1
|
Wei L, Marco ML. The fermented cabbage metabolome and its protection against cytokine-induced intestinal barrier disruption of Caco-2 monolayers. Appl Environ Microbiol 2025; 91:e0223424. [PMID: 40192297 DOI: 10.1128/aem.02234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/28/2025] [Indexed: 05/22/2025] Open
Abstract
Fermented vegetables, such as fermented cabbage (sauerkraut), have garnered growing interest for their associations with a myriad of health benefits. However, the mechanistic details underlying the outcomes of consuming these foods require further investigation. This study examined the capacity of soluble metabolites in laboratory-scale and commercial-fermented cabbage to protect against disruption of polarized Caco-2 monolayers by interferon gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Laboratory-scale ferments (LSF) were prepared with and without the addition of Lactiplantibacillus plantarum NCIMB8826R (LP8826R) and sampled after 7 and 14 days of incubation. Trans-epithelial electrical resistance (TER) and paracellular permeability to fluorescein isothiocyanate (FITC)-dextran revealed that fermented cabbage, but not raw cabbage or brine, protected against cytokine-induced damage to the Caco-2 monolayers. Barrier-protective effects occurred despite increased IL-8 production following cytokine exposure. Metabolomic analyses performed using gas and liquid chromatography resulted in the identification of 149 and 333 metabolites, respectively. Significant differences were found between raw and fermented cabbage. LSF metabolomes changed over time, and the profiles of LSF with LP8826R best resembled the commercial product. Overall, fermentation resulted in lower carbohydrate and increased lactic acid, lipid, amino acid derivative (including D-phenyl-lactate [D-PLA], indole-3-lactate [ILA], and γ-aminobutyric acid [GABA]), and phenolic compound concentrations. Lactate, D-PLA, and ILA tested individually and combined only partially protected against cytokine-induced TER reductions and increases in paracellular permeability of Caco-2 monolayers. The findings show that intestinal barrier-protective compounds are consistently enriched during cabbage fermentations, irrespective of the scale or microbial additions, which may contribute to the health-promoting potential of these foods.IMPORTANCEFermented vegetables are increasingly associated with health benefits. However, the importance of microbial transformations to foods during the fermentation process remains to be determined. We found that the metabolites in spontaneously fermented cabbage protected polarized intestinal epithelial cells against damage induced by proinflammatory cytokines. Cabbage fermentations resulted in consistent metabolome profiles enriched in bioactive compounds known to be made by beneficial members of the human gut microbiome, including D-phenyl-lactate (D-PLA) and indole-3-lactate (ILA). The metabolomes were distinct from raw cabbage and were further differentiated between commercial and lab ferments, sampling time, and the presence of an exogenous Lactiplantibacillus plantarum strain. Because only partial protection against intestinal barrier disruption was found when individual metabolites (D-PLA, ILA, and lactate) were applied, the findings indicate that the complex mixture of metabolites in a cabbage fermentation offers advantages over single metabolites to benefit intestinal health.
Collapse
Affiliation(s)
- Lei Wei
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| |
Collapse
|
2
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
3
|
Wei L, Van Beeck W, Hanlon M, DiCaprio E, Marco ML. Lacto-Fermented Fruits and Vegetables: Bioactive Components and Effects on Human Health. Annu Rev Food Sci Technol 2025; 16:289-314. [PMID: 39805038 DOI: 10.1146/annurev-food-052924-070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in beneficial live microbes and bioactive compounds, including lactic and acetic acids, phenolic compounds, bacteriocins, and amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, and γ-aminobutyric acid. At least 11 human studies have been performed on kimchi, whereas others have been investigated in only one or two trials. Besides exploring the health benefits, it is imperative to ensure that these foods made either commercially or at home have minimal risk for foodborne illness and exposure to undesired compounds like biogenic amines. Development of starter-culture strains and production protocols can lead to lacto-fermented FVs designed for specific health benefits.
Collapse
Affiliation(s)
- Lei Wei
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA;
| | - Wannes Van Beeck
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA;
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Melanie Hanlon
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA;
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Erin DiCaprio
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA;
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA;
| |
Collapse
|
4
|
Wang Q, Chen Z, Gao X, Xu H, Cheng YY, Liu S, Wang W, Zhang Y, Meng D, Wang Y, Liao S, Xie C, Wang Y. A simple and effective method to enhance the level of gamma-aminobutyric acid in Chinese yam tubers while preserving its original appearance. Food Chem X 2025; 27:102379. [PMID: 40206050 PMCID: PMC11979418 DOI: 10.1016/j.fochx.2025.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Hot-air drying is an effective method to enhance the levels of gamma-aminobutyric acid (GABA) in edible tubers/tuberous roots. However, consumers prefer fresh food to processed food. Therefore, this study aims to develop an effective method to increase the GABA levels in the tubers of Chinese yam (CY tubers) and the tubers/tuberous roots of other plants while preserving its original appearance. Among nitrogen treatment (treatment under a nitrogen atmosphere), carbon dioxide (CO2) treatment (treatment under a CO2 atmosphere), vacuum treatment, and water immersion, CO2 treatment was the most effective GABA-level-increasing method for CY tubers, with water immersion being more effective than nitrogen treatment and vacuum treatment. The GABA level in CY tubers treated with CO2 for 72 h reached 1.25 ± 0.08 mg/g. CO2 treatment and water immersion were also effective GABA-level-increasing methods for CY bulbils, potatoes, and lotus tubers, but they were less effective for carrots.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuo Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xiqiang Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongde Xu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yung-Yi Cheng
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shuangyan Liu
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Wei Wang
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Yuwei Zhang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| | - Dian Meng
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yinuo Wang
- Zhengzhou No. 7 High School, Zhengzhou 450045, China
| | - Shixiu Liao
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| | - Chengping Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| |
Collapse
|
5
|
Yao W, Li J, Zhu X, Ma R, Xu Y, Ma R, Guo Z, Mu G, Zhu X. GABA-Enriched Lactiplantibacillus plantarum DPUL-F233 Powder and Its Effect on Blood Pressure in Spontaneously Hypertensive Rats. J Food Sci 2025; 90:e70208. [PMID: 40271906 DOI: 10.1111/1750-3841.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Hypertension is a common chronic disease driven by multiple physiological mechanisms, primarily the overactivation of the renin-angiotensin system (RAS). Gamma-aminobutyric acid (GABA), a nonprotein amino acid, has well-documented health benefits, including antihypertensive and calming effects. This study evaluates the blood pressure-lowering effects of Lactiplantibacillus plantarum DPUL-F233 bacterial powder in spontaneously hypertensive rats (SHRs). The bacterial powder was produced using optimized fermentation and freeze-drying techniques. In the oral administration experiment on SHRs, the group treated with a high dose of bacterial powder via long-term gavage showed a significant reduction in blood pressure compared to the untreated group. Specifically, the final measurements of diastolic and systolic blood pressure were reduced to 206.0 ± 2.35 mm Hg and 145.0 ± 6.78 mm Hg, respectively. The angiotensin-converting enzyme I/Angiotensin II/AT1R axis was downregulated, while the angiotensin-converting enzyme II/Angiotensin 1-7/MasR axis was upregulated, rebalancing the RAS signaling pathway. The high-dose group also demonstrated protective effects on the heart and kidneys, with significant improvements observed in reducing cardiac hypertrophy and kidney damage. Additionally, molecular simulation studies indicated potential inhibition of ACE I by GABA. The results suggest that GABA-rich L. plantarum DPUL-F233 powder has significant potential as a natural antihypertensive supplement, particularly for use in functional food development.
Collapse
Affiliation(s)
- Wenpu Yao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Junyi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Xiaoyan Zhu
- Shandong Yu Wang Ecological Food Co., Ltd., Yucheng, PR China
| | - Ruiyang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Yunpeng Xu
- College of Life Sciences, Dalian Minzu University, Dalian, PR China
| | - Ruida Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Zihao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, PR China
| |
Collapse
|
6
|
Jang SW, Oh HH, Jeong DY, Song GS. Fermentation characteristics and anti-hypolipidemic effect of barley wine from co-fermentation with yeast and lactic acid bacteria. Food Sci Biotechnol 2025; 34:981-989. [PMID: 39974868 PMCID: PMC11832827 DOI: 10.1007/s10068-024-01725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
In this study, the variations in ingredients (organic acid, free sugar, free amino acid, β-glucan, γ-aminobutyric acid (GABA), total phenolic content (TPC)) of single yeast fermentation (SYF0d, SYF5d, SYF10d) and simultaneous cultured fermentation (SCF0d, SCF5d, SCF10d) were analyzed. The contents of β-glucan, GABA, and TPC in SCF10d were higher compared to those in SYF10d (417.28, 596.77, and 495.66 μg/mL), at 1158.92, 818.57, and 605.48 μg/mL, respectively. DPPH radical activity, ABTS radical activity, and oxygen radical absorbance capacity were greater in SCF10d than in SYF10d (187.60, 885.58, and 1.98 mg/mL), at 506.05, 1674.90, and 2.73 mg/mL, respectively. Anti-hypolipidemic (ACE1 inhibitory activity) and anti-cholesterol (HMG-CoA reductase inhibitory activity) of SCF10d were 59.66% (1/5 dilution factor, DF) and 37.16% (1/10 DF), respectively. These results suggest that SCF had higher antioxidant and anti-hypolipidemic activities.
Collapse
Affiliation(s)
- So-Won Jang
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Hyeon Hwa Oh
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048 Republic of Korea
| | - Geun-Seoup Song
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-gu, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
7
|
Liu C, Cheng L, Yang M, He Z, Jia Y, Xu L, Zhang Y. Screening for Safe and Efficient Monascus Strains with Functions of Lowering Blood Lipids, Blood Glucose, and Blood Pressure. Foods 2025; 14:835. [PMID: 40077539 PMCID: PMC11899137 DOI: 10.3390/foods14050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Monascus is a fungus widely used in food fermentation. This study employed microbial technology, combined with microscopic morphological observations and ITS sequence analysis, to isolate, purify, and identify 10 strains of red yeast mold from various Monascus products. After the HPLC detection of metabolic products, the M8 strain containing the toxic substance citrinin was excluded. Using the EWM-TOPSIS model, the remaining nine safe Monascus strains were evaluated for their inhibitory activities against pancreatic lipase, α-glucosidase, α-amylase, and the angiotensin-converting enzyme. The M2 strain with the highest comprehensive scores for lowering blood sugar, blood lipids, and blood pressure was selected. Its fermentation product at a concentration of 3 mg/mL had inhibition rates of 96.938%, 81.903%, and 72.215%, respectively. The contents of the blood lipid-lowering active substance Monacolin K and the blood sugar and blood pressure-lowering active substance GABA were 18.078 mg/g and 5.137 mg/g, respectively. This strain can be utilized for the biosynthesis of important active substances such as Monacolin K and GABA, as well as for the fermentation production of safe and effective functional foods to address health issues like high blood lipids, high blood sugar, and high blood pressure in people. This study also provides insights into the use of natural fungi to produce healthy foods for combating chronic diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Zhang
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China; (C.L.); (L.C.); (M.Y.); (Z.H.); (Y.J.); (L.X.)
| |
Collapse
|
8
|
Sakthivel K, Balasubramanian R, Sampathrajan V, Veerasamy R, Appachi SV, K K K. Transforming tomatoes into GABA-rich functional foods through genome editing: A modern biotechnological approach. Funct Integr Genomics 2025; 25:27. [PMID: 39871009 DOI: 10.1007/s10142-025-01538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.07 to 2.01 mg g-1 FW), it needs to be further enhanced to fully impart its potential health benefits. Achieving this feat through classical breeding approaches is time and resource consuming, and is also associated with linkage drag. On the other hand, precise targeting of specific sites in the genome with less off- target effects is mediated by CRISPR/Cas9 genome editing tool and is widely used to overcome the barriers associated with traditional breeding approaches. Combining genome editing with speed breeding techniques can enable the rapid development of GABA-rich tomato cultivars, paving a way to unlock a new era of functional foods, where every bite contributes to cognitive well-being and holistic health. This review highlights the significance of GABA boosted functional foods and explores the potential of CRISPR/Cas9 technology for developing GABA enriched tomatoes.
Collapse
Affiliation(s)
- Kausalya Sakthivel
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | | | - Ravichandran Veerasamy
- Department of Crop Physiology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | - Kumar K K
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India.
| |
Collapse
|
9
|
Ishimoto S, Fukusaki E, Shimma S. Mass spectrometry imaging of gamma-aminobutyric acid and glutamic acid decarboxylase reactions at various stages of banana ripening. J Biosci Bioeng 2025; 139:79-84. [PMID: 39482156 DOI: 10.1016/j.jbiosc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Banana is the fourth most consumed crop worldwide, and its high economic value and health benefits have made it very popular. Bananas are climacteric fruits that ripen after harvesting. It has been reported that the endogenous substances in bananas change significantly during the ripening process. This study focused on levels of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD), an enzyme that catalyzes the synthesis of GABA, which reportedly fluctuates during the ripening stage. Previous studies have shown that GAD expression is associated with banana ripening; however, changes in its distribution during ripening have not been verified. This study aimed to clarify the relationship between GABA and GAD during ripening of ethylene-treated bananas. Visualization of the localization of endogenous GABA and GAD was performed using mass spectrometry imaging. To visualize GAD reaction, a glutamate-d3 (labeled substrate) was supplied to the sample, and a GABA-d3 (labeled product) was regarded as the localization of the enzymatic reaction. Liquid chromatography-mass spectrometry was also used to confirm the amount of GABA and activity of the GAD. This will allow us to clarify the direct relationship between GABA and GAD and to understand the role of the GAD reaction in phytohormones.
Collapse
Affiliation(s)
- Shiho Ishimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan.
| |
Collapse
|
10
|
Langa S, Santos S, Flores JA, Peirotén Á, Rodríguez S, Curiel JA, Landete JM. Selection of GABA-Producing Lactic Acid Bacteria Strains by Polymerase Chain Reaction Using Novel gadB and gadC Multispecies Primers for the Development of New Functional Foods. Int J Mol Sci 2024; 25:13696. [PMID: 39769458 PMCID: PMC11728273 DOI: 10.3390/ijms252413696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) has been attributed to health-promoting properties and has received attention from the food industry as an attractive bioactive compound for the development of functional foods. Some lactic acid bacteria (LAB) produce GABA through a glutamate decarboxylase encoded by gadB and a glutamate/GABA antiporter encoded by gadC. In this study, we develop a molecular screening method based on a polymerase chain reaction able to detect those genes in different LAB species through the use of novel multispecies primers. PCR was performed in 92 LAB strains of six different species. The primer pair designed for gadB allowed its identification in Lactiplantibacillus plantarum, Lactococcus cremoris, Lactococcus lactis, Levilactobacillus brevis, Limosilactobacillus fermentum, and Limosilactobacillus reuteri strains. For gadC, two different primer pairs were designed for its detection in different species. Glutamate decarboxylase activity (GAD assay) and GABase enzymatic quantification were also assessed. Among those strains showing glutamate decarboxylase activity, 93.2% harbored the gadB gene, and those showing GABA production had the gadB gene and exhibited glutamate decarboxylase activity. PCR detection of gadB correlates strongly with GABA production and constitutes a good strategy for the selection of LAB with high yields (>18 mM) that could be used for the development of GABA-enriched functional foods.
Collapse
Affiliation(s)
- Susana Langa
- Food Technology Department, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain (Á.P.); (S.R.); (J.A.C.); (J.M.L.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Moore JF, Johanningsmeier SD, Pérez-Díaz IM. Enhancement of γ-aminobutyric acid in fermented cucumbers. J Food Sci 2024; 89:9678-9691. [PMID: 39617748 DOI: 10.1111/1750-3841.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024]
Abstract
The effects of brine acidification, glutamate addition, and starter culture on γ-aminobutyric acid (GABA) content of fermented cucumber were investigated. GABA is a nonprotein amino acid with antihypertensive, antianxiety, and immunomodulatory properties. It is produced during cucumber fermentation but is limited by the low intrinsic concentration of free glutamate. Glutamine is 10-fold more abundant than glutamate in fresh cucumber and could provide additional substrate if converted to glutamate by glutaminase. Cucumbers were fermented in triplicate in acidified (pH 4.7-4.8) or nonacidified (pH 6.6) cover brines with 2% (342 mM) sodium chloride (NaCl) and 0 or 10 mM added glutamate. Indigenous and starter culture-assisted fermentations were conducted for each treatment at 28°C. The starter culture included lactobacilli containing gene sequences that encode for glutaminase (Lactobacillus gasseri ATCC 33323) and glutamate decarboxylase (Lactiplantibacillus plantarum WCFS1 ATCC BAA-793). GABA, glutamate, and glutamine were quantified by liquid chromatography triple quadrupole mass spectrometry. Both indigenous and starter culture-assisted fermentations effectively metabolized intrinsic and added glutamate, resulting in 10.4 ± 2.2 mM to 14.9 ± 0.7 mM GABA in glutamate supplemented fermentations compared with only 1.1 ± 0.2 mM in indigenous ferments. No additional increases in glutamate or downstream formation of GABA were observed in nonacidified brines with or without starter cultures, indicating that glutaminase production by L. gasseri and the indigenous microbiota was minimal or absent under these conditions. Glutamate addition to reduced salt cucumber fermentations generated ready-to-eat pickles that can deliver clinically relevant levels of GABA in a typical serving size. PRACTICAL APPLICATION: Research was conducted to explore ways to increase the production of the health-promoting compound, γ-aminobutyric acid (GABA), in fermented cucumber pickles. Cucumbers were fermented in reduced salt cover brines with or without added glutamate and/or acetic acid. Both natural and starter culture-assisted fermentations effectively converted the intrinsic and added glutamate to GABA, producing ready-to-eat pickles that can deliver clinically relevant levels of GABA in a typical serving size.
Collapse
Affiliation(s)
- Jennifer Fideler Moore
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Food Science and Market Quality & Handling Research Unit, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Suzanne D Johanningsmeier
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Food Science and Market Quality & Handling Research Unit, Raleigh, North Carolina, USA
| | - Ilenys M Pérez-Díaz
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Food Science and Market Quality & Handling Research Unit, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Devecioglu D, Kara D, Tapan R, Karbancioglu‐Guler F, Kahveci D. Enhanced production of gamma-aminobutyric acid in fermented carrot juice by utilizing pectin hydrolysate derived from pomegranate waste. Food Sci Nutr 2024; 12:6534-6547. [PMID: 39554334 PMCID: PMC11561847 DOI: 10.1002/fsn3.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, a functional fermented beverage enriched with gamma-aminobutyric acid (GABA) was produced. To achieve this, the prebiotic abilities of pectin obtained from pomegranate peel and its enzymatic hydrolysates were evaluated. Additionally, a functional fermented beverage enriched with GABA was produced by fermenting carrot juice with pectin hydrolysates. First, pectin was obtained at a yield of 8.91% from pomegranate peels. Pectinase-catalyzed hydrolysis of the obtained pectin was applied using different enzyme concentrations and hydrolysis times, and the effect of these hydrolysates on the growth of Levilactobacillus brevis was determined. Although the Fourier transform infrared (FT-IR) spectra of the resulting hydrolysates were similar, their degree of esterification compared to that of pectin was statistically different (p < .05). Considering the viability analysis and GABA production of L. brevis in the liquid medium supplemented with pectin or its hydrolysate, the hydrolysate obtained by treatment with 400 μL enzyme for 2 h and having a high glucose content (216.80 mg/100 g) was selected for application in fermented carrot juice. During fermentation (24, 48, and 72 h), a remarkable change was observed, especially in the amounts of lactic acid and malic acid, while the amount of GABA in carrot juice varied between 25 and 46 mg/mL and increased with the increase in hydrolysate concentration. It was observed that the total phenolic content and antioxidant activity of carrot juice were highly affected by the hydrolysate concentration. This study demonstrated that pectin hydrolysate obtained from food waste could be a potential prebiotic and could be used in the production of a functional beverage with improved GABA content.
Collapse
Affiliation(s)
- Dilara Devecioglu
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Didem Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Rabia Tapan
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Funda Karbancioglu‐Guler
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| |
Collapse
|
13
|
Okinawa Agricultural Research Center, Miyako Branch, Okinawa, Japan, Hanagasaki T, hangskit@yahoo.co.jp. Characteristics of cut and pickled luffas using local Okinawan varieties of Luffa cylindrica M. Roem.: Towards registration as Foods with Functional Claims for containing free amino acid. FRUITS 2024; 79:1-6. [DOI: 10.17660/th2024/009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Icer MA, Sarikaya B, Kocyigit E, Atabilen B, Çelik MN, Capasso R, Ağagündüz D, Budán F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024; 13:2437. [PMID: 39123629 PMCID: PMC11311711 DOI: 10.3390/foods13152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Buse Sarikaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu 52000, Turkey;
| | - Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey;
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun 55000, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
15
|
Kumrungsee T. Is hepatic GABA transaminase a promising target for obesity and epilepsy treatments? Biosci Biotechnol Biochem 2024; 88:839-849. [PMID: 38749549 DOI: 10.1093/bbb/zbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/05/2024] [Indexed: 07/23/2024]
Abstract
γ-Aminobutyric acid (GABA) transaminase (GABA-T) is a GABA-degrading enzyme that plays an essential role in regulating GABA levels and maintaining supplies of GABA. Although GABA in the mammalian brain was discovered 70 years ago, research on GABA and GABA-T has predominantly focused on the brain. Notwithstanding the high activity and expression of GABA-T in the liver, the exact functions of GABA-T in the liver remain unknown. This article reviews the up-to-date information on GABA-T in the liver. It presents recent findings on the role of liver GABA-T in food intake suppression and appetite regulation. Finally, the potential functions of liver GABA-T in other neurological diseases, natural GABA-T inhibitors, and future perspectives in this research area are discussed.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Araceli Guzmán-Ortiz F, Baruchs Muñoz-Llandes C, Martínez-Villaluenga C. Time maters: Exploring the dynamics of bioactive compounds content, bioaccessibility and antioxidant activity during Lupinus angustifolius germination. Food Res Int 2024; 187:114426. [PMID: 38763676 DOI: 10.1016/j.foodres.2024.114426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.
Collapse
Affiliation(s)
- Fabiola Araceli Guzmán-Ortiz
- CONAHCYT-Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, 42184 Hidalgo, Mexico
| | - Ciro Baruchs Muñoz-Llandes
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/nm, Mineral de la Reforma, 42184 Hidalgo, Mexico
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Zhu F, Hu S, Mei L. Production and quality evaluation of a novel γ-aminobutyric acid-enriched yogurt. Front Nutr 2024; 11:1404743. [PMID: 38784135 PMCID: PMC11112111 DOI: 10.3389/fnut.2024.1404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective γ-aminobutyric acid (GABA) is a neurotransmitter inhibitor that has beneficial effects on various health conditions such as hypertension, cognitive dysfunction, and anxiety. In this study, we investigated a novel yogurt naturally enriched with GABA using a Levilactobacillus brevis strain isolated in our laboratory; the specific optimum yogurt production conditions for this strain were determined. Methods We isolated an L. brevis strain and used it to produce yogurt naturally enriched with GABA. We explored the optimal conditions to enhance GABA yield, including fermentation temperature, inoculation amount, L-monosodium glutamate (L-MSG) concentration, fermentation time, and sucrose content. We also performed mixed fermentation with Streptococcus thermophilus and evaluated the quality of the yogurt. Results Following optimization (43°C, 8% inoculation amount, 1.5 g/L L-MSG, and 8% sucrose for 40 h of fermentation), the GABA yield of the yogurt increased by 2.2 times, reaching 75.3 mg/100 g. Mixed fermentation with S. thermophilus demonstrated favorable results, achieving a GABA yield akin to that found in some commercially available functional foods. Moreover, the viable microbe count in the GABA-enriched yogurt exceeded 1 × 108 cfu/mL, which is higher than that of commercial standards. The yogurt also exhibited a suitable water-holding capacity, viscosity, 3-week storage time, and favorable sensory test results. Conclusion This study highlights the potential of naturally enriched GABA yogurt as a competitive commercial yogurt with beneficial health effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Sheng Hu
- Country School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Lehe Mei
- Jinhua Advanced Research Institute, Jinhua, China
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Li X, Zhao Z, Na L, Cui W, Che X, Chang J, Xue X. Effect of Yogurt Intake Frequency on Blood Pressure: A Cross-Sectional Study. Int J Hypertens 2024; 2024:8040917. [PMID: 38737523 PMCID: PMC11087149 DOI: 10.1155/2024/8040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Yogurt consumption is a significant factor in reducing the risk of hypertension and preventing cardiovascular diseases. Although increasing evidence has emerged regarding the potential benefits of probiotics in hypertension, there is a lack of large, cross-sectional studies assessing the association between yogurt intake and blood pressure parameters. We aimed to evaluate the association between yogurt intake frequency and blood pressure. A cross-sectional study was designed using data from the National Health and Nutrition Examination Survey from 2003 to 2004 and 2005 to 2006. We included 3, 068 adults with blood pressure data and yogurt intake data. Multivariate regression analyses revealed significant inverse associations between yogurt and systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and mean arterial pressure (P < 0.05) in nonhypertensive participants (n = 1 822) but not in hypertensive participants (n = 1 246). Furthermore, a high frequency of yogurt intake prevented hypertension; however, no additional antihypertensive effects were observed in patients already diagnosed with hypertension.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Zhuo Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Lin Na
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Wenjing Cui
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an 710000, China
| | - Xiaona Che
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Jing Chang
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Xin Xue
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| |
Collapse
|
19
|
Ansari S, Mohammadifard N, Hajihashemi P, Haghighatdoost F, Zarepur E, Mahmoudi S, Nouri F, Nouhi F, Kazemi T, Salehi N, Solati K, Ghaffari S, Gholipour M, Dehghani M, Cheraghi M, Heybar H, Alikhasi H, Sarrafzadegan N. The relationship between fermented and nonfermented dairy products consumption and hypertension among premature coronary artery disease patients: Iran premature coronary artery disease study. Food Sci Nutr 2024; 12:3322-3335. [PMID: 38726444 PMCID: PMC11077223 DOI: 10.1002/fsn3.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Dairy products may affect hypertension (HTN) risk. The aim of this study was to examine the association between fermented and nonfermented dairy foods and HTN in a sample of premature coronary artery disease (PCAD) subjects. This cross-sectional study was performed on 1854 PCAD patients. A 110-item food frequency questionnaire was used to assess dietary intakes. HTN was considered if systolic blood pressure was 140 mmHg and higher and/or diastolic blood pressure was 90 mmHg and higher. The odds ratio of HTN across the quartiles of different types of dairy products was evaluated by binary logistic regression. The mean (SD) of dairy products consumption was 339.8 (223.5) g/day, of which 285.4 g/day was fermented dairy products. In the crude model, participants in the fourth quartile of fermented dairy products had lesser risk of HTN compared to the bottom quartile (OR = 0.70, 95% CI: 0.52, 0.96; p for trend = .058). However, after considering the possible confounders, the significance disappeared. Subjects in the top quartile of high-fat fermented dairy products had 34% lower risk for HTN compared to the bottom quartile (95% CI: 0.49, 0.88; p for trend < .001). Adjustment for potential risk factors weakened the association but remained significant (OR = 0.73, 95% CI: 0.53, 1.01; p for trend = .001). Nonsignificant relation was detected between low-fat fermented, low-fat nonfermented, and high-fat nonfermented dairy products and HTN. Moderate consumption of high-fat fermented dairy products, in a population with low consumption of dairy foods, might relate to reduced likelihood of HTN.
Collapse
Affiliation(s)
- Shakila Ansari
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Noushin Mohammadifard
- Interventional Cardiology Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Parisa Hajihashemi
- Isfahan Gastroenterology and Hepatology Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Ehsan Zarepur
- Interventional Cardiology Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Department of Cardiology, Medicine SchoolIsfahan University of Medical SciencesIsfahanIran
| | - Shirin Mahmoudi
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Fatemeh Nouri
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Fereydoon Nouhi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
- Iranian Network of Cardiovascular Research (INCVR)TehranIran
| | - Tooba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Nahid Salehi
- Cardiovascular Research Center, Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Kamal Solati
- Department of PsychiatryShahrekord University of Medical SciencesShahrekordIran
| | - Samad Ghaffari
- Cardiovascular Research CenterTabriz University of Medical sciencesTabrizIran
| | - Mahboobeh Gholipour
- Department of Cardiology, Healthy Heart Research Center, Heshmat Hospital, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Mostafa Dehghani
- Department of Cardiovascular Research Center, Shahid Rahimi HospitalLorestan University of Medical SciencesKhorramabadIran
| | - Mostafa Cheraghi
- Department of Cardiovascular Research Center, Shahid Rahimi HospitalLorestan University of Medical SciencesKhorramabadIran
| | - Habib Heybar
- Atherosclerosis Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hassan Alikhasi
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Faculty of Medicine, School of Population and Public HealthUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
20
|
Decadt H, Vermote L, Díaz-Muñoz C, Weckx S, De Vuyst L. Decarboxylase activity of the non-starter lactic acid bacterium Loigolactobacillus rennini gives crack defects in Gouda cheese through the production of γ-aminobutyric acid. Appl Environ Microbiol 2024; 90:e0165523. [PMID: 38231565 PMCID: PMC10880667 DOI: 10.1128/aem.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.
Collapse
Affiliation(s)
- Hannes Decadt
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Louise Vermote
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Valenzuela JA, Vázquez L, Rodríguez J, Flórez AB, Vasek OM, Mayo B. Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing Lactococcus lactis and Streptococcus thermophilus Strains Isolated from Cow's Milk. Int J Mol Sci 2024; 25:2328. [PMID: 38397005 PMCID: PMC10889254 DOI: 10.3390/ijms25042328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) can be used as starters in the development of GABA-enriched functional fermented foods. In this work, four GABA-producing strains each of Lactococcus lactis and Streptococcus thermophilus species were isolated from cow's milk, and their phenotypic, technological, and safety profiles determined. Genome analysis provided genetic support for the majority of the analyzed traits, namely, GABA production, growth in milk, and the absence of genes of concern. The operon harboring the glutamate decarboxylase gene (gadB) was chromosomally encoded in all strains and showed the same gene content and gene order as those reported, respectively, for L. lactis and S. thermophilus. In the latter species, the operon was flanked (as in most strains of this species) by complete or truncated copies of insertion sequences (IS), suggesting recent acquisition through horizontal gene transfer. The genomes of three L. lactis and two S. thermophilus strains showed a gene encoding a caseinolytic proteinase (PrtP in L. lactis and PrtS in S. thermophilus). Of these, all but one grew in milk, forming a coagulum of good appearance and an appealing acidic flavor and taste. They also produced GABA in milk supplemented with monosodium glutamate. Two L. lactis strains were identified as belonging to the biovar. diacetylactis, utilized citrate from milk, and produced significant amounts of acetoin. None of the strains showed any noticeable antibiotic resistance, nor did their genomes harbor transferable antibiotic resistance genes or genes involved in toxicity, virulence, or pathogenicity. Altogether these results suggest that all eight strains may be considered candidates for use as starters or components of mixed LAB cultures for the manufacture of GABA-enriched fermented dairy products.
Collapse
Affiliation(s)
- José Alejandro Valenzuela
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.A.V.); (L.V.); (J.R.); (A.B.F.)
- Biotecnología Microbiana para la Innovación Alimentaria, Instituto de Modelado e Innovación Tecnológica-Universidad Nacional del Nordeste (CONICET-UNNE), Campus UNNE, Corrientes 3400, Argentina;
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.A.V.); (L.V.); (J.R.); (A.B.F.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.A.V.); (L.V.); (J.R.); (A.B.F.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.A.V.); (L.V.); (J.R.); (A.B.F.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Olga M. Vasek
- Biotecnología Microbiana para la Innovación Alimentaria, Instituto de Modelado e Innovación Tecnológica-Universidad Nacional del Nordeste (CONICET-UNNE), Campus UNNE, Corrientes 3400, Argentina;
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.A.V.); (L.V.); (J.R.); (A.B.F.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
22
|
Oana K, Shimizu K, Takada T, Makino H, Yamazaki M, Katto M, Ando M, Kurakawa T, Oishi K. Manipulating the growth environment through co-culture to enhance stress tolerance and viability of probiotic strains in the gastrointestinal tract. Appl Environ Microbiol 2023; 89:e0150223. [PMID: 38019024 PMCID: PMC10734474 DOI: 10.1128/aem.01502-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The viability of probiotics in the human gastrointestinal tract is important, as some reports indicate that the health benefits of live bacteria are greater than those of dead ones. Therefore, the higher the viability of the probiotic strain, the better it may be. However, probiotic strains lose their viability due to gastrointestinal stress such as gastric acid and bile. This study provides an example of the use of co-culture or pH-controlled monoculture, which uses more stringent conditions (lower pH) than normal monoculture to produce probiotic strains that are more resistant to gastrointestinal stress. In addition, co-cultured beverages showed higher viability of the probiotic strain in the human gastrointestinal tract than monocultured beverages in our human study.
Collapse
Affiliation(s)
- Kosuke Oana
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kensuke Shimizu
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshihiko Takada
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hiroshi Makino
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Mikiko Yamazaki
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Miyuki Katto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Minoru Ando
- Safety Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takashi Kurakawa
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kenji Oishi
- Research Management Center, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
23
|
Liwinski T, Lang UE, Brühl AB, Schneider E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut-Brain Axis. Biomedicines 2023; 11:3128. [PMID: 38137351 PMCID: PMC10741010 DOI: 10.3390/biomedicines11123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Research conducted on individuals with depression reveals that major depressive disorders (MDDs) coincide with diminished levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain, as well as modifications in the subunit composition of the primary receptors (GABAA receptors) responsible for mediating GABAergic inhibition. Furthermore, there is substantial evidence supporting the significant role of GABA in regulating stress within the brain, which is a pivotal vulnerability factor in mood disorders. GABA is readily available and approved as a food supplement in many countries. Although there is substantial evidence indicating that orally ingested GABA may affect GABA receptors in peripheral tissues, there is comparatively less evidence supporting its direct action within the brain. Emerging evidence highlights that oral GABA intake may exert beneficial effects on the brain and psyche through the gut-brain axis. While GABA enjoys wide consumer acceptance in Eastern Asian markets, with many consumers reporting favorable effects on stress regulation, mood, and sleep, rigorous independent research is still largely lacking. Basic research, coupled with initial clinical findings, makes GABA an intriguing neuro-nutritional compound deserving of clinical studies in individuals with depression and other psychological problems.
Collapse
Affiliation(s)
| | | | | | - Else Schneider
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, CH-4002 Basel, Switzerland; (T.L.); (U.E.L.); (A.B.B.)
| |
Collapse
|
24
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Loscher C, Brabazon D, Freeland B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients 2023; 15:4754. [PMID: 38004148 PMCID: PMC10675170 DOI: 10.3390/nu15224754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| |
Collapse
|
25
|
Han J, Zhao X, Zhao X, Wang Q, Li P, Gu Q. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14931-14946. [PMID: 37792666 DOI: 10.1021/acs.jafc.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
26
|
Zhu F, Hu S, Zhao W, Mei L. A Novel Method for γ-Aminobutyric Acid Biosynthesis Using Glutamate Decarboxylase Entrapped in Polyvinyl Alcohol-Sodium Alginate Capsules. Molecules 2023; 28:6844. [PMID: 37836687 PMCID: PMC10574615 DOI: 10.3390/molecules28196844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
γ-aminobutyric acid (GABA) has essential physiological functions in the human body. A novel method using glutamate decarboxylase (GAD) entrapped in polyvinyl alcohol (PVA)-sodium alginate (SA) capsules provides a green biological strategy for GABA synthesis. In this investigation, the stability range of immobilized GAD was effectively broadened, and immobilized GAD could be repeatedly used as a batch and fixed-bed column catalyst. The immobilized enzymes were stable and retained 89% of their activity in a pH range of 4.0-5.6, while there was an approximately 50% decrease in free GAD activity in the pH range of 4.8 ± 0.4. The immobilized GAD affinity to the substrate improved, and this was evidenced by the apparent decrease in Km to 13.3 mmol/L from the 30.9 mmol/L for free GAD. The immobilized GAD retained >90.6% activity after eight cycles and a near-100% enzyme activity retention after 120 h of a continuous fixed-bed column catalyst operation. This study has thus presented an effective PVA-SA-GAD immobilization method that could be used to continuously scale-up GABA biosynthesis.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Lehe Mei
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310058, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|
27
|
Nakamura K, Suzuki Y, Goto K, Yamaguchi S, Hiramitsu M. Antihypertensive and Vasorelaxant Effects of Citric Acid and Lemon Juice in Spontaneously Hypertensive Rats: In Vivo and Ex Vivo Studies. Nutrients 2023; 15:3849. [PMID: 37686881 PMCID: PMC10489964 DOI: 10.3390/nu15173849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Hypertension is a key risk factor for heart, brain, and kidney disease development. Fruit consumption has been associated with a decrease in blood pressure. Lemon juice, which contains antihypertensive compounds, may exert antihypertensive effects. However, no research has verified the antihypertensive effects of citric acid, the most abundant ingredient in lemon juice. In the present study, we demonstrated the antihypertensive effects of citric acid and lemon juice by performing single oral administration tests and the aortic ring assay using spontaneously hypertensive rats (SHRs). Single oral doses of both agents markedly reduced the systolic and diastolic blood pressures in the SHRs. In addition, both these agents relaxed the thoracic aorta from the SHRs; however, these effects were notably attenuated by the removal of the aortic endothelium. Orally administered citric acid was rapidly absorbed and metabolized in vivo. Among the functional compounds in lemon juice, citric acid was identified as the primary antihypertensive component. Although more detailed studies are required to validate our findings, the novel functional attributes of citric acid can achieve the normalization of blood pressure when it is consumed via diet.
Collapse
Affiliation(s)
- Kozo Nakamura
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (Y.S.); (K.G.)
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan;
- Institute of Agriculture, Academic Assembly, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan
| | - Yumiko Suzuki
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (Y.S.); (K.G.)
| | - Kazuma Goto
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan; (Y.S.); (K.G.)
| | - Shohei Yamaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan;
| | - Masanori Hiramitsu
- Pokka Sapporo Food and Beverage Ltd., 10, Okatome, Yaizu, Shizuoka 425-0013, Japan;
| |
Collapse
|
28
|
Yavarzadeh M, Anwar F, Saadi S, Saari N. Production of glycerolamines based conjugated γ-aminobutyric acids using microbial COX and LOX as successor enzymes to GAD. Enzyme Microb Technol 2023; 169:110282. [PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
Collapse
Affiliation(s)
- Marjan Yavarzadeh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine, 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine, 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
29
|
Lei J, Shen L, Zhang W, Ma F, Wang J, Wei T, Xie C, Wang Y, Wang Q. Comparative Chemical Characterization of Potato Powders Using 1H NMR Spectroscopy and Chemometrics. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:590-596. [PMID: 37566209 DOI: 10.1007/s11130-023-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
This study presents the metabolic profiling of potato powders obtained through various processing procedures and commercially available potato powders. The metabolic fingerprinting was conducted using 1H NMR-based metabolomics coupled with machine learning projections. The results indicate hot air-dried potatoes have higher fumarate, glucose, malate, asparagine, choline, gamma aminobutyric acid (GABA), alanine, lactate, threonine, and fatty acids. In comparison, steam-cooked potatoes have higher levels of phenylalanine, sucrose, proline, citrate, glutamate, and valine. Moreover, the contents of metabolites in processed potatoes in this study were higher than those found in commercial potato powders, regardless of the drying or cooking methods used. The results indicate that a new processing technique may be developed to improve the nutritional value of potatoes.
Collapse
Affiliation(s)
- Junfeng Lei
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, 450063, China
- High & New Technology Research Center, Henan Academy of Science, Zhengzhou, 450002, China
| | - Lili Shen
- Henan Polytechnic, Zhengzhou, 450046, China
| | - Wei Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, 450063, China
| | - Fangchao Ma
- BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 451100, China
| | - Jingchen Wang
- BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 451100, China
| | - Tingting Wei
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, 450002, China
| | - Chengping Xie
- High & New Technology Research Center, Henan Academy of Science, Zhengzhou, 450002, China
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, 450002, China.
| | - Qiang Wang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, 450063, China.
- High & New Technology Research Center, Henan Academy of Science, Zhengzhou, 450002, China.
- BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 451100, China.
| |
Collapse
|
30
|
Colletti A, Pellizzato M, Cicero AF. The Possible Role of Probiotic Supplementation in Inflammation: A Narrative Review. Microorganisms 2023; 11:2160. [PMID: 37764004 PMCID: PMC10535592 DOI: 10.3390/microorganisms11092160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The fine balance between symbiotic and potentially opportunistic and/or pathogenic microorganisms can undergo quantitative alterations, which, when associated with low intestinal biodiversity, could be responsible for the development of gut inflammation and the so-called "intestinal dysbiosis". This condition is characterized by the disbalance of a fine synergistic mechanism involving the mucosal barrier, the intestinal neuroendocrine system, and the immune system that results in an acute inflammatory response induced by different causes, including viral or bacterial infections of the digestive tract. More frequently, however, dysbiosis is induced slowly and subtly by subliminal causal factors, resulting in a chronic condition related to different diseases affecting the digestive tract and other organs and apparatuses. Studies on animal models, together with studies on humans, highlight the significant role of the gut microbiota and microbiome in the occurrence of inflammatory conditions such as metabolic syndrome and cardiovascular diseases (CVDs); neurodegenerative, urologic, skin, liver, and kidney pathologies; and premature aging. The blood translocation of bacterial fragments has been found to be one of the processes linked to gut dysbiosis and responsible for the possible occurrence of "metabolic endotoxemia" and systemic inflammation, associated with an increased risk of oxidative stress and related diseases. In this context, supplementation with different probiotic strains has been shown to restore gut eubiosis, especially if administered in long-term treatments. The aim of this review is to describe the anti-inflammatory effects of specific probiotic strains observed in clinical trials and the respective indications, highlighting the differences in efficacy depending on strain, formulation, time and duration of treatment, and dosage used.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Arrigo Francesco Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy;
- IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
31
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
32
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
33
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
34
|
Wang W, Yamaguchi S, Koyama M, Nakamura K. Evaluation of the Antihypertensive Activity of Eggplant Acetylcholine and γ-Aminobutyric Acid in Spontaneously Hypertensive Rats. Molecules 2023; 28:molecules28062835. [PMID: 36985807 PMCID: PMC10051710 DOI: 10.3390/molecules28062835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Daily consumption of eggplant powder containing 2.3 mg acetylcholine (ACh) is known to alleviate hypertension and improve mental status. However, eggplant powder used in clinical trials also contains the antihypertensive compound γ-aminobutyric acid (GABA). Although our previous study indicated that the main antihypertensive compound in eggplant is ACh, given that GABA amounts in eggplant do not reach the effective dosage, the effects of GABA on the antihypertensive effect of eggplant remain unclear. It is necessary to establish whether there is a synergistic effect between GABA and ACh and whether GABA in eggplant exerts antihypertensive effects. Consequently, here we sought to evaluate the effects of GABA on the antihypertensive effects of eggplant. We used a probability sum (q) test to investigate the combined effects of ACh and GABA and prepared eggplant powder with very low ACh content for oral administration in animals. ACh and GABA exhibited additive effects but the GABA content in eggplants was not sufficient to promote a hypotensive effect. In conclusion, ACh is the main component associated with the antihypertensive effects of eggplant but GABA within eggplants has a minimal effect in this regard. Thus, compared with GABA, ACh could be a more effective functional food constituent for lowering blood pressure.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
| | - Shohei Yamaguchi
- Wellnas Co., Ltd., 1-28-5 Koenjiminami, Suginami-Ku, Tokyo 166-0003, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
| | - Masahiro Koyama
- Wellnas Co., Ltd., 1-28-5 Koenjiminami, Suginami-Ku, Tokyo 166-0003, Japan
| | - Kozo Nakamura
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
- Institute of Agriculture, Academic Assembly, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
35
|
Sousa RJM, Ribeiro SC, Baptista JAB, Silva CCG. Evaluation of gamma-aminobutyric acid content in Portuguese cheeses with protected designation of origin status. J DAIRY RES 2023; 90:1-4. [PMID: 36799037 DOI: 10.1017/s0022029923000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Health-conscious consumers are increasingly paying attention to healthy diets and focusing on natural bioactive compounds in foods and their effects on mental health. This opens new opportunities for the study of artisanal cheeses as biofunctional foods. In the work described in this Research Communication, the gamma-aminobutyric acid (GABA) content of seven different Portuguese cheeses produced from unpasteurized cow, sheep, and goat milk and granted with protected designation of origin (PDO) status was analysed. The PDO cheeses made from cow milk analysed in this study were São Jorge (3, 4, 7, 12 and 24 months of maturation) and Pico cheeses. PDO cheeses made from sheep milk were Serra da Estrela, Serpa, Nisa and Azeitão. Cheeses made from sheep and goat milk included Beira Baixa yellow cheese. The GABA content in the Azorean PDO cheeses (made from cow milk) ranged from 1.23 to 2.64 g/kg of cheese. Higher variations in GABA content were observed in cheeses made from sheep and goat milk (0.73-2.31 g/kg). This study provides information on the GABA content in different Portuguese PDO cheeses and shows that hard or semi-hard ripened cheeses are a suitable matrix for GABA production by lactic acid bacteria.
Collapse
Affiliation(s)
- Rodrigo J M Sousa
- IITAA-Institute of Agricultural and Environmental Research and Technology, University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Susana C Ribeiro
- IITAA-Institute of Agricultural and Environmental Research and Technology, University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - José A B Baptista
- IITAA-Institute of Agricultural and Environmental Research and Technology, University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Célia C G Silva
- IITAA-Institute of Agricultural and Environmental Research and Technology, University of the Azores, Angra do Heroísmo, Azores, Portugal
| |
Collapse
|
36
|
Park KT, Oh M, Joo Y, Han JK. Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments. Anim Biosci 2023; 36:248-255. [PMID: 36108701 PMCID: PMC9834722 DOI: 10.5713/ab.22.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. METHODS The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. RESULTS The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. CONCLUSION Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.
Collapse
Affiliation(s)
- Keun-tae Park
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Mihyang Oh
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Younghye Joo
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836,
Korea,Corresponding Author: Jong-Kwon Han, Tel: +82-2-2203-7397, Fax: +82-2-2203-7398, E-mail:
| |
Collapse
|
37
|
Yao C, Shi F, Wang X. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Biotechnol Appl Biochem 2023; 70:7-21. [PMID: 35106837 DOI: 10.1002/bab.2324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Corynebacterium glutamicum has been used as a sustainable microbial producer for various bioproducts using cheap biomass resources. In this study, a high GABA-producing C. glutamicum strain was constructed by chromosomal editing. Lactobacillus brevis-derived gadB2 was introduced into the chromosome of C. glutamicum ATCC 13032 to produce gamma-aminobutyric acid and simultaneously blocked the biosynthesis of lactate and acetate. GABA transport and degradation in C. glutamicum were also blocked to improve GABA production. As precursor of GABA, l-glutamic acid synthesis in C. glutamicum was enhanced by introducing E. coli gdhA encoding glutamic dehydrogenase, and the copy numbers of gdhA and gadB2 were also optimized for higher GABA production. The final C. glutamicum strain CGY705 could produce 33.17 g/L GABA from glucose in a 2.4-L bioreactor after 78 h fed-batch fermentation. Since all deletion and expression of genes were performed using chromosomal editing, fermentation of the GABA-producing strains constructed in this study does not need supplementation of any antibiotics and inducers. The strategy used in this study has potential value in the development of GABA-producing bacteria.
Collapse
Affiliation(s)
- Chengzhen Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:196. [PMID: 36616325 PMCID: PMC9824651 DOI: 10.3390/plants12010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, in L. frutescens shows a steady decrease in concentration over the years. The reduction of the phytochemical compounds and diminishing biological activities may be attributed to drought and salt stress, which South Africa has been grappling with over the years. Canavanine, a phytochemical which is associated with the anticancer activity of L. frutescens, reduced slightly when the plant was subjected to salt stress. Like other legumes, L. frutescens forms a symbiotic relationship with plant-growth-promoting rhizobacteria, which facilitate plant growth and development. Studies employing commercial plant-growth-promoting rhizobacteria to enhance growth and biological activities in L. frutescens have been successfully carried out. Furthermore, alleviation of drought and salt stress in medicinal plants through inoculation with plant growth-promoting-rhizobacteria is well documented and effective. Therefore, this review seeks to highlight the potential of plant-growth-promoting rhizobacteria to alleviate the effect of salt and drought in Lessertia frutescens.
Collapse
Affiliation(s)
- Mokgadi M. Hlongwane
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Mustapha Mohammed
- Department of Crop Science, University for Development Studies, Tamale P.O. Box TL1882, Ghana
| | - Ntebogeng S. Mokgalaka
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- Mamelodi Campus, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
39
|
Koh WY, Lim XX, Teoh ESW, Kobun R, Rasti B. The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate. Foods 2023; 12:213. [PMID: 36613430 PMCID: PMC9818575 DOI: 10.3390/foods12010213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hypertension is the leading cause of cardiovascular disease and premature death worldwide. Gamma-aminobutyric acid (GABA) has potential in regulating hypertension. Cocoa beans are rich in GABA, but GABA is being destroyed during roasting of cocoa beans and chocolate production. This study aimed to develop GABA-enriched dark chocolate by partially replacing sugar syrup with pure GABA powder at concentrations of 0.05 (F1), 0.10 (F2), and 0.15% (F3). The chocolate samples were incorporated with GABA after the heating and melting process of cocoa butter to maintain the viability and functionality of the GABA in the final product. The effects of GABA enrichment on the quality of chocolate in terms of nutritional, physical, shelf-life, and sensorial properties were studied. The inclusion of 0.15% GABA significantly increased the GABA content and angiotensin-converting-enzyme (ACE) inhibitory effect of chocolate. The nutritional compositions of the control and GABA-enriched chocolates were almost similar. The addition of GABA significantly increased the hardness but did not affect the apparent viscosity and melting properties of chocolate. Accelerated shelf-life test results showed that all the chocolates stored at 20 and 30 °C were microbiologically safe for consumption for at least 21 days. Among the GABA-enriched chocolates, panellists preferred F2 the most followed by F3 and F1, owing to the glossiness and sweetness of F2. F3 with the highest GABA content (21.09 mg/100 g) and ACE inhibitory effect (79.54%) was identified as the best GABA-enriched dark chocolate.
Collapse
Affiliation(s)
- Wee Yin Koh
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Xiao Xian Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Eva Sheue Wen Teoh
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Babak Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
40
|
Gamma-aminobutyric acid (GABA) production by potential probiotic strains of indigenous fermented foods origin and RSM based production optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Chen P, Liu Q, Sun B, Lv S, Jiang L, Zhang J, Mao X, Yu H, Chen Y, Chen W, Fan Z, Pan D, Li C. Creation and gene expression analysis of a giant embryo rice mutant with high GABA content. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:3. [PMID: 37312870 PMCID: PMC10248637 DOI: 10.1007/s11032-022-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/27/2022] [Indexed: 06/15/2023]
Abstract
Gamma-amino butyric acid (GABA) is a natural non-protein amino acid involved in stress, signal transmission, carbon and nitrogen balance, and other physiological processes in plants. In the human body, GABA has the effects of lowering blood pressure, anti-aging, and activating the liver and kidneys. However, there are few studies on the molecular regulation mechanism of genes in the metabolic pathways of GABA during grain development of giant embryo rice with high GABA content. In this study, three glant embryo (ge) mutants of different embryo sizes were obtained by CRISPR/Cas9 knockout, and it was found that GABA, protein, crude fat, and various mineral contents of the ge mutants were significantly increased. RNA-seq and qRT-PCR analysis showed that in the GABA shunt and polyamine degradation pathways, the expression levels of most of the genes encoding enzymes promoting GABA accumulation were significantly upregulated in the ge-1 mutant, whereas, the expression levels of most of the genes encoding enzymes involved GABA degradation were significantly downregulated in the ge-1 mutant. This is most likely responsible for the significant increase in GABA content of the ge mutant. These results help reveal the molecular regulatory network of GABA metabolism in giant embryo rice and provide a theoretical basis for the study of its development mechanisms, which is conducive to the rapid cultivation of GABA-rich rice varieties, promoting human nutrition, and ensuring health. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01353-1.
Collapse
Affiliation(s)
- Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Yangyang Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| |
Collapse
|
42
|
Sodium glutamate and glutamic acid decarboxylase as alternative for classical chemical leavening in wheat (pan)cake batter systems. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Pencheva D, Teneva D, Denev P. Validation of HPLC Method for Analysis of Gamma-Aminobutyric and Glutamic Acids in Plant Foods and Medicinal Plants. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010084. [PMID: 36615278 PMCID: PMC9822420 DOI: 10.3390/molecules28010084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system of mammals and plays an important role in the suppression of neurons' excitability. GABA is formed from the decarboxylation of glutamic acid (Glu), and both GABA and Glu could be considered as important biologically active food components. In the current study, we validated a HPLC method for concomitant detection of GABA and Glu in plant samples after derivatization with dansyl chloride. The validated method had high precision and a high recovery rate and was successfully used for GABA and Glu quantification in 55 plant foods (fruits, vegetables, legumes, cereals, pseudocereals, and nuts) and 19 medicinal plants. Vegetables were the most important dietary source of these amino acids, with the highest quantity of GABA found in potatoes-44.86 mg/100 g fresh weight (FW) and yellow cherry tomatoes-36.82 mg/100 g FW. The highest amount of Glu (53.58 mg/100 g FW) was found in red cherry tomatoes. Analyzed fruits were relatively poor in GABA and Glu, and European gooseberry was the richest fruit with 13.18 mg/100 g FW GABA and 10.95 mg/100 g FW Glu. Cereals, pseudocereals, nuts, and legumes contain much higher amounts of Glu than GABA. The obtained results enrich the available information on the content of gamma-aminobutyric and glutamic acids in plant foods and could be used for the development of GABA-enriched functional foods.
Collapse
|
44
|
Zhang H, Wang Y, Gao F, Liu R, Chen W, Zhao X, Sun Q, Sun X, Li J, Liu C, Ma X. GABA increases susceptibility to DSS-induced colitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Uruc K, Tekin A, Sahingil D, Hayaloglu A. An alternative plant-based fermented milk with kefir culture using apricot (Prunus armeniaca L.) seed extract: Changes in texture, volatiles and bioactivity during storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103189] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
de Assis Gadelha DD, de Brito Alves JL, da Costa PCT, da Luz MS, de Oliveira Cavalcanti C, Bezerril FF, Almeida JF, de Campos Cruz J, Magnani M, Balarini CM, Rodrigues Mascarenhas S, de Andrade Braga V, de França-Falcão MDS. Lactobacillus group and arterial hypertension: A broad review on effects and proposed mechanisms. Crit Rev Food Sci Nutr 2022; 64:3839-3860. [PMID: 36269014 DOI: 10.1080/10408398.2022.2136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypertension is the leading risk factor for cardiovascular diseases and is associated with intestinal dysbiosis with a decrease in beneficial microbiota. Probiotics can positively modulate the impaired microbiota and impart benefits to the cardiovascular system. Among them, the emended Lactobacillus has stood out as a microorganism capable of reducing blood pressure, being the target of several studies focused on managing hypertension. This review aimed to present the potential of Lactobacillus as an antihypertensive non-pharmacological strategy. We will address preclinical and clinical studies that support this proposal and the mechanisms of action by which these microorganisms reduce blood pressure or prevent its elevation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | |
Collapse
|
47
|
Indrati N, Phonsatta N, Poungsombat P, Khoomrung S, Sumpavapol P, Panya A. Metabolic profiles alteration of Southern Thailand traditional sweet pickled mango during the production process. Front Nutr 2022; 9:934842. [PMID: 36159495 PMCID: PMC9493497 DOI: 10.3389/fnut.2022.934842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Sweet pickled mango named Ma-Muang Bao Chae-Im (MBC), a delicacy from the Southern part of Thailand, has a unique aroma and taste. The employed immersion processes (brining 1, brining 2, and immersion in a hypertonic sugar solution, sequentially) in the MBC production process bring changes to the unripe mango, which indicate the occurrence of metabolic profiles alteration during the production process. This occurrence was never been explored. Thus, this study investigated metabolic profile alteration during the MBC production process. The untargeted metabolomics profiling method was used to reveal the changes in volatile and non-volatile metabolites. Headspace solid-phase micro-extraction tandem with gas chromatography quadrupole time of flight (GC/QTOF) was employed for the volatile analysis, while metabolites derivatization for non-volatile analysis. In conclusion, a total of 82 volatile and 41 non-volatile metabolites were identified during the production process. Terpenes, terpenoids, several non-volatile organic acids, and sugars were the major mango metabolites that presented throughout the process. Gamma-aminobutyric acid (GABA) was only observed during the brining processes, which suggested the microorganism’s stress response mechanism to an acidic environment and high chloride ions in brine. Esters and alcohols were abundant during the last immersion process, which had an important role in MBC flavor characteristics. The knowledge of metabolites development during the MBC production process would be beneficial for product development and optimization.
Collapse
Affiliation(s)
- Niken Indrati
- Food Microbiology and Safety Laboratory, Food Science and Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Thailand
| | - Patcha Poungsombat
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Punnanee Sumpavapol
- Food Microbiology and Safety Laboratory, Food Science and Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Punnanee Sumpavapol,
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Thailand
- Atikorn Panya,
| |
Collapse
|
48
|
Favero C, Giordano L, Mihaila SM, Masereeuw R, Ortiz A, Sanchez-Niño MD. Postbiotics and Kidney Disease. Toxins (Basel) 2022; 14:toxins14090623. [PMID: 36136562 PMCID: PMC9501217 DOI: 10.3390/toxins14090623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is projected to become the fifth global cause of death by 2040 as a result of key shortcomings in the current methods available to diagnose and treat kidney diseases. In this regard, the novel holobiont concept, used to describe an individual host and its microbial community, may pave the way towards a better understanding of kidney disease pathogenesis and progression. Microbiota-modulating or -derived interventions include probiotics, prebiotics, synbiotics and postbiotics. As of 2019, the concept of postbiotics was updated by the International Scientific Association of Probiotics and Prebiotics (ISAPP) to refer to preparations of inanimate microorganisms and/or their components that confer a health benefit to the host. By explicitly excluding purified metabolites without a cellular biomass, any literature making use of such term is potentially rendered obsolete. We now review the revised concept of postbiotics concerning their potential clinical applications and research in kidney disease, by discussing in detail several formulations that are undergoing preclinical development such as GABA-salt for diet-induced hypertension and kidney injury, sonicated Lactobacillus paracasei in high fat diet-induced kidney injury, GABA-salt, lacto-GABA-salt and postbiotic-GABA-salt in acute kidney injury, and O. formigenes lysates for hyperoxaluria. Furthermore, we provide a roadmap for postbiotics research in kidney disease to expedite clinical translation.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
| | - Laura Giordano
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Silvia Maria Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| |
Collapse
|
49
|
Kim MJ, Lim T, Kim J, Ji GE, Lee H, Lee K, Kim RH, Hwang KT.
γ
‐Aminobutyric
acid and oxalic acid contents and a
ngiotensin‐converting
enzyme inhibitory activity of spinach juices cofermented with
Levilactobacillus brevis
GABA100
and other lactic acid bacteria. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Moon Joo Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition Seoul National University Seoul 08826 Korea
| | - Taehwan Lim
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition Seoul National University Seoul 08826 Korea
| | - Geun Eog Ji
- Research Center, BIFIDO Co., Ltd. Hongcheon 25117 South Korea
| | - Haeseong Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition Seoul National University Seoul 08826 Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition Seoul National University Seoul 08826 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology Seoul National University Seoul 08826 Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition Seoul National University Seoul 08826 Korea
| |
Collapse
|
50
|
Gangaraju D, Raghu AV, Siddalingaiya Gurudutt P. Green synthesis of γ‐aminobutyric acid using permeabilized probiotic
Enterococcus faecium
for biocatalytic application. NANO SELECT 2022. [DOI: 10.1002/nano.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Divyashri Gangaraju
- Department of Biotechnology M S Ramaiah Institute of Technology Bengaluru India
| | - Anjanapura V. Raghu
- Department of Chemistry Faculty of Engineering and Technology Jain Deemed‐to‐be University Bengaluru India
| | - Prapulla Siddalingaiya Gurudutt
- Microbiology & Fermentation Technology Department CSIR‐Central Food Technological Research Institute (CSIR‐CFTRI) Mysuru India
| |
Collapse
|