibited purine metabolism. The chemical structure difference among ergosterol, cholesterol, and fucosterol is mainly at the number and position of sterol double bonds and the number and length of side chain carbons. Therefore, there is a structure-activity relationship between the structure of steroid compounds and their efficacy. This study provides a key foundation for the exploitation of the anti-tumor effects of steroids derived from different organisms.
Collapse
Affiliation(s)
- Huimin Huo
- College of Traditional Chinese Materia Medica & Key Research Laboratory for the Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Haiying Bao
- College of Traditional Chinese Materia Medica & Key Research Laboratory for the Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
2
|
Gao Y, Xun R, Xia J, Xia H, Sun G. Effects of phytosterol supplementation on lipid profiles in patients with hypercholesterolemia: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2023; 14:2969-2997. [PMID: 36891733 DOI: 10.1039/d2fo03663k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phytosterols (PSs) have been reported to improve blood lipids in patients with hypercholesterolemia for many years. However, meta-analyses of the effects of phytosterols on lipid profiles are limited and incomplete. A systematic search of randomized controlled trials (RCTs) published in PubMed, Embase, Cochrane Library, and Web of Science from inception to March 2022 was conducted according to the 2020 preferred reporting items of the guidelines for systematic reviews and meta-analysis (PRISMA) statement. These included studies of people with hypercholesterolemia, comparing foods or preparations containing PSs with controls. Mean differences with 95% confidence intervals were used to estimate continuous outcomes for individual studies. The results showed that in patients with hypercholesterolemia, taking a diet containing a certain dose of plant sterol significantly reduced total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) (TC: Weight Mean Difference (WMD) [95% CI] = -0.37 [-0.41, -0.34], p < 0.001; LDL-C: WMD [95% CI] = -0.34 [-0.37, -0.30], p < 0.001). In contrast, PSs had no effect on high density lipoprotein cholesterol (HDL-C) or triglycerides (TGs) (HDL-C: WMD [95% CI] = 0.00 [-0.01, 0.02], p = 0.742; TG: WMD [95% CI] = -0.01 [-0.04, 0.01], p = 0.233). Also, a significant effect of supplemental dose on LDL-C levels was observed in a nonlinear dose-response analysis (p-nonlinearity = 0.024). Our findings suggest that dietary phytosterols can help reduce TC and LDL-C concentrations in hypercholesterolemia patients without affecting HDL-C and TG concentrations. And the effect may be affected by the food substrate, dose, esterification, intervention cycle and region. The dose of phytosterol is an important factor affecting the level of LDL-C.
Collapse
Affiliation(s)
- Yusi Gao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ruilong Xun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China. .,China-DRIs Expert Committee on Other Dietary Ingredients, Beijing 100052, China
| |
Collapse
|
3
|
Lv WJ, Huang JY, Lin J, Ma YM, He SQ, Zhang YW, Wang TZ, Cheng K, Xiong Y, Sun FG, Pan ZC, Sun JB, Mao W, Guo SN. Phytosterols Alleviate Hyperlipidemia by Regulating Gut Microbiota and Cholesterol Metabolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6409385. [PMID: 37151603 PMCID: PMC10156461 DOI: 10.1155/2023/6409385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023]
Abstract
Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.
Collapse
Affiliation(s)
- Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jie-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Qi He
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying-Wen Zhang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Tian-Ze Wang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ke Cheng
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying Xiong
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Feng-Gang Sun
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Zhong-Chao Pan
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jing-Bo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
WANG S, YU D, SHI Y, JIANG L, YANG F, YU G. Investigation into the bioavailability of synthesized phytosterol esters in vitro and in vivo using Caco-2 cell model and Wistar rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.68620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shirang WANG
- Northeast Agricultural University, China; Heilongjiang Communications Polytechnic, China
| | - Dianyu YU
- Northeast Agricultural University, China
| | - Yongge SHI
- Jiusan Grains and Oils Industrial Group Co., China
| | | | | | - Guoping YU
- Northeast Agricultural University, China
| |
Collapse
|
5
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
6
|
Chang M, Zhang T, Feng W, Wang T, Liu R, Jin Q, Wang X. Preparation of highly pure stigmasteryl oleate by enzymatic esterification of stigmasterol enriched from soybean phytosterols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Kilvington A, Maldonado‐Pereira L, Torres‐Palacios C, Medina‐Meza I. Phytosterols and their oxidative products in infant formula. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Kilvington
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Lisaura Maldonado‐Pereira
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Cristobal Torres‐Palacios
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| | - Ilce Medina‐Meza
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| |
Collapse
|
8
|
Gandola AE, Dainelli L, Zimmermann D, Dahlui M, Detzel P. Milk Powder Fortified with Potassium and Phytosterols to Decrease the Risk of Cardiovascular Events among the Adult Population in Malaysia: A Cost-Effectiveness Analysis. Nutrients 2019; 11:E1235. [PMID: 31151244 PMCID: PMC6627836 DOI: 10.3390/nu11061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the cost-effectiveness of the consumption of a milk powder product fortified with potassium (+1050.28 mg/day) and phytosterols (+1200 mg/day) to lower systolic blood pressure and low-density lipoprotein cholesterol, respectively, and, therefore, the risk of myocardial infarction (MI) and stroke among the 35-75-year-old population in Malaysia. A Markov model was created against a do-nothing option, from a governmental perspective, and with a time horizon of 40 years. Different data sources, encompassing clinical studies, practice guidelines, grey literature, and statistical yearbooks, were used. Sensitivity analyses were performed to evaluate the impact of uncertainty on the base case estimates. With an incremental cost-effectiveness ratio equal to international dollars (int$) 22,518.03 per quality-adjusted life-years gained, the intervention can be classified as very cost-effective. If adopted nationwide, it would help prevent at least 13,400 MIs, 30,500 strokes, and more than 10,600 and 17,100 MI- and stroke-related deaths. The discounted cost savings generated for the health care system by those who consume the fortified milk powder would amount to int$8.1 per person, corresponding to 0.7% of the total yearly health expenditure per capita. Sensitivity analyses confirmed the robustness of the results. Together with other preventive interventions, the consumption of milk powder fortified with potassium and phytosterols represents a cost-effective strategy to attenuate the rapid increase in cardiovascular burden in Malaysia.
Collapse
Affiliation(s)
- Anita E Gandola
- Nestlé Research Center, 1000 Lausanne, Switzerland.
- Università della Svizzera Italiana, 6900 Lugano, Switzerland.
| | | | | | - Maznah Dahlui
- Centre of Population Health, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| | | |
Collapse
|
9
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
10
|
LDL-Cholesterol Lowering of Plant Sterols and Stanols-Which Factors Influence Their Efficacy? Nutrients 2018; 10:nu10091262. [PMID: 30205492 PMCID: PMC6163911 DOI: 10.3390/nu10091262] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/16/2022] Open
Abstract
The LDL-cholesterol (LDL-C) lowering effect of plant sterols/stanols (PSS) is summarized in several meta-analyses showing a dose-response relationship with intakes of 1.5 to 3 g/day lowering LDL-C by 7.5% to 12%. This review summarizes evidence for the impact of various factors potentially influencing the LDL-C-lowering efficacy of PSS. PSS are efficacious in all food formats and in food supplements. Some factors related to food format, e.g., solid vs. liquid foods, seem to impact efficacy, while there is no difference between free PSS and esters. Compared to multiple daily intakes, once-a-day intake of PSS, especially in the morning with light breakfast, leads to a sub-optimal LDL-C lowering. However, intake frequency seems influenced by intake occasion, i.e., with or without a meal, and time of day. Meal intake is a critical factor for an optimal LDL-C lowering efficacy of PSS. While age has no impact, gender is suggested to influence the LDL-C lowering effect of PSS with greater reductions reported for men than women; but overall evidence is inconclusive and larger studies show no gender by treatment interaction. In conclusion, PSS are efficacious in all foods and food supplements; for optimal efficacy they should be consumed with a (main) meal and twice daily.
Collapse
|
11
|
Esperança EDS, Bonatto MS, Shimamoto GG, Tubino M, Costa MC, Meirelles AJDA, Maximo GJ. Phase behavior of cholesterol in mixtures with hypo- and hypercholesterolemic lipids. Food Funct 2018; 9:3447-3455. [PMID: 29877525 DOI: 10.1039/c8fo00370j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some lipidic bioactives are largely reported to present hypocholesterolemic effects, for example, oleic acid, α-tocopherol, and octacosanol, found in rice-bran, olive, and sunflower oils. In contrast, some saturated and trans-unsaturated lipids found in animal fats or partially hydrogenated oils have been associated with the opposite effect. However, the mechanisms in which these lipids act for lowering or increasing cholesterol are not fully understood. In this context, this work was aimed at a fundamental physicochemical comprehension of how cholesterol phase behavior is affected in mixtures with these compounds. The complete solid-liquid equilibrium (SLE) phase diagrams of these mixtures were depicted by differential scanning calorimetry and microscopy, and also evaluated by the SLE thermodynamic theory. The minimal melting temperature (eutectic points) of the mixtures followed the order: α-tocopherol < oleic acid < elaidic acid < stearic acid < octacosanol. Among all biocompounds, stearic and trans-oleic acids promoted few changes in the normal thermodynamic behavior of cholesterol when in a mixture. In contrast, α-tocopherol induced a significant temperature depression in the system. Furthermore, at high concentrations of cholesterol (>90% molar fraction), the formation of solid solution was observed in all other systems, to a higher degree for oleic acid. The higher interactions of these beneficial compounds and the formation of solid solution that literature associates with the alteration of cholesterol enteric absorption probably correlates with their hypocholesterolemic effects.
Collapse
|
12
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
13
|
Lin M, Li H, Zhao Y, Cai E, Zhu H, Gao Y, Liu S, Yang H, Zhang L, Tang G. 2-Naphthoic acid ergosterol ester, an ergosterol derivative, exhibits anti-tumor activity by promoting apoptosis and inhibiting angiogenesis. Steroids 2017; 122:9-15. [PMID: 28377207 DOI: 10.1016/j.steroids.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Phytosterol is a natural component of vegetable oil and includes ergosterol (ER) and β-sitosterol. In this study, three new ergosterol monoester derivatives were obtained from the reflux reaction with ergosterol, organic acids (furoic acid, salicylic acid, and 2-naphthoic acid), EDCI, and DMAP in dichloromethane. The chemical structures were defined by IR and NMR. On the basis of the results, 2-naphthoic acid ergosterol ester (NE) had the highest tumor inhibition rate and was selected to study anti-tumor activity and its mechanism at doses of 0.025mmol/kg and 0.1mmol/kg in H22-tumor bearing mice. Compared with ER, NE exhibited more stronger anti-tumor activity in vivo. Furthermore, biochemical parameters of ALT, AST, BUN, and CRE showed that NE had little toxicity to mice. NE significantly improved serum cytokine levels of IFN-γ and decreased VEGF levels. Moreover, H&E staining, TUNEL assay, immunohistochemistry, and western blotting indicated that NE exhibited anti-tumor activity in vivo by promoting apoptosis and inhibiting angiogenesis. In brief, the present study provided a method to improve ER anti-tumor activity and a reference for a new anti-tumor agent.
Collapse
Affiliation(s)
- Mingzhu Lin
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China.
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | - Guosheng Tang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| |
Collapse
|
14
|
Fardet A, Morise A, Kalonji E, Margaritis I, Mariotti F. Influence of phytosterol and phytostanol food supplementation on plasma liposoluble vitamins and provitamin A carotenoid levels in humans: An updated review of the evidence. Crit Rev Food Sci Nutr 2017; 57:1906-1921. [PMID: 26193046 DOI: 10.1080/10408398.2015.1033611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytosterols and phytostanols (PAP) compete with cholesterol absorption in the intestine, resulting in a 5-15%-reduction in plasma total and LDL cholesterol. An important issue is the PAP potential to reduce the plasma concentrations of fat-soluble vitamins and provitamin A carotenoids. Here, an update of the scientific evidence is reviewed to evaluate plant PAP-enriched foods impact on plasma fat-soluble vitamins and carotenoid levels, and to discuss potential implications in terms of cardiovascular risk. Based on 49 human interventional and 3 bioavailability studies, results showed that regular consumption, particularly over the long term, of foods fortified with PAP as recommended in labeling does not significantly impact plasma vitamins A, D, and K concentration. A 10% significant median reduction was observed for α-tocopherol. Concerning carotenoids, while 13 studies did not demonstrate statistically significant plasma β-carotene reduction, 20 studies showed significant reductions, with median effect size of -24%. This decline can be mitigated or offset by increased fruits and vegetables consumption. Furthermore, higher cardiovascular risk was observed for differences in plasma β-carotene concentration of the same magnitude as the estimated average decrease by PAP consumption. These results are supported by the only study of β-carotene bioavailability showing decrease in absorption by phytosterols daily intake.
Collapse
Affiliation(s)
- Anthony Fardet
- a INRA, JRU 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand & Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont - Ferrand , France
| | - Anne Morise
- b ANSES, Unité d'Evaluation de Risques liés à la Nutrition , Maison-Alfort , France
| | - Esther Kalonji
- b ANSES, Unité d'Evaluation de Risques liés à la Nutrition , Maison-Alfort , France
| | - Irène Margaritis
- b ANSES, Unité d'Evaluation de Risques liés à la Nutrition , Maison-Alfort , France
| | - François Mariotti
- c AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior , Paris , France.,d INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior , Paris , France
| |
Collapse
|
15
|
Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals. Br J Nutr 2017; 117:56-66. [DOI: 10.1017/s0007114516004530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractDietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterolv. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem0·06) mmol/l,P=0·0179) and HDL-cholesterol (0·08 (sem0·03) mmol/l,P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %,P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %,P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.
Collapse
|
16
|
Castellanos-Jankiewicz A, Del Bosque-Plata L, Tejero ME. Combined effect of plant sterols and dietary fiber for the treatment of hypercholesterolemia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:93-100. [PMID: 24831917 DOI: 10.1007/s11130-014-0419-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hypercholesterolemia is a major contributor for disease burden in both the developed and developing world and an important risk factor for cardiovascular diseases (CVD). Phytosterols (PhS) and dietary fiber (DF) act as low density lipoprotein cholesterol (LDL-C) lowering agents, offering an effective treatment against high blood cholesterol and CVD. The aim of this review was to consider clinical evidence that analyzed the combination of PhS and DF in a cereal carrier for lowering LDL-C. Electronic database searches were carried out to identify peer-reviewed journal articles, from which five intervention studies that combined both components in a cereal carrier were identified and included in the present review. LDL-C lowering effects varied widely among studies, due to large heterogeneity in study design, subject baseline characteristics, length of the interventions, PhS and DF dosage and type of DF used. In relation to a time of intake, three studies suggested a frequency or distribution of the product's consumption during the day, while two studies did not consider this factor. Overall, the selected studies found significant differences on LDL-C concentrations, although not all of them reached the expected outcomes. Future research should be conducted to explore the effect that different types of DF exert on LDL-C when combined with PhS, and to analyze the effect of the product's time of intake in order to suggest an optimal moment of the day for its consumption.
Collapse
Affiliation(s)
- Ashley Castellanos-Jankiewicz
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, México, DF, 14610, Mexico,
| | | | | |
Collapse
|
17
|
Hamedi A, Ghanbari A, Saeidi V, Razavipour R, Azari H. Effects of β-sitosterol oral administration on the proliferation and differentiation of neural stem cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
18
|
Cusack LK, Fernandez ML, Volek JS. The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/phytostanol. Adv Nutr 2013; 4:633-43. [PMID: 24228192 PMCID: PMC3823509 DOI: 10.3945/an.113.004507] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Foods with added phytosterols/phytostanols (PS) are recommended to lower LDL cholesterol (LDL-c) concentrations. Manufacturers have incorporated PS into a variety of common foods. Understanding the cholesterol-lowering impact of the food matrix and the PS characteristics would maximize their success and increase the benefit to consumers. This review systematically examines whether the PS characteristics and the fatty acid composition of foods with added PS affects serum LDL-c. A total of 33 studies published between the years 1998 and 2011 inclusive of 66 individual primary variables (strata) were evaluated. The functional food matrices included margarine, mayonnaise, yogurt, milk, cheese, meat, grain, juice, and chocolate. Consistently, ≥10% reductions in LDL-c were reported when the characteristics of the food matrix included poly- and monounsaturated fatty acids known to lower LDL-c. Also, >10% mean reductions in LDL-c were reported when β-sitostanol and campestanol as well as stanol esters were used. These characteristics allow both low-fat and high-fat foods to successfully incorporate PS and significantly lower LDL-c.
Collapse
Affiliation(s)
| | | | - Jeff S. Volek
- Departments of Kinesiology and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Amir Shaghaghi M, Abumweis SS, Jones PJ. Cholesterol-Lowering Efficacy of Plant Sterols/Stanols Provided in Capsule and Tablet Formats: Results of a Systematic Review and Meta-Analysis. J Acad Nutr Diet 2013; 113:1494-1503. [DOI: 10.1016/j.jand.2013.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
|
20
|
Eilat-Adar S, Sinai T, Yosefy C, Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients 2013; 5:3646-83. [PMID: 24067391 PMCID: PMC3798927 DOI: 10.3390/nu5093646] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023] Open
Abstract
Lifestyle factors, including nutrition, play an important role in the etiology of Cardiovascular Disease (CVD). This position paper, written by collaboration between the Israel Heart Association and the Israel Dietetic Association, summarizes the current, preferably latest, literature on the association of nutrition and CVD with emphasis on the level of evidence and practical recommendations. The nutritional information is divided into three main sections: dietary patterns, individual food items, and nutritional supplements. The dietary patterns reviewed include low carbohydrate diet, low-fat diet, Mediterranean diet, and the DASH diet. Foods reviewed in the second section include: whole grains and dietary fiber, vegetables and fruits, nuts, soy, dairy products, alcoholic drinks, coffee and caffeine, tea, chocolate, garlic, and eggs. Supplements reviewed in the third section include salt and sodium, omega-3 and fish oil, phytosterols, antioxidants, vitamin D, magnesium, homocysteine-reducing agents, and coenzyme Q10.
Collapse
Affiliation(s)
- Sigal Eilat-Adar
- Zinman College for Physical Education & Sports, Wingate Institute, Netanya 42902, Israel
| | - Tali Sinai
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-Mail:
| | - Chaim Yosefy
- Cardiology Department, Barzilai Medical Center Campus, Ashkelon 78000, Israel; E-Mail:
- Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; E-Mail:
| | - Yaakov Henkin
- Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; E-Mail:
- Cardiology Department, Soroka University Medical Center, Beer-Sheva 84101, Israel
| |
Collapse
|
21
|
Eardley S, Brien S, Little P, Prescott P, Lewith G. Professional kinesiology practice for chronic low back pain: single-blind, randomised controlled pilot study. ACTA ACUST UNITED AC 2013; 20:180-8. [PMID: 23860019 DOI: 10.1159/000346291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic low back pain is a highly prevalent condition with no definitive treatment. Professional Kinesiology Practice (PKP) is a little known complementary medicine technique using non-standard muscle testing; no previous effectiveness studies have been performed. METHODS This is an exploratory, pragmatic single-blind, 3-arm randomised sham-controlled pilot study with waiting list control (WLC) in private practice UK (2007-2009). 70 participants scoring ≥4 on the Roland and Morris Disability Questionnaire (RMDQ) were randomised to real or sham PKP receiving 1 treatment weekly for 5 weeks or a WLC. WLC's were re-randomised to real or sham after 6 weeks. The main outcome was a change in RMDQ from baseline to end of 5 weeks of real or sham PKP. RESULTS With an effect size of 0.7 real treatment was significantly different to sham (mean difference RMDQ score = -2.9, p = 0.04, 95% CI -5.8 to -0.1). Compared to WLC, real and sham groups had significant RMDQ improvements (real -9.0, p < 0.01, 95% CI -12.1 to -5.8; effect size 2.1; sham -6.1, p < 0.01, 95% CI -9.1 to -3.1; effect size 1.4). Practitioner empathy (CARE) and patient enablement (PEI) did not predict outcome; holistic health beliefs (CAMBI) did, though. The sham treatment appeared credible; patients did not guess treatment allocation. 3 patients reported minor adverse reactions. CONCLUSIONS Real treatment was significantly different from sham demonstrating a moderate specific effect of PKP; both were better than WLC indicating a substantial non-specific and contextual treatment effect. A larger definitive study would be appropriate with nested qualitative work to help understand the mechanisms involved in PKP.
Collapse
Affiliation(s)
- S Eardley
- Complementary and Integrative Medicine Research, Primary Medical Care, University of Southampton, UK.
| | | | | | | | | |
Collapse
|
22
|
Naumann E, Plat J, Kester AD, Mensink RP. The Baseline Serum Lipoprotein Profile Is Related to Plant Stanol Induced Changes in Serum Lipoprotein Cholesterol and Triacylglycerol Concentrations. J Am Coll Nutr 2013; 27:117-26. [DOI: 10.1080/07315724.2008.10719683] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Panpipat W, Xu X, Guo Z. Improved acylation of phytosterols catalyzed by Candida antarctica lipase A with superior catalytic activity. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2693] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct 2012; 3:487-502. [DOI: 10.1039/c2fo10246c] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Maki KC, Lawless AL, Reeves MS, Dicklin MR, Jenks BH, Shneyvas E, Brooks JR. Lipid-altering effects of a dietary supplement tablet containing free plant sterols and stanols in men and women with primary hypercholesterolaemia: a randomized, placebo-controlled crossover trial. Int J Food Sci Nutr 2011; 63:476-82. [PMID: 22087585 PMCID: PMC3399633 DOI: 10.3109/09637486.2011.636345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This randomized, placebo-controlled, crossover trial assessed the lipid-altering efficacy of a dietary supplement (tablet form) providing 1.8g/day free (non-esterified) plant sterols and stanols versus placebo for 6 weeks as part of a therapeutic lifestyle changes (TLC) diet in 32 men and women with primary hypercholesterolaemia. Mean ± SE baseline (end of a 5-week TLC diet lead-in) lipid concentrations (mmol/1) were total cholesterol (TC), 5.88 ± 0.08; non-high-density lipoprotein cholesterol (non-HDL-C), 4.71 ± 0.09; low-density lipoprotein cholesterol (LDL-C), 4.02 ± 0.08; HDL-C, 1.17 ± 0.06 and triglycerides (TGs), 1.51 ± 0.12. Differences from control in responses (plant sterol/stanol — control) were significant (p < 0.05) for LDL-C (− 4.9%), non-HDL-C (− 3.6%) and TC (− 2.8%). HDL-C and TG responses were not significantly different between treatment conditions. These results indicate that 1.8g/day free plant sterols/stanols administered in a tablet produced favourable lipoprotein lipid changes in men and women with hypercholesterolaemia.
Collapse
Affiliation(s)
- Kevin C Maki
- Provident Clinical Research/Biofortis North America, 489 Taft Avenue, Glen Ellyn, IL 60137, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Musa-Veloso K, Poon TH, Elliot JA, Chung C. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids 2011; 85:9-28. [PMID: 21345662 DOI: 10.1016/j.plefa.2011.02.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine if plant stanols and plant sterols differ with respect to their low-density lipoprotein cholesterol (LDL-CH) lowering efficacies across a continuous dose range. METHODS Dose-response relationships were evaluated separately for plant stanols and plant sterols and reductions in LDL-CH, using a first-order elimination function. RESULTS Altogether, 113 publications and 1 unpublished study report (representing 182 strata) complied with the pre-defined inclusion and exclusion criteria and were included in the assessment. The maximal LDL-CH reductions for plant stanols (16.4%) and plant stanol ester (17.1%) were significantly greater than the maximal LDL-CH reductions for plant sterols (8.3%) and plant sterol ester (8.4%). These findings persisted in several additional analyses. DISCUSSION AND CONCLUSIONS Intakes of plant stanols in excess of the recommended 2g/day dose are associated with additional and dose-dependent reductions in LDL-CH, possibly resulting in further reductions in the risk of coronary heart disease (CHD).
Collapse
|
28
|
Lin X, Ma L, Moreau RA, Ostlund RE. Glycosidic bond cleavage is not required for phytosteryl glycoside-induced reduction of cholesterol absorption in mice. Lipids 2011; 46:701-8. [PMID: 21538209 DOI: 10.1007/s11745-011-3560-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d(7) and sitostanol-d(4). In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d(7) levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
29
|
Chai JW, Lim SL, Kanthimathi MS, Kuppusamy UR. Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. GENES AND NUTRITION 2010; 6:181-8. [PMID: 21484150 DOI: 10.1007/s12263-010-0196-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
The nutraceutical benefits of β-sitosterol (SIT) are well documented. The present study investigated the in vitro effects of SIT on adipogenesis, glucose transport, and lipid mobilization in rat adipocytes. Primary cultures of rat preadipocytes and differentiated adipocytes were used in this study. Glucose uptake was measured by the uptake of radio-labeled glucose. Adipogenesis and lipolysis were measured by oil-red-O and glycerol quantification methods, respectively. The expression of protein kinase B (Akt), glucose transporter 4 (GLUT4), hormone sensitive lipase (HSL), and phosphatidylinositol-3-kinase (PI3 K) genes in SIT-treated adipocytes were assessed by real-time reverse transcription polymerase chain reaction (RT-PCR). The data showed that SIT induced glucose uptake in adipocytes. It also stimulated adipogenesis in differentiating preadipocytes. Interestingly, although SIT displayed general insulin-mimetic activity by stimulating glucose uptake and adipogenesis, it also induced lipolysis in adipocytes. Furthermore, the SIT-induced lipolysis was not attenuated by insulin and co-incubation of SIT with epinephrine improved epinephrine-induced lipolysis. GLUT4 gene expression was highly down-regulated in SIT-treated adipocytes, compared to insulin-treated adipocytes, which was up-regulated. Insulin- and SIT-treated adipocytes showed similar levels of Akt, HSL, and PI3 K gene down-regulation. These observations suggest that the elevation of glucose uptake in SIT-treated adipocytes was unrelated to de novo synthesis of GLUT4 and the SIT-induced lipolysis is associated with the down-regulation of Akt and PI3K genes. The unique effects of SIT on the regulation of glucose uptake, adipogenesis, and lipolysis in adipocytes show that it has potential to be utilized in diabetes and weight management.
Collapse
Affiliation(s)
- Jen-Wai Chai
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
30
|
Lin X, Racette SB, Lefevre M, Spearie CA, Most M, Ma L, Ostlund RE. The effects of phytosterols present in natural food matrices on cholesterol metabolism and LDL-cholesterol: a controlled feeding trial. Eur J Clin Nutr 2010; 64:1481-7. [PMID: 20808333 PMCID: PMC3715129 DOI: 10.1038/ejcn.2010.180] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Extrinsic phytosterols supplemented to the diet reduce intestinal cholesterol absorption and plasma low-density lipoprotein (LDL)-cholesterol. However, little is known about their effects on cholesterol metabolism when given in native, unpurified form and in amounts achievable in the diet. The objective of this investigation was to test the hypothesis that intrinsic phytosterols present in unmodified foods alter whole-body cholesterol metabolism. SUBJECTS/METHODS In all, 20 out of 24 subjects completed a randomized, crossover feeding trial wherein all meals were provided by a metabolic kitchen. Each subject consumed two diets for 4 weeks each. The diets differed in phytosterol content (phytosterol-poor diet, 126 mg phytosterols/2000 kcal; phytosterol-abundant diet, 449 mg phytosterols/2000 kcal), but were otherwise matched for nutrient content. Cholesterol absorption and excretion were determined by gas chromatography/mass spectrometry after oral administration of stable isotopic tracers. RESULTS The phytosterol-abundant diet resulted in lower cholesterol absorption (54.2±2.2% (95% confidence interval 50.5%, 57.9%) vs 73.2±1.3% (69.5%, 76.9%), P<0.0001) and 79% higher fecal cholesterol excretion (1322±112 (1083.2, 1483.3) vs 739±97 mg/day (530.1, 930.2), P<0.0001) relative to the phytosterol-poor diet. Plasma lathosterol/cholesterol ratio rose by 82% (from 0.71±0.11 (0.41, 0.96) to 1.29±0.14 μg/mg (0.98, 1.53), P<0.0001). LDL-cholesterol was similar between diets. CONCLUSIONS Intrinsic phytosterols at levels present in a healthy diet are biologically active and have large effects on whole-body cholesterol metabolism not reflected in circulating LDL. More work is needed to assess the effects of phytosterol-mediated fecal cholesterol excretion on coronary heart disease risk in humans.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Susan B. Racette
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | | | | | - Marlene Most
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Lina Ma
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
31
|
Talati R, Sobieraj DM, Makanji SS, Phung OJ, Coleman CI. The Comparative Efficacy of Plant Sterols and Stanols on Serum Lipids: A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2010; 110:719-26. [DOI: 10.1016/j.jada.2010.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
|
32
|
Racette SB, Lin X, Lefevre M, Spearie CA, Most MM, Ma L, Ostlund RE. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am J Clin Nutr 2010; 91:32-8. [PMID: 19889819 PMCID: PMC2793103 DOI: 10.3945/ajcn.2009.28070] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/09/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain. OBJECTIVE We evaluated the effects of 3 phytosterol intakes on whole-body cholesterol metabolism. DESIGN In this placebo-controlled, crossover feeding trial, 18 adults received a phytosterol-deficient diet (50 mg phytosterols/2000 kcal) plus beverages supplemented with 0, 400, or 2000 mg phytosterols/d for 4 wk each, in random order. All meals were prepared in a metabolic kitchen; breakfast and dinner on weekdays were eaten on site. Primary outcomes were fecal cholesterol excretion and intestinal cholesterol absorption measured with stable-isotope tracers and serum lipoprotein concentrations. RESULTS Phytosterol intakes (diet plus supplements) averaged 59, 459, and 2059 mg/d during the 3 diet periods. Relative to the 59-mg diet, the 459- and 2059-mg phytosterol intakes significantly (P < 0.01) increased total fecal cholesterol excretion (36 +/- 6% and 74 +/- 10%, respectively) and biliary cholesterol excretion (38 +/- 7% and 77 +/- 12%, respectively) and reduced percentage intestinal cholesterol absorption (-10 +/- 1% and -25 +/- 3%, respectively). Serum LDL cholesterol declined significantly only with the highest phytosterol dose (-8.9 +/- 2.3%); a trend was observed with the 459-mg/d dose (-5.0 +/- 2.1%; P = 0.077). CONCLUSIONS Dietary phytosterols in moderate and high doses favorably alter whole-body cholesterol metabolism in a dose-dependent manner. A moderate phytosterol intake (459 mg/d) can be obtained in a healthy diet without supplementation. This trial was registered at clinicaltrials.gov as NCT00860054.
Collapse
Affiliation(s)
- Susan B Racette
- Washington University School of Medicine, St Louis, MO, and the Pennington Biomedical Research Center, Baton Rouge, LA 63108, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Racette SB, Spearie CA, Phillips KM, Lin X, Ma L, Ostlund RE. Phytosterol-deficient and high-phytosterol diets developed for controlled feeding studies. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 2009; 109:2043-51. [PMID: 19942022 PMCID: PMC2833354 DOI: 10.1016/j.jada.2009.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/30/2009] [Indexed: 02/07/2023]
Abstract
Phytosterols reduce cholesterol absorption and low-density lipoprotein cholesterol concentrations, but the quantity and physiological significance of phytosterols in common diets are generally unknown because nutrient databases do not contain comprehensive phytosterol data. The primary aim of this study was to design prototype phytosterol-deficient and high-phytosterol diets for use in controlled feeding studies of the influence of phytosterols on health. A second aim was to quantify the phytosterol content of these prototype diets and three other diets consumed in the United States. This study was conducted from June 2001 to September 2008 and involved designing, preparing, and then analyzing five different diets: an experimental phytosterol-deficient control diet, a relatively high-phytosterol diet based on the Dietary Approaches to Stop Hypertension diet, American Heart Association diet, Atkins lifetime maintenance plan, and a vegan diet. A single day of meals for each diet was homogenized and the resulting composites were analyzed for free, esterified, and glycosylated phytosterols by gas chromatography. Independent samples t tests were used to compare the diets' total phytosterol content. The total phytosterol content of the experimental phytosterol-deficient diet was 64 mg/2,000 kcal, with progressively larger quantities in Atkins, American Heart Association, vegan, and the high-phytosterol Dietary Approaches to Stop Hypertension diet (163, 340, 445, and 500 mg/2,000 kcal, respectively). Glycosylated phytosterols, which are often excluded from phytosterol analyses, comprised 15.9%+/-5.9% of total phytosterols. In summary, phytosterol-deficient and high-phytosterol diets that conform to recommended macronutrient guidelines and are palatable can now be used in controlled feeding studies.
Collapse
Affiliation(s)
- Susan B. Racette
- Assistant Professor, Department of Medicine and Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Ave. St. Louis, MO 63108, Phone: 314-286-1424, Fax: 314-286-1410
| | - Catherine Anderson Spearie
- Head Dietitian & Nutritionist, General Clinical Research Center, Washington University School of Medicine, Campus Box 8071, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-7627, Fax: 314-362-1546
| | - Katherine M. Phillips
- Research Scientist, Department of Biochemistry, Virginia Polytechnic Institute and State University, Director, Food Analysis Laboratory, 304 Engel Hall, Virginia Tech, Blacksburg, VA 24061, Phone: 540-231-9960, Fax: 540-231-9070
| | - Xiaobo Lin
- Senior Scientist, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8287, FAX: 314-362-7641
| | - Lina Ma
- Research Technician II, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8289, FAX: 314-362-7641
| | - Richard E. Ostlund
- Professor, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8286, FAX: 314-362-7641
| |
Collapse
|
34
|
Micallef MA, Garg ML. Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia. J Nutr Biochem 2009; 20:927-39. [DOI: 10.1016/j.jnutbio.2009.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/26/2009] [Accepted: 06/19/2009] [Indexed: 11/16/2022]
|
35
|
Carr TP, Krogstrand KLS, Schlegel VL, Fernandez ML. Stearate-enriched plant sterol esters lower serum LDL cholesterol concentration in normo- and hypercholesterolemic adults. J Nutr 2009; 139:1445-50. [PMID: 19535421 DOI: 10.3945/jn.109.106328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies in our laboratory have previously demonstrated in hamsters a superior cholesterol-lowering ability of plant sterol (PS) esters enriched in stearate compared with linoleate. We therefore conducted a randomized, double-blind, 2-group parallel, placebo-controlled study to test the cholesterol-lowering properties of stearate-enriched PS esters in normo- and hypercholesterolemic adults. Thirty-two adults, 16 per group with equal number of males and females in each group, participated in the 4-wk study. Participants consumed 3 g/d (1 g three times per day with meals) of either PS esters or placebo delivered in capsules. Serum LDL cholesterol concentration significantly decreased 0.42 mmol/L (11%) and the LDL:HDL cholesterol ratio decreased 10% with PS ester supplementation, whereas LDL particle size and lipoprotein subclass particle concentrations (as measured by NMR) were not affected. The percent change in LDL cholesterol was positively correlated with baseline lathosterol concentration (r = 0.729; P = 0.0014), indicating an association between the magnitude of LDL change and the rate of whole-body cholesterol synthesis. Serum campesterol (but not sitosterol) concentration significantly increased in the PS ester group. Serum tocopherol, retinol, and beta-carotene concentrations were not affected by PS ester supplementation. Thus, our findings demonstrate the usefulness of a novel stearate-enriched PS ester compound in decreasing LDL cholesterol in both normo- and hypercholesterolemic adults. The extent to which PS ester fatty acid composition affects intestinal micelle formation and cholesterol absorption in humans requires further study.
Collapse
Affiliation(s)
- Timothy P Carr
- Departments of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
36
|
Niittynen LH, Jauhiainen TA, Poussa TA, Korpela >R. Effects of yoghurt enriched with free plant sterols on the levels of serum lipids and plant sterols in moderately hypercholesterolaemic subjects on a high-fat diet. Int J Food Sci Nutr 2009; 59:357-67. [DOI: 10.1080/09637480701554137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Fornari T, Torres CF, Señoráns FJ, Reglero G. Simulation and optimization of supercritical fluid purification of phytosterol esters. AIChE J 2009. [DOI: 10.1002/aic.11728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Lin X, Ma L, Racette SB, Anderson Spearie CL, Ostlund RE. Phytosterol glycosides reduce cholesterol absorption in humans. Am J Physiol Gastrointest Liver Physiol 2009; 296:G931-5. [PMID: 19246636 PMCID: PMC2670661 DOI: 10.1152/ajpgi.00001.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (P<0.0001) and phytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Lina Ma
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Susan B. Racette
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine L. Anderson Spearie
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
39
|
Demonty I, Ras RT, van der Knaap HCM, Duchateau GSMJE, Meijer L, Zock PL, Geleijnse JM, Trautwein EA. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr 2009; 139:271-84. [PMID: 19091798 DOI: 10.3945/jn.108.095125] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phytosterols (plant sterols and stanols) are well known for their LDL-cholesterol (LDL-C)-lowering effect. A meta-analysis of randomized controlled trials in adults was performed to establish a continuous dose-response relationship that would allow predicting the LDL-C-lowering efficacy of different phytosterol doses. Eighty-four trials including 141 trial arms were included. A nonlinear equation comprising 2 parameters (the maximal LDL-C lowering and an incremental dose step) was used to describe the dose-response curve. The overall pooled absolute (mmol/L) and relative (%) LDL-C-lowering effects of phytosterols were also assessed with a random effects model. The pooled LDL-C reduction was 0.34 mmol/L (95% CI: -0.36, -0.31) or 8.8% (95% CI: -9.4, -8.3) for a mean daily dose of 2.15 g phytosterols. The impacts of subject baseline characteristics, food formats, type of phytosterols, and study quality on the continuous dose-response curve were determined by regression or subgroup analyses. Higher baseline LDL-C concentrations resulted in greater absolute LDL-C reductions. No significant differences were found between dose-response curves established for plant sterols vs. stanols, fat-based vs. non fat-based food formats and dairy vs. nondairy foods. A larger effect was observed with solid foods than with liquid foods only at high phytosterol doses (>2 g/d). There was a strong tendency (P = 0.054) towards a slightly lower efficacy of single vs. multiple daily intakes of phytosterols. In conclusion, the dose-dependent LDL-C-lowering efficacy of phytosterols incorporated in various food formats was confirmed and equations of the continuous relationship were established to predict the effect of a given phytosterol dose. Further investigations are warranted to investigate the impact of solid vs. liquid food formats and frequency of intake on phytosterol efficacy.
Collapse
|
40
|
Phytosterol Intake and Dietary Fat Reduction are Independent and Additive in their Ability to Reduce Plasma LDL Cholesterol. Lipids 2009; 44:273-81. [DOI: 10.1007/s11745-008-3278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
|
41
|
Micallef MA, Garg ML. The lipid-lowering effects of phytosterols and (n-3) polyunsaturated fatty acids are synergistic and complementary in hyperlipidemic men and women. J Nutr 2008; 138:1086-90. [PMID: 18492838 DOI: 10.1093/jn/138.6.1086] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fish oils rich in (n-3) long-chain PUFA (LCPUFA) can reduce circulating triglycerides and raise HDL-cholesterol. Phytosterols have been shown to reduce total cholesterol and LDL-cholesterol in normocholesterolemic and hyperlipidemic populations. We investigated the combined effects of phytosterols and (n-3) LCPUFA on plasma lipid profile in hyperlipidemic individuals. This study was a 3-wk randomized, double-blind, placebo-controlled, 2 x 2 factorial trial in 4 parallel groups of 60 hyperlipidemic individuals. Subjects were randomized to receive either sunola oil or 1.4 g/d (n-3) LCPUFA capsules with or without 2 g phytosterols per day while maintaining their habitual diet. The combination of phytosterols and (n-3) LCPUFA reduced plasma total cholesterol by 13.3% (P = 0.001), which differed from (n-3) LCPUFA alone (P < 0.001). LDL-cholesterol concentrations followed the same pattern as that of plasma cholesterol with a 12.5% decrease (P = 0.002) in the combination group. The HDL-cholesterol concentration was increased by (n-3) LCPUFA (7.1%; P = 0.01) alone and in combination with phytosterols (8.6%; P = 0.04), whereas phytosterol treatment alone had no effect. Plasma triglyceride concentration was lowered by (n-3) LCPUFA (22.3%; P = 0.004) alone and in combination with phytosterols (25.9%; P = 0.005), whereas phytosterol treatment alone had no effect. In conclusion, the combined supplementation with phytosterols and (n-3) LCPUFA has both synergistic and complementary lipid-lowering effects in hyperlipidemic men and women.
Collapse
Affiliation(s)
- Michelle A Micallef
- Nutraceuticals Research Group, School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
42
|
Madsen MB, Jensen AM, Schmidt EB. The effect of a combination of plant sterol-enriched foods in mildly hypercholesterolemic subjects. Clin Nutr 2007; 26:792-8. [PMID: 17719702 DOI: 10.1016/j.clnu.2007.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/13/2007] [Accepted: 05/24/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS The purpose of this study was to evaluate the effect of low-fat products enriched with plant sterols in addition to a National Cholesterol Education Program step 1 diet on serum lipids and lipoproteins. METHODS This study was a double-blind, randomised, placebo-controlled cross-over design with a run-in period and 2 intervention periods, each lasting 4 weeks. A total of 46 mildly hypercholesterolemic subjects (age 50.6+/-9.8) completed the trial. The study products consisted of 20 g low-fat margarine (35% fat) and 250 ml low-fat milk (0.7% fat), in total delivering 2.3g plant sterols/d. RESULTS Serum total and low-density lipoprotein cholesterol were significantly reduced by 5.5% (p<0.001, 95% CI: 2.5; 8.3) and 7.7% (p=0.001, 95% CI: 3.4; 11.9), respectively, by plant sterol-enriched products compared to placebo. Serum apolipoprotein B was significantly reduced by 4.6% (p<0.05, 95% CI: 1.7; 7.5), and apolipoprotein B/apolipoprotein A-I by 3.4% (p<0.05, 95% CI: 0.1; 6.6) after plant sterol intake compared to the placebo supplement. CONCLUSIONS A combination of low-fat margarine and milk enriched with plant sterols significantly reduced low-density lipoprotein cholesterol, apolipoprotein B and the ratio of apolipoprotein B to apolipoprotein A-I in mildly hypercholesterolemic subjects, but had no effect on C-reactive protein and lipoprotein (a) concentrations. SPONSORSHIP Unilever Denmark A/S.
Collapse
Affiliation(s)
- Martin B Madsen
- Department of Cardiology, Center for Cardiovascular Research, Arhus University Hospitals, Aalborg Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | | | | |
Collapse
|
43
|
Kim BH, Sandock KD, Robertson TP, Lewis SJ, Akoh CC. Dietary structured lipids and phytosteryl esters: blood lipids and cardiovascular status in spontaneously hypertensive rats. Lipids 2007; 43:55-64. [PMID: 17985171 DOI: 10.1007/s11745-007-3124-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/01/2007] [Indexed: 11/24/2022]
Abstract
This study examined the dietary effects of enzymatically modified sesame oil with caprylic acid (structured lipids, SL) and phytosteryl esters (PE) on blood lipid profiles and cardiovascular parameters of spontaneously hypertensive rats (SHR) fed high-fat and high-cholesterol (HFHC) diets. The dietary groups were: normal diet (control), sesame oil (SO), SL, SO fortified with PE (SOP), and SL fortified with PE (SLP). After 9 weeks of feeding, the body weights, liver weights, and liver weight/body weight ratios in all HFHC-fed groups were higher than controls. Plasma total and LDL cholesterol levels in all HFHC-fed groups were similar to one another but higher than those in controls. Plasma HDL cholesterol levels in rats fed SOP and SLP were higher than those in controls or rats fed SO and SL. Plasma HDL/total cholesterol ratios in rats fed SOP and SLP were similar to those in controls and were higher than those in rats fed SO and SL. There was no difference in plasma lipid profiles between rats fed SO and SL. Arterial blood pressures (BP) in conscious HFHC-fed rats were similar to those in controls whereas heart rates (HR) in all HFHC-fed groups were similar to one another but were higher than that in controls. These findings demonstrate that (1) the dietary effects of SL on plasma lipid profiles and resting BP and HR are similar to those of SO, (2) PE had positive effects on plasma lipid profiles, and (3) 9-week intake of SL and PE did not have pronounced effects on resting BP but induced tachycardia in SHR.
Collapse
Affiliation(s)
- Byung Hee Kim
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602-7610, USA
| | | | | | | | | |
Collapse
|
44
|
Brufau G, Canela MA, Rafecas M. A high-saturated fat diet enriched with phytosterol and pectin affects the fatty acid profile in guinea pigs. Lipids 2007; 41:159-68. [PMID: 17707982 DOI: 10.1007/s11745-006-5084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents the results of a study whose aim was to test the effects of several doses of pectin and phytosterols on the body weight gain and the FA content in female guinea pigs. The treatments resulted from supplementing with pectin and plant sterol a guinea pig diet (rich in saturated FA), following a 3 x 3 factorial design, with three levels of pectin (0, 3.67 and 6.93%) and three levels of phytosterols (0, 1.37, and 2.45%). Seventy-two female Dunkin Hartley guinea pigs were randomly assigned to the treatment groups (8 animals/group), the duration of the treatment being 4 wk. Pectin dietary intake led to a significant increase in body weight (P < 0.001), food consumption (P = 0.025), and feed efficiency (P < 0.001), but no influence of phytosterols on weight gain or food consumption was detected. We found a significant negative effect of the addition of phytosterols on lauric, myristic, and palmitic acid contents in feces, and a positive effect on their concentration in plasma and liver, but no significant effect on stearic acid content. Apparent FA absorption was assessed by calculating the ratio of FA in feces and diets that the absorption of the different FA could be compared, and the negative effect of phytosterol supplementation on these ratios, especially for lauric and myristic acids, was established.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Nutrition and Food Science-Centre de Referència en Tecnologia d'Aliments (CeRTA), University of Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|
45
|
Kim BH, Sandock KD, Robertson TP, Lewis SJ, Akoh CC. Dietary Effects of Structured Lipids and Phytosteryl Esters on Cardiovascular Function in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2007; 50:176-86. [PMID: 17703134 DOI: 10.1097/fjc.0b013e31805d8f03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study examined the dietary effects of sesame oil (SO)-based structured lipids (SL) and phytosteryl esters (PE) on cardiovascular function in conscious spontaneously hypertensive rats (SHR) fed high-fat (HF) diets (20% w/w fat). The dietary groups were as follows: normal diet (4.5% w/w fat), SO, SO fortified with PE (SOP), SL, and SL fortified with PE (SLP). Mean arterial blood pressures were similar in all groups, whereas resting heart rates (HR) were higher in all HF-fed groups. The pressor responses to the alpha1-adrenoceptor agonist, phenylephrine (5 microg/kg), were similar in all groups. However, the pressor responses to phenylephrine (10 microg/kg) were diminished in SO- or SL-fed SHR, whereas they were not diminished in SOP- or SLP-fed SHR. The depressor responses elicited by the nitric oxide (NO) donor, sodium nitroprusside (5 and 10 microg/kg), were not diminished in HF-fed rats. Baroreflex-mediated changes in HR were variously decreased in the HF-fed groups, and this decrease tended to be greater in SOP and SLP than in SO and SL groups. The depressor and tachycardic responses elicited by the beta-adrenoceptor agonist, isoproterenol, were equivalent in all groups. The depressor responses elicited by the endothelium-dependent agonist, acetylcholine (0.1 microg/kg), and the hypertension elicited by the NO synthesis inhibitor, NG-nitro-L-arginine methylester (25 micromol/kg), were similar in all groups. These findings demonstrate that (1) HF diets increase resting HR and impair baroreflex function in SHR, whereas they do not obviously affect endothelium-dependent vasodilation, and (2) fortification with PE may be deleterious to cardiovascular function (eg, baroreflex activity) in SHR.
Collapse
Affiliation(s)
- Byung Hee Kim
- Department of Food Science and Technology, University of Georgia, Athens, Georgia 30602-7610, USA
| | | | | | | | | |
Collapse
|
46
|
Rodrigues JN, Torres RP, Mancini-Filho J, Gioielli LA. Physical and chemical properties of milkfat and phytosterol esters blends. Food Res Int 2007. [DOI: 10.1016/j.foodres.2007.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Clifton PM, Mano M, Duchateau GSMJE, van der Knaap HCM, Trautwein EA. Dose-response effects of different plant sterol sources in fat spreads on serum lipids and C-reactive protein and on the kinetic behavior of serum plant sterols. Eur J Clin Nutr 2007; 62:968-77. [PMID: 17538539 DOI: 10.1038/sj.ejcn.1602814] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To test the dose-response effect on low-density lipoprotein cholesterol (LDL-c) of plant sterols (PS) from different sources in a low-fat spread. METHODS Dose responses of soybean oil (BO), tall oil (TO) and a mix of tall oil and rapeseed oil (TO/RP) as fatty acid esters were tested in a parallel design in free-living subjects recruited from the general community who had elevated cholesterol concentrations. Subjects received either control for 6 weeks or 1.6 g PS per day for 3 weeks, then 3.0 g/day for 3 weeks. RESULTS LDL-c was lowered significantly by consumption of 1.6 g/day of PS (-10.4%, range -7.3 to -11.4%). Increasing the dose to 3.0 g/day modestly reduced LDL-c concentrations further to -14.7%. TO, containing 78% sitosterol, produced an increase in serum sitosterol of 6.5 nmol/ml, while BO, containing only 27% campesterol, produced an increase in serum campesterol of 9.5 nmol/ml in 6 weeks. After PS withdrawal, serum sterols declined by 50% within 2 weeks. CONCLUSION Different PS sources were equally effective in lowering serum LDL-c concentrations. The decrease in absolute concentrations of LDL-c was dependent on the baseline concentrations.
Collapse
Affiliation(s)
- P M Clifton
- CSIRO Human Nutrition, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
48
|
Acuff RV, Cai DJ, Dong ZP, Bell D. The lipid lowering effect of plant sterol ester capsules in hypercholesterolemic subjects. Lipids Health Dis 2007; 6:11. [PMID: 17419879 PMCID: PMC1852556 DOI: 10.1186/1476-511x-6-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/09/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Foods enriched with phytosterols have been proven to be an effective therapy to improve blood lipid profiles. However, none of the studies have investigated the efficacy in lipid lowering of plant sterol esters (PSE) in capsule form. The objective of this study is to determine if the plant sterol esters (PSE) in capsule form (1.3 grams of PSE/day) lowered plasma cholesterol levels and lipid ratios in free-living hypercholesterolemic subjects during a 4-week intervention period. METHODS Sixteen subjects participated in a double-blind, placebo-controlled, sequential study with a 4-week placebo phase followed by a 2-week wash-out period and a 4-week treatment phase. Subjects were instructed to maintain stable diet pattern and physical activities. Blood samples were collected at 7, 21 and 28 days of each phase. The primary measurements were change in plasma total cholesterol (TC), HDL-cholesterol (HDL) and LDL-cholesterol (LDL) between phases and within each phase. The secondary measurements were change in triglycerides, lipoprotein ratios (TC/HDL, LDL/HDL) and C-reactive protein (CRP). RESULTS In comparison to placebo, LDL-cholesterol was significantly reduced by 7% and 4% (P < 0.05) at both week 3 and week 4; HDL at week 3 of the treatment was significantly increased by 9% (P < 0.01), but not at week 4 (4%); total cholesterol was not significantly different from placebo throughout the period, TC/HDL and LDL/HDL were significantly reduced by (8%, 8%, 6%, 10%, respectively) (P < 0.01) at both week 3 and week 4. CRP and triglycerides did not differ either between the two phases or during the treatment phase. CONCLUSION In conclusion, plant sterol ester capsule is effective in improving lipid profiles among hypercholesterolemic subjects in a free-living setting at the minimum dosage recommended by FDA. The significant improved lipid profiles were reached after three weeks of administration. To achieve better lipid lowering results, higher dosages and combination with diets low in saturated fat and cholesterol are recommended.
Collapse
Affiliation(s)
- Robert V Acuff
- East Tennessee State University, College of Medicine, Johnson City, TN, USA
| | | | - Zhi-Ping Dong
- East Tennessee State University, College of Medicine, Johnson City, TN, USA
| | - Doris Bell
- Cognis Deutschland GmbH & Co. KG, Monheim, Germany
| |
Collapse
|
49
|
|
50
|
Kim BH, Akoh CC. Modeling and optimization of lipase-catalyzed synthesis of phytosteryl esters of oleic acid by response surface methodology. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|