1
|
Hales EN, Habib H, Favro G, Katzman S, Sakai RR, Marquardt S, Bordbari MH, Ming-Whitfield B, Peterson J, Dahlgren AR, Rivas V, Ramirez CA, Peng S, Donnelly CG, Dizmang BS, Kallenberg A, Grahn R, Miller AD, Woolard K, Moeller B, Puschner B, Finno CJ. Increased α-tocopherol metabolism in horses with equine neuroaxonal dystrophy. J Vet Intern Med 2021; 35:2473-2485. [PMID: 34331715 PMCID: PMC8478026 DOI: 10.1111/jvim.16233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM. Hypothesis/Objectives Based on the association of α‐tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α‐tocopherol, but not γ‐tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM‐affected horses. Animals Vitamin E metabolism: Proof of concept (POC) study; eNAD/EDM‐affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM‐affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM‐affected (n = 12) and age‐ and sex‐matched control (n = 11‐12) horses. Methods The rates of α‐tocopherol/tocotrienol and γ‐tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC‐MS/MS). Quantitative reverse‐transcriptase PCR (qRT‐PCR) and droplet digital (dd)‐PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog. Results Metabolic rate of α‐tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ‐tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number. Conclusions and Clinical Importance Increased α‐tocopherol metabolism in eNAD/EDM‐affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high‐dose supplementation to prevent the clinical phenotype in genetically susceptible horses.
Collapse
Affiliation(s)
- Erin N Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Hadi Habib
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Gianna Favro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Scott Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - R Russell Sakai
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Sabin Marquardt
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Brittni Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Anna R Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Victor Rivas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Carolina Alanis Ramirez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Bobbi-Sue Dizmang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Angelica Kallenberg
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Robert Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Kevin Woolard
- Department of Pathology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Benjamin Moeller
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Birgit Puschner
- Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
2
|
Favro G, Habib H, Gennity I, Puschner B, Hales EN, Finno CJ, Moeller BC. Determination of vitamin E and its metabolites in equine urine using liquid chromatography-mass spectrometry. Drug Test Anal 2021; 13:1158-1168. [PMID: 33527764 DOI: 10.1002/dta.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
Equine neuroaxonal dystrophy/degenerative myeloencephalopathy (eNAD/EDM) is a hereditary, deteriorating central nervous disease in horses. Currently, the only way to confirm eNAD/EDM is through a postmortem histological evaluation of the central nervous system. Vitamin E, specifically the isoform alpha-tocopherol (α-TP), is known to protect eNAD/EDM susceptible horses from developing the clinical phenotype. While vitamin E is an essential nutrient in the diet of horses, there are no diagnostic tests able to quantitate vitamin E and its metabolites in urine. An ultra-performance liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry (UPLC-APCI-MS/MS) method was developed and validated following acidic hydrolysis and solid phase extraction to quantitate vitamin E and its metabolites in equine urine. A blank control horse urine matrix was used and spiked with different concentrations of analytes to form a standard curve using either alpha-tocopherol-d6 or chlorpropamide as the internal standard. Inter-day and intra-day statistics were performed to evaluate the method for accuracy (90% to 116%) and precision (0.75% to 14%). Matrix effects, percent recovery, and stability were also assessed. The method successfully analyzed alpha-carboxyethyl hydroxychroman (α-CEHC), alpha-carboxymethylbutyl hydroxychromans (α-CMBHC), gamma-carboxyethyl hydroxychroman γ-CEHC, and α-TP concentrations in urine to determine a baseline levels of analytes in healthy horses, and can be used to determine concentrations of vitamin E metabolites in equine urine allowing for its evaluation as a diagnostic approach in the treatment of eNAD/EDM.
Collapse
Affiliation(s)
- Gianna Favro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Hadi Habib
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Ingrid Gennity
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Erin N Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Benjamin C Moeller
- K. L. Maddy Equine Analytical Chemistry Laboratory, California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
Bartolini D, Marinelli R, Giusepponi D, Galarini R, Barola C, Stabile AM, Sebastiani B, Paoletti F, Betti M, Rende M, Galli F. Alpha-Tocopherol Metabolites (the Vitamin E Metabolome) and Their Interindividual Variability during Supplementation. Antioxidants (Basel) 2021; 10:antiox10020173. [PMID: 33503988 PMCID: PMC7912187 DOI: 10.3390/antiox10020173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
The metabolism of α-tocopherol (α-TOH, vitamin E) shows marked interindividual variability, which may influence the response to nutritional and therapeutic interventions with this vitamin. Recently, new metabolomics protocols have fostered the possibility to explore such variability for the different metabolites of α-TOH so far identified in human blood, i.e., the “vitamin E metabolome”, some of which have been reported to promote important biological functions. Such advances prompt the definition of reference values and degree of interindividual variability for these metabolites at different levels of α-TOH intake. To this end, a one-week oral administration protocol with 800 U RRR-α-TOH/day was performed in 17 healthy volunteers, and α-TOH metabolites were measured in plasma before and at the end of the intervention utilizing a recently validated LC-MS/MS procedure; the expression of two target genes of α-TOH with possible a role in the metabolism and function of this vitamin, namely pregnane X receptor (PXR) and the isoform 4F2 of cytochrome P450 (CYP4F2) was assessed by immunoblot in peripheral blood leukocytes. The levels of enzymatic metabolites showed marked interindividual variability that characteristically increased upon supplementation. With the exception of α-CEHC (carboxy-ethyl-hydroxychroman) and the long-chain metabolites M1 and α-13′OH, such variability was found to interfere with the possibility to utilize them as sensitive indicators of α-TOH intake. On the contrary, the free radical-derived metabolite α-tocopheryl quinone significantly correlated with the post-supplementation levels of α-TOH. The supplementation stimulated PXR, but not CYP4F2, expression of leucocytes, and significant correlations were observed between the baseline levels of α-TOH and both the baseline and post-supplementation levels of PXR. These findings provide original analytical and molecular information regarding the human metabolism of α-TOH and its intrinsic variability, which is worth considering in future nutrigenomics and interventions studies.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
- Correspondence: ; Tel.: +39-075-585-7445
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Anna Maria Stabile
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy;
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (D.G.); (R.G.); (C.B.); (F.P.)
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Mario Rende
- Department of Medicine, University of Perugia, 06126 Perugia, Italy; (A.M.S.); (M.R.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (R.M.); (F.G.)
| |
Collapse
|
4
|
Uchida T, Nomura S, Oda H, Ikeda S. γ-Tocopherol Is Metabolized Faster than α-Tocopherol in Young Japanese Women. J Nutr Sci Vitaminol (Tokyo) 2019; 64:399-403. [PMID: 30606962 DOI: 10.3177/jnsv.64.399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To elucidate the characteristics of γ-tocopherol metabolism, serum concentrations of α- and γ-tocopherol, and urinary excretion of their metabolites after ingestion of α- or γ-tocopherol, major isoforms in our diet, were compared. Six healthy Japanese women (age 22.7±1.7 y old, BMI 21.4±0.9) ingested 134 mg of α- or γ-tocopherol, and blood and urine were collected until 72 h later. After α-tocopherol intake, the serum concentration of α-tocopherol increased at 12-24 h, and urinary excretion of 2,5,7,8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman (α-CEHC), an α-tocopherol metabolite, increased at 12-36 h. However, after γ-tocopherol intake, the serum concentration of γ-tocopherol increased at 6-12 h, and excretion of 2,7,8-trimethyl-2(2'-carboxyethyl)-6-hydroxychroman (γ-CEHC), a γ-tocopherol metabolite, increased at 3-12 h. The area under the curve from 0 to 72 h and serum maximal concentration of γ-tocopherol were lower than those of α-tocopherol. The time to maximal concentration of γ-tocopherol was faster than that of α-tocopherol. The ratio of urinary excretion of carboxyethyl-hydroxychroman to tocopherol intake was 2.9% for α-CEHC and 7.7% for γ-CEHC. These results revealed that γ-tocopherol is metabolized faster than α-tocopherol in healthy young women.
Collapse
Affiliation(s)
- Tomono Uchida
- Department of Home Economics, Aichi Gakusen University
| | - Saki Nomura
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Hiroaki Oda
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| |
Collapse
|
5
|
Abdulla KA, Um CY, Gross MD, Bostick RM. Circulating γ-Tocopherol Concentrations Are Inversely Associated with Antioxidant Exposures and Directly Associated with Systemic Oxidative Stress and Inflammation in Adults. J Nutr 2018; 148:1453-1461. [PMID: 30184224 PMCID: PMC6669952 DOI: 10.1093/jn/nxy132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Although α- and γ-tocopherol are co-consumed antioxidants, circulating γ-tocopherol concentrations were paradoxically found to be inversely associated with total vitamin E intake and circulating α-tocopherol concentrations. There are limited data on this apparent paradox or on determinants of circulating γ-tocopherol concentrations. Objective To help clarify possible determinants of circulating γ-tocopherol concentrations, we investigated associations of circulating γ-tocopherol concentrations with various dietary and lifestyle factors and biomarkers of oxidative stress and inflammation. Methods We pooled cross-sectional data from 2 outpatient, adult, elective colonoscopy populations (pooled n = 419) on whom extensive dietary, lifestyle, and medical information was collected, and the following plasma concentrations were measured: α- and γ-tocopherol (via HPLC), F2-isoprostanes (FiPs; via gas chromatography-mass spectrometry), and high-sensitivity C-reactive protein (hsCRP; via latex-enhanced immunonephelometry). Multivariable general linear models were used to assess mean γ-tocopherol differences across quantiles of plasma antioxidant micronutrients, FiPs, and hsCRP; an oxidative balance score [OBS; a composite of anti- and pro-oxidant dietary and lifestyle exposures (a higher score indicates higher antioxidant relative to pro-oxidant exposures)]; and multiple dietary and lifestyle factors. Results Adjusted for serum total cholesterol, mean γ-tocopherol concentrations among those in the highest relative to the lowest tertiles of circulating α-tocopherol and β-carotene, the OBS, and total calcium and dietary fiber intakes were 31.0% (P < 0.0001), 29.0% (P < 0.0001), 27.6% (P = 0.0001), 29.7% (P < 0.0001), and 18.6% (P = 0.008) lower, respectively. For those in the highest relative to the lowest tertiles of circulating FiPs and hsCRP, mean γ-tocopherol concentrations were 50% (P < 0.0001) and 39.0% (P < 0.0001) higher, respectively. Conclusions These findings support the conclusion that circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. Additional research on possible mechanisms underlying these findings and on whether circulating γ-tocopherol may serve as a biomarker of oxidative stress, inflammation, or both is needed.
Collapse
Affiliation(s)
- Kennadiid A Abdulla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Caroline Y Um
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA,Winship Cancer Institute, Emory University, Atlanta, GA,Address correspondence to RMB (e-mail: )
| |
Collapse
|
6
|
Schmölz L, Birringer M, Lorkowski S, Wallert M. Complexity of vitamin E metabolism. World J Biol Chem 2016; 7:14-43. [PMID: 26981194 PMCID: PMC4768118 DOI: 10.4331/wjbc.v7.i1.14] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their side-chain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for detecting and quantifying vitamin E and its metabolites are crucial. The latest methods in analytics are presented.
Collapse
|
7
|
Cervinkova B, Krcmova LK, Solichova D, Melichar B, Solich P. Recent advances in the determination of tocopherols in biological fluids: from sample pretreatment and liquid chromatography to clinical studies. Anal Bioanal Chem 2016; 408:2407-24. [DOI: 10.1007/s00216-015-9214-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
|
8
|
De Wolf BM, Zajac AM, Hoffer KA, Sartini BL, Bowdridge S, LaRoith T, Petersson KH. The effect of vitamin E supplementation on an experimental Haemonchus contortus infection in lambs. Vet Parasitol 2014; 205:140-9. [PMID: 25085770 DOI: 10.1016/j.vetpar.2014.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the effect of vitamin E supplementation on an experimental Haemonchus contortus infection in lambs. Twenty lambs were stratified into two treatment groups based on fecal egg count. Worm-free lambs, 28-32 weeks of age, were supplemented with vitamin E (d-α-tocopherol) for 12 weeks following the recommendations of the National Research Council for the minimum daily requirement (control; 5.3 IU/kg body weight (BW)/day (d), n=10) or the requirement for optimal immune function (VE10; 10 IU/kg BW/d, n=10). Five weeks following initiation of vitamin E supplementation, lambs were infected with 10,000 H. contortus third stage larvae. Samples were taken weekly to quantify serum α-tocopherol, serum total non-specific immunoglobulin (Ig)G, whole worm antigen specific IgG, packed cell volume (PCV), and fecal egg count (FEC). Expression of cytokine genes IFN-λ and IL-4 were measured in peripheral blood collected prior to slaughter. Lambs were necropsied six weeks after infection and the α-tocopherol concentration of liver, muscle and lymph node were measured as well as abomasal worm burden and histologic evaluation of the abomasum for inflammation and enumeration of eosinophils and globule leukocytes. The livers of VE10 lambs contained slightly more α-tocopherol than control lambs. No differences were observed in serum, muscle or lymph node α-tocopherol concentration, serum IgG or peripheral mRNA expression of IL-4 or IFN-λ between control and VE10 lambs. However, lambs supplemented at 10IU/kg BW/d had a lower PCV reduction, FEC and worm burden 49% less than control lambs. Worm burden was negatively correlated with eosinophil (-0.720, P<0.05) and globule leukocyte count (-0.867, P<0.05). Strong positive correlations were observed within the inflammatory cell response in VE10 lambs that was absent in control lambs. These data indicate that additional vitamin E supplementation resulted in lower worm burden and greater recruitment of innate effector cells to the site of infection. Further studies are necessary to elucidate the mechanism by which vitamin E affects greater recruitment of innate effector cells to the abomasum during gastrointestinal nematode infection of lambs.
Collapse
Affiliation(s)
- B M De Wolf
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, CBLS Room 177, Kingston, RI 02881, United States
| | - A M Zajac
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24061, United States
| | - K A Hoffer
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, CBLS Room 177, Kingston, RI 02881, United States
| | - B L Sartini
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, CBLS Room 177, Kingston, RI 02881, United States
| | - S Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26505, United States
| | - T LaRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24061, United States
| | - K H Petersson
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, CBLS Room 177, Kingston, RI 02881, United States.
| |
Collapse
|
9
|
Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res 2013; 54:2295-306. [PMID: 23505319 PMCID: PMC3735929 DOI: 10.1194/jlr.r032946] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
The liver is at the nexus of the regulation of lipoprotein uptake, synthesis, and secretion, and it is the site of xenobiotic detoxification by cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III). These two major liver systems control vitamin E status. The mechanisms for the preference for α-tocopherol relative to the eight naturally occurring vitamin E forms largely depend upon the liver and include both a preferential secretion of α-tocopherol from the liver into the plasma for its transport in circulating lipoproteins for subsequent uptake by tissues, as well as the preferential hepatic metabolism of non-α-tocopherol forms. These mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
10
|
Lebold KM, Ang A, Traber MG, Arab L. Urinary α-carboxyethyl hydroxychroman can be used as a predictor of α-tocopherol adequacy, as demonstrated in the Energetics Study. Am J Clin Nutr 2012; 96:801-9. [PMID: 22952171 PMCID: PMC3441108 DOI: 10.3945/ajcn.112.038620] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Other than the in vitro erythrocyte hemolysis test, no valid biomarkers of vitamin E status currently exist. OBJECTIVE We hypothesized that the urinary vitamin E metabolite α-carboxyethyl hydroxychroman (α-CEHC) could serve as a biomarker. DESIGN The relations between urinary α-CEHC, plasma α-tocopherol, and vitamin E intakes were assessed by using a previously validated multipass, Web-based, 24-h self-administered dietary recall, and we concurrently collected plasma and 24-h urine samples from 233 participants of both sexes. RESULTS Median vitamin E intakes were 9.7 mg α-tocopherol/d. Intakes were correlated with plasma α-tocopherol (R = 0.40, P < 0.001) and urinary α-CEHC (R = 0.42, P < 0.001); these correlations were essentially unchanged after multivariate adjustments. On the basis of multiple regression analysis, urinary α-CEHC excretion increased by ~0.086 μmol/g creatinine (95% CI: 0.047, 0.125) for every 1-mg (2.3-μmol) increase in dietary α-tocopherol. Urinary α-CEHC excretion remained at a plateau (median: 1.39 μmol/g creatinine) until dietary intakes of α-tocopherol exceeded 9 mg α-tocopherol/d. The inflection point at which vitamin E metabolism increased was estimated to be at an intake of 12.8 mg α-tocopherol/d. Daily excretion of >1.39 μmol α-CEHC/g creatinine is associated with a greater than adequate α-tocopherol status, as evidenced by increased vitamin E metabolism and excretion. CONCLUSION Thus, urinary α-CEHC is a valid biomarker of α-tocopherol status that can be used to set a value for the Estimated Adequate Requirement of vitamin E.
Collapse
Affiliation(s)
- Katie M Lebold
- General Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
11
|
Bobeuf F, Labonte M, Dionne IJ, Khalil A. Combined effect of antioxidant supplementation and resistance training on oxidative stress markers, muscle and body composition in an elderly population. J Nutr Health Aging 2011; 15:883-9. [PMID: 22159777 DOI: 10.1007/s12603-011-0097-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was aimed to examine the effect of vitamin C/E intake alone or combined with resistance training on antioxidant/pro-oxidant status, muscle strength and body composition in an elderly population. Fifty-seven men and women with a mean age of 65.6 ± 3.8 years were recruited and randomized in a double-blind fashion into four groups: control-placebo; resistance training (RT); vitamins C/E supplementation (AS); AS+RT. Oxidative stress status and metabolic and lipid profiles were determined at baseline and after six months. Fat-free mass and fat mass measured by DXA were similar at baseline for all groups. At six month, there was a significant difference among the groups as a function of vitamin E supplementation. Moreover, although there was no effect on pro-oxidative parameters, a significant effect on body composition was noted, but no difference was noted on strength gain. The combination of RT+AS had a positive effect on the plasma antioxidant profile but not on the pro-oxidant status.
Collapse
Affiliation(s)
- F Bobeuf
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
12
|
Dembinski R, Bensberg R, Marx G, Rossaint R, Quintel M, Vohmann C, Kuhlen R. Semi-fluorinated alkanes as carriers for drug targeting in acute respiratory failure. Exp Lung Res 2011; 36:499-507. [PMID: 20939753 DOI: 10.3109/01902141003721457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Partial liquid ventilation (PLV) with perfluorocarbons may cause pulmonary recruitment in acute lung injury (ALI). Semi-fluorinated alkanes (SFAs) provide biochemical properties similar to perfluorocarbons. Additionally, SFAs are characterized by increased lipophilicity. Therefore, SFA-PLV may be considered for deposition of certain therapeutic drugs into atelectatic lung areas. In this experimental study SFA-PLV was evaluated to demonstrate feasibility, pulmonary recruitment, and efficacy of drug deposition. Feasibility of SFA-PLV was determined in pigs with and without experimental ALI. Animals were randomized to PLV with SFAs up to a cumulative amount of 30 mL x kg⁻¹ or to conventional mechanical ventilation. Pulmonary recruitment effects were determined by analyzing ventilation-perfusion distributions. Efficacy of intrapulmonary drug deposition was evaluated in further experiments by measuring drug serum concentrations in the course of PLV with SFA-dissolved α-tocopherol and ibuprofen. Increasing SFA doses caused progressive reduction of intrapulmonary shunt in animals with ALI, indicating pulmonary recruitment. PLV with SFA-dissolved α-tocopherol had no effect on serum levels of α-tocopherol, whereas PLV with SFA-dissolved ibuprofen caused a rapid increase of serum levels of ibuprofen. The authors conclude that SFA-PLV is feasible and causes pulmonary recruitment in ALI. Effectiveness of drug deposition in the lung obviously depends on the partitioning drugs out of the SFA phase into blood.
Collapse
Affiliation(s)
- Rolf Dembinski
- Department of Intensive Care Medicine, RWTH University Hospital Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Galli F, Lee R, Atkinson J, Floridi A, Kelly FJ. γ-Tocopherol biokinetics and transformation in humans. Free Radic Res 2010; 37:1225-33. [PMID: 14703735 DOI: 10.1080/10715760310001604125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The uptake and biotransformation of gamma-tocopherol (gamma-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of gamma-T biology in healthy volunteers and their response to gamma-T supplementation. METHODS A single bolus of 100 mg of deuterium labeled gamma-T acetate (d(2)-gamma-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240 h post-supplemetation. The concentrations of d(2) and d(0)-gamma-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (-gamma-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72 h post-supplementation. The effects of gamma-T supplementation on alpha-T concentrations in plasma and alpha-T and gamma-T metabolite formation were also assessed by HPLC or GC-MS analysis. RESULTS At baseline, mean plasma alpha-T concentration was approximately 15 times higher than gamma-T (28.3 vs. 1.9 micromol/l). In contrast, plasma gamma-CEHC concentration (0.191 micromol/l) was 12 fold greater than alpha-CEHC (0.016 micromol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 micromol, respectively) suggesting that the clearance of alpha-CEHC from plasma was more than 40 times that of gamma-CEHC. After d(2)-gamma-TAC administration, the d(2) forms of gamma-T and gamma-CEHC in plasma and urine increased, but with marked inter-individual variability, while the d(0) species were hardly affected. Mean total concentrations of gamma-T and gamma-CEHC in plasma and urine peaked, respectively, between 0-9, 6-12 and 9-24 h post-supplementation with increases over baseline levels of 6-14 fold. All these parameters returned to baseline by 72 h. Following challenge, the total urinary excretion of d(2)-gamma-T equivalents was approximately 7 mg. Baseline levels of gamma-T correlated positively with the post-supplementation rise of (d(0) + d(2)) - gamma - T and gamma-CEHC levels in plasma, but correlated negatively with urinary levels of (d(0) + d(2))-gamma-CEHC. Supplementation with 100 mg gamma-TAC had minimal influence on plasma concentrations of alpha-T and alpha-T-related metabolite formation and excretion. CONCLUSIONS Ingestion of 100mg of gamma-TAC transiently increases plasma concentrations of gamma-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of gamma-T nor the concentration and metabolism of alpha-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios alpha-T to gamma-T and gamma-CEHC to alpha-CEHC.
Collapse
Affiliation(s)
- Francesco Galli
- Lung Biology, School of Health and Life Sciences, King's College, London, UK.
| | | | | | | | | |
Collapse
|
14
|
Zhao Y, Lee MJ, Cheung C, Ju JH, Chen YK, Liu B, Hu LQ, Yang CS. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4844-4852. [PMID: 20222730 PMCID: PMC2858244 DOI: 10.1021/jf904464u] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tocopherols and tocotrienols, collectively known as vitamin E, are essential antioxidant nutrients. The biological fates and metabolite profiles of the different forms are not clearly understood. The objective of this study is to simultaneously analyze the metabolites of different tocopherols and tocotrienols in mouse and human samples. Using HPLC/electrochemical detection and mass spectrometry, 18 tocopherol-derived and 24 tocotrienol-derived side-chain degradation metabolites were identified in fecal samples. Short-chain degradation metabolites, in particular gamma- and delta-carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were detected in urine, serum, and liver samples, with tocopherols additionally detected in serum and liver samples. The metabolite profiles of tocotrienols and tocopherols were similar, but new tocotrienol metabolites with double bonds were identified. This is the first comprehensive report describing simultaneous analysis of different side-chain metabolites of tocopherols and tocotrienols in mice and humans. Urinary metabolites may serve as useful biomarkers for the nutritional assessment of vitamin E.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemical Biology, Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu H, Perez-Cuevas R, Xiong X, Reyes H, Roy C, Julien P, Smith G, von Dadelszen P, Leduc L, Audibert F, Moutquin JM, Piedboeuf B, Shatenstein B, Parra-Cabrera S, Choquette P, Winsor S, Wood S, Benjamin A, Walker M, Helewa M, Dubé J, Tawagi G, Seaward G, Ohlsson A, Magee LA, Olatunbosun F, Gratton R, Shear R, Demianczuk N, Collet JP, Wei S, Fraser WD. An international trial of antioxidants in the prevention of preeclampsia (INTAPP). Am J Obstet Gynecol 2010; 202:239.e1-239.e10. [PMID: 20207239 DOI: 10.1016/j.ajog.2010.01.050] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We sought to investigate whether prenatal vitamin C and E supplementation reduces the incidence of gestational hypertension (GH) and its adverse conditions among high- and low-risk women. STUDY DESIGN In a multicenter randomized controlled trial, women were stratified by the risk status and assigned to daily treatment (1 g vitamin C and 400 IU vitamin E) or placebo. The primary outcome was GH and its adverse conditions. RESULTS Of the 2647 women randomized, 2363 were included in the analysis. There was no difference in the risk of GH and its adverse conditions between groups (relative risk, 0.99; 95% confidence interval, 0.78-1.26). However, vitamins C and E increased the risk of fetal loss or perinatal death (nonprespecified) as well as preterm prelabor rupture of membranes. CONCLUSION Vitamin C and E supplementation did not reduce the rate of preeclampsia or GH, but increased the risk of fetal loss or perinatal death and preterm prelabor rupture of membranes.
Collapse
Affiliation(s)
- Hairong Xu
- Department of Obstetrics and Gynecology, Hôpital Ste-Justine, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Preeclampsia (PE) accounts for about one-quarter of the cases of maternal mortality and ranks second among the causes of pregnancy-associated maternal deaths in Canada and worldwide. The identification of an effective strategy to prevent PE is a priority and a challenge for research in obstetrics. Progress has been hampered by inadequate understanding of the underlying etiology of the disease. The role of maternal diet in the etiology of PE has recently received increased attention. The objective of this paper is to provide an overview of the literature concerning 1) the current understanding of the pathogenesis of PE, 2) the biological plausibility and potential mechanisms underlying the associations between maternal dietary exposures, nutrition, and the risk of PE, and 3) the epidemiological findings of maternal nutrient intake in relation to the risk of PE.
Collapse
Affiliation(s)
- Hairong Xu
- Department of Obstetrics and Gynecology, Université de Montréal/Hôpital Sainte-Justine, Montreal, Canada H3T 1C5
| | | | | | | | | |
Collapse
|
17
|
Helbig D, Wagner A, Schubert R, Jahreis G. Tocopherol isomer pattern in serum and stool of human following consumption of black currant seed press residue administered in whole grain bread. Clin Nutr 2009; 28:662-7. [PMID: 19523725 DOI: 10.1016/j.clnu.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/16/2009] [Accepted: 05/01/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Serum gamma-tocopherol is thought to be associated with human health. The dietary influence of tocopherol and fibre-rich black currant seed press residue on serum and stool tocopherol concentration was investigated in a controlled human intervention study. METHODS Thirty-six women consumed bread enriched with black currant press residue (4 weeks). The resultant faecal and serum tocopherol concentrations were compared with those after a period consuming control bread without press residue and a normal baseline diet. Fibre intake and excretion, antioxidant capacity (TEAC), and vitamin C concentrations in serum and urine were also determined. Samples were obtained with a 5-day standardised diet at the end of each period. RESULTS The press residue bread lead to significantly increased beta-, gamma-, delta- and total tocopherol intake, serum alpha-, beta-, gamma- and total tocopherol concentration (with and without lipid adjustment), fibre intake and urinary vitamin C concentration compared to control bread (P<0.05). Faecal excretion of total tocopherols and fibre increased compared to baseline (P<0.05). CONCLUSIONS Fibre intake and excretion influence total tocopherol concentration in lipid-adjusted serum and in stool. The outstandingly high increase of serum gamma-tocopherol concentration through seed press residue consumption could be due to a presumed interruption of the enzymatic tocopherol degradation mechanism by bread constituents.
Collapse
Affiliation(s)
- Dorit Helbig
- Friedrich Schiller University of Jena, Department of Nutritional Physiology, Dornburger Strasse 24-29, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
18
|
Li YJ, Luo SC, Lee YJ, Lin FJ, Cheng CC, Wein YS, Kuo YH, Huang CJ. Isolation and identification of alpha-CEHC sulfate in rat urine and an improved method for the determination of conjugated alpha-CEHC. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11105-11113. [PMID: 18991451 DOI: 10.1021/jf802459d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
2,5,7,8-Tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC), the water-soluble metabolite of alpha-tocopherol (alpha-TOH) with a shortened side chain but an intact hydroxychroman structure, has been identified in human urine and are thought to be produced in significant amount at excess intake of alpha-TOH. In previous studies, CEHCs in biological specimens were measured by HPLC, GC-MS or LC-MS, preceded by a hydrolysis procedure using either enzyme or methanolic HCl. In an attempt to analyze alpha-CEHC in rat urine accordingly, we observed that enzyme hydrolysis was relatively inefficient in releasing alpha-CEHC compared to high concentrations of HCl. The HCl releasable alpha-CEHC conjugate was isolated and chemically identified as 6-O-sulfated alpha-CEHC (alpha-CEHC sulfate). Using the synthetic alpha-CEHC sulfate standard, it was found that sulfatase could not hydrolyze to a significant extent. On the other hand, pretreatment with HCl at 60 degrees C in the presence of ascorbate, followed by a one-step ether extraction, not only hydrolyzed the sulfate conjugate completely but also extracted alpha-CEHC with high recovery. The inclusion of ascorbate minimized the conversion of alpha-CEHC to alpha-tocopheronolactone in the HCl pretreatment. A complete procedure for the quantitative analysis of alpha-CEHC including HCl hydrolysis, ether extraction and reverse phase isocratic HPLC-ECD was thus established. In conclusion, alpha-CEHC sulfate was isolated and identified as the HCl-releasable conjugate of alpha-CEHC in rat urine. A rapid and sensitive method with high reproducibility for the determination of free, conjugated and total alpha-CEHC is then established.
Collapse
Affiliation(s)
- Yi-Jen Li
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Brigelius-Flohé R. Adverse effects of vitamin E by induction of drug metabolism. GENES & NUTRITION 2007; 2:249-56. [PMID: 18850180 PMCID: PMC2474942 DOI: 10.1007/s12263-007-0055-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 06/05/2007] [Indexed: 02/06/2023]
Abstract
Observational studies with healthy persons demonstrated an inverse association of vitamin E with the risk of coronary heart disease or cancer, the outcome of large-scale clinical trials conducted to prove a benefit of vitamin E in the recurrence and/or progression of such disease, however, was disappointing. Vitamin E did not provide benefits to patients with cardiovascular diseases, cancer, diabetes or hypertension. Even harmful events and worsening of pre-existing diseases were reported, which are hard to explain. Since vitamin E is metabolized along the same routes as xenobiotics and induces drug-metabolizing enzymes in rodents, it is hypothesized that a supplementation with high dosages of vitamin E may also lead to an induction of the drug-metabolizing system in patients that depend on drug therapy. Compromising essential therapy might therefore outweigh any benefit of vitamin E in patients. It is recommended to work out at which threshold the drug-metabolizing system can be induced in humans before new trials with high dosages of vitamin E are started.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany,
| |
Collapse
|
20
|
Machefer G, Groussard C, Vincent S, Zouhal H, Faure H, Cillard J, Radák Z, Gratas-Delamarche A. Multivitamin-mineral supplementation prevents lipid peroxidation during "the Marathon des Sables". J Am Coll Nutr 2007; 26:111-20. [PMID: 17536122 DOI: 10.1080/07315724.2007.10719592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We investigated the effect of a moderate mutivitamin and mineral supplementation containing mainly vitamin C (150.0 mg.day(-1)), vitamin E (24.0 mg.day(-1)) and beta-carotene (4.8 mg.day(-1)) prior to and during an extreme running competition -the Marathon des Sables (MDS)- that consisted of six long races in the desert. METHODS Seventeen athletes participated in our double blind, placebo-controlled study. Blood samples were collected prior to the supplementation i.e. three weeks before the competition (D-21), two days prior to the MDS (D-2), after the third race (D3) and at the end of the competition (D7). Erythrocyte antioxidant enzyme activity (glutathione peroxidase (GPx), superoxide dismutase (SOD)), erythrocyte glutathione level (GSH), plasma non-enzymatic antioxidant status (uric acid, vitamin C, alpha-tocopherol, retinol, beta-carotene), markers of plasma lipid peroxidation (thiobarbituric reactive substances (TBARS)), reactive carbonyl derivatives (RCD) and membrane damage (creatine kinase and lactate dehydrogenase activities) were measured. RESULTS In both groups, GSH levels, uric acid levels and membrane damage significantly increased during the competition while SOD activity significantly decreased. In Supplemented group, plasma alpha-tocopherol, beta-carotene and retinol levels significantly increased after three weeks of supplementing. In contrast to Placebo group, alpha-tocopherol, vitamin C and retinol levels were significantly affected by the competition in Supplemented group. Moreover, no increase in TBARS was observed in Supplemented group during the competition, whereas TBARS significantly increased at D3 in the placebo group. CONCLUSION The moderate multivitamin-mineral supplementation prevented the transient increase in TBARS levels during this extreme competition.
Collapse
Affiliation(s)
- Guillaume Machefer
- Laboratory of Physiology and Biomechanics of Muscular Exercise. UFR-APS, University of Rennes 2, av. Charles Tillon, 35044 Rennes Cedex, FRANCE.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Quantitative study of the α- and γ-tocopherols accumulation in muscle and backfat from Iberian pigs kept free-range as affected by time of free-range feeding or weight gain. ACTA ACUST UNITED AC 2007. [DOI: 10.1017/asc2006113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The experiment was undertaken to quantify the α and γ-tocopherols accumulation in muscle and backfat from Iberian pigs given food free-range as affected by the time of free-range feeding or the weight gained during the fattening in free-range. Pigs were given their food in a free-range production system with pasture and acorns (Quercus rotundifolia) for different periods of time: 46 days (free-range 3), 83 days (free-range 2) and 111 days (free-range 1). A control was given food free-range for 0 days. In addition another experiment was developed to determinate the effect of the the weight gained on the tocopherols accumulation at a similar period of time (111 days) given food free-range: one group gained 68·7 kg of weight (free-range A) and the other 43·6 kg (free-range B). The concentration of γ-tocopherol significantly (P<0·0001) increased after 83 days of feeding in the longissimus dorsi (LD) and biceps femoris (BF) muscles, and after 111 days in the inner and outer backfat layers. The concentration of α-tocopherol was not statistically affected by the days of free-range feeding in any case. Iberian pigs that put on more weight had significantly (P< 0·0001) higher concentration of α and γ-tocopherols in the inner and outer backfat layers, and α-tocopherol in the BF muscle than those given food free-range B. However, no differences were detected in the proportion of α-tocopherol in the LD and γ-tocopherol in the LD and BF. The γ-tocopherol content of LD and BF muscles depending on the days of feeding were adjusted to linear and quadratic regressions (R2=0·8705 and 0·8697, respectively), while the outer and inner backfat layers were linear equations (R2=0·8480 and 0·8119, respectively). However, the γ-tocopherol concentration as affected by the weight gained in free-range showed in all tissues a linear and a quadratic trend that were adjusted to exponential responses. The α-tocopherol content was affected by the γ-tocopherol concentration in muscle and outer backfat layer. The tocopherol concentration (α and γ-tocopherols) in the backfat layers may discriminate better between the pigs of high quality that were given food free-range for a long period of time and those that stayed an intermediate period. However, to discriminate between the pigs on formulated food and those given food free-range, the quantification of the γ-tocopherol concentration in muscle could be a better indicator.
Collapse
|
22
|
Bates CJ, Mishra GD, Prentice A. γ-Tocopherol as a possible marker for nutrition-related risk: results from four National Diet and Nutrition Surveys in Britain. Br J Nutr 2007; 92:137-50. [PMID: 15230997 DOI: 10.1079/bjn20041156] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractRelationships between vitamin E status (α and γ-tocopherol and their ratio in plasma), anthropometric and biochemical indices, and food and nutrient intakes, were studied in four British National Diet and Nutrition Surveys: children aged 1·5–4·5 years, young people aged 4·0–18·0 years, adults 19·0–64·0 years and adults aged ≥65·0 years. γ-Tocopherol:α-tocopherol ratio declined with age. In older women γ-tocopherol and γ-tocopherol:α-tocopherol ratios were directly related to indices of obesity. In young men α- and γ-tocopherols were directly correlated with obesity, but γ-tocopherol:α-tocopherol ratio was not. For young people and toddlers, fewer obesity indices were available and relationships were weaker. Other fat- and water-soluble vitamin indices correlated directly with α-tocopherol and inversely with γ-tocopherol and γ-tocopherol:α-tocopherol ratio. Whereas α-tocopherol correlated directly with ‘healthy’ nutrient choices (such as intrinsic sugars, dietary fibre, vitamins and potassium) and inversely with ‘unhealthy’ choices (extrinsic sugars and monounsaturated fats, i.e. avoidance of polyunsaturated fat), γ-tocopherol and the γ-tocopherol:α-tocopherol ratio related inversely with ‘healthy’ choices. Food groups had analogous relationships; thus, α-tocopherol related directly to use of polyunsaturated fats, fresh fruits and fruit juices, and inversely to non-polyunsaturated fats and extrinsic sugar. The reverse was true for γ-tocopherol and γ-tocopherol:α-tocopherol ratio. Although the mechanisms underlying these relationships are obscure, the γ-tocopherol:α-tocopherol ratio may reveal poor dietary choices, status predictors and a propensity for obesity in later life, especially in women.
Collapse
Affiliation(s)
- C J Bates
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| | | | | |
Collapse
|
23
|
Sontag TJ, Parker RS. Influence of major structural features of tocopherols and tocotrienols on their omega-oxidation by tocopherol-omega-hydroxylase. J Lipid Res 2007; 48:1090-8. [PMID: 17284776 DOI: 10.1194/jlr.m600514-jlr200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytochrome P450 4F2 (CYP4F2) catalyzes the initial omega-hydroxylation reaction in the metabolism of tocopherols and tocotrienols to carboxychromanols and is, to date, the only enzyme shown to metabolize vitamin E. The objective of this study was to characterize this activity, particularly the influence of key features of tocochromanol substrate structure. The influence of the number and positions of methyl groups on the chromanol ring, and of stereochemistry and saturation of the side chain, were explored using HepG2 cultures and microsomal reaction systems. Human liver microsomes and microsomes selectively expressing recombinant human CYP4F2 exhibited substrate activity patterns similar to those of HepG2 cells. Although activity was strongly associated with substrate accumulation by cells or microsomes, substantial differences in specific activities between substrates remained under conditions of similar microsomal membrane substrate concentration. Methylation at C5 of the chromanol ring was associated with markedly low activity. Tocotrienols exhibited much higher Vmax values than their tocopherol counterparts. Side chain stereochemistry had no effect on omega-hydroxylation of alpha-tocopherol (alpha-TOH) by any system. Kinetic analysis of microsomal CYP4F2 activity revealed Michaelis-Menten kinetics for alpha-TOH but allosteric cooperativity for other vitamers, especially tocotrienols. Additionally, alpha-TOH was a positive effector of omega-hydroxylation of other vitamers. These results indicate that CYP4F2-mediated tocopherol-omega-hydroxylation is a central feature underlying the different biological half-lives, and therefore biopotencies, of the tocopherols and tocotrienols.
Collapse
Affiliation(s)
- Timothy J Sontag
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
24
|
Galli F, Polidori MC, Stahl W, Mecocci P, Kelly FJ. Vitamin E Biotransformation in Humans. VITAMIN E 2007; 76:263-80. [PMID: 17628177 DOI: 10.1016/s0083-6729(07)76009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The presence and activity of vitamin E in the organism as well as its role in disease prevention depend, as for any other microconstituent in food, on a number of factors related to its release from the food matrix, extent of absorption, and metabolic fate. Biotransformation can be defined as the sum of processes in which vitamin E compounds are altered by the body. It involves the bioactivation and production of reactive metabolites, a series of processes generally referred to as "vitamin E metabolism." This chapter will provide an overview of the known and less known steps of vitamin E biotransformation in humans. Due to recent advances related to the biological activities and metabolic processing of vitamin E compounds, particular attention will be given to the description of the formation, identification, and functions of vitamin E metabolites. The hypothesis of a transformation-dependent bioactivation of vitamin E represents an intriguing and emerging aspect of research that deserves further investigation.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
25
|
Clifford AJ, de Moura FF, Ho CC, Chuang JC, Follett J, Fadel JG, Novotny JA. A feasibility study quantifying in vivo human alpha-tocopherol metabolism. Am J Clin Nutr 2006; 84:1430-41. [PMID: 17158427 DOI: 10.1093/ajcn/84.6.1430] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Quantitation of human vitamin E metabolism is incomplete, so we quantified RRR- and all-rac-alpha-tocopherol metabolism in an adult. OBJECTIVE The objective of the study was to quantify and interpret in vivo human vitamin E metabolism. DESIGN A man was given an oral dose of 0.001821 micromol [5-14CH3]RRR-alpha-tocopheryl acetate (with 101.5 nCi 14C), and its fate in plasma, plasma lipoproteins, urine, and feces was measured over time. Data were analyzed and interpreted by using kinetic modeling. The protocol was repeated later with 0.001667 micromol [5-14CH3]all-rac-alpha-tocopheryl acetate (with 99.98 nCi 14C). RESULTS RRR-alpha-tocopheryl acetate and all-rac-alpha-tocopheryl acetate were absorbed equally well (fractional absorption: approximately 0.775). The main route of elimination was urine, and approximately 90% of the absorbed dose was alpha-2(2'-carboxyethyl)-6-hydroxychroman. Whereas 93.8% of RRR-alpha-tocopherol flow to liver kinetic pool B from plasma was returned to plasma, only 80% of the flow of all-rac-alpha-tocopherol returned to plasma; the difference (14%) was degraded and eliminated. Thus, for newly digested alpha-tocopherol, the all-rac form is preferentially degraded and eliminated over the RRR form. Respective residence times in liver kinetic pool A and plasma for RRR-alpha-tocopherol were 1.16 and 2.19 times as long as those for all-rac-alpha-tocopherol. Model-estimated distributions of plasma alpha-tocopherol, extrahepatic tissue alpha-tocopherol, and liver kinetic pool B for RRR-alpha-tocopherol were, respectively, 6.77, 2.71, and 3.91 times as great as those for all-rac-alpha-tocopherol. Of the lipoproteins, HDL had the lowest 14C enrichment. Liver had 2 kinetically distinct alpha-tocopherol pools. CONCLUSIONS Both isomers were well absorbed; all-rac-alpha-tocopherol was preferentially degraded and eliminated in urine, the major route. RRR-alpha-tocopherol had a longer residence time and larger distribution than did all-rac-alpha-tocopherol. Liver had 2 distinct alpha-tocopherol pools. The model is a hypothesis, its estimates are model-dependent, and it encourages further testing.
Collapse
Affiliation(s)
- Andrew J Clifford
- Department of Nutrition, University of California, Davis, Davis, CA 5616-8669, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yoshikawa S, Morinobu T, Hamamura K, Hirahara F, Iwamoto T, Tamai H. The effect of gamma-tocopherol administration on alpha-tocopherol levels and metabolism in humans. Eur J Clin Nutr 2005; 59:900-5. [PMID: 15928686 DOI: 10.1038/sj.ejcn.1602154] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The bioavailability of gamma-tocopherol and metabolites of vitamin E after gamma-tocopherol administration is not well understood. We investigated the effect of gamma-tocopherol administration on the levels and metabolism of alpha- and gamma-tocopherol in healthy volunteers. METHODS We measured two metabolites of vitamin E (2,5,7,8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman (gamma-CEHC)) in plasma and urine by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) during administration of gamma-tocopherol. Two groups of volunteers were enrolled. The gamma-tocopherol group received two gamma-tocopherol capsules (each containing 186.4 mg of gamma-tocopherol and 5 mg of alpha-tocopherol) for 28 days, while the control group received d-alpha-tocopherol at 5 mg/day, which was the same dose as that given to the gamma-tocopherol group. Blood and urine samples were obtained on days 0, 14, 28, 35, 42, and 56 after the initiation of gamma-tocopherol administration. RESULTS The plasma gamma-tocopherol concentration increased markedly during administration of gamma-tocopherol and the plasma gamma-CEHC concentration increased along with that of gamma-tocopherol. The plasma alpha-tocopherol concentration decreased significantly during gamma-tocopherol administration. The plasma concentration of alpha-CEHC decreased significantly and urinary excretion of alpha-CEHC tended to increase in the gamma-tocopherol group. Urinary sodium secretion was significantly increased at 1 week after the cessation of gamma-tocopherol administration, but there was no significant difference of urine volume between the two groups. CONCLUSION Metabolism of alpha-tocopherol is accelerated and the plasma alpha-tocopherol concentration is decreased during gamma-tocopherol administration.
Collapse
Affiliation(s)
- S Yoshikawa
- Department of Pediatrics, Osaka Medical College, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Bruno RS, Ramakrishnan R, Montine TJ, Bray TM, Traber MG. {alpha}-Tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am J Clin Nutr 2005; 81:95-103. [PMID: 15640466 DOI: 10.1093/ajcn/81.1.95] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cigarette smokers have enhanced oxidative stress from cigarette smoke exposure and from their increased inflammatory responses. OBJECTIVE The objective of this study was to determine whether cigarette smoking increases plasma alpha-tocopherol disappearance in otherwise healthy humans. DESIGN Smokers and nonsmokers (n = 10/group) were supplemented with deuterium-labeled alpha-tocopheryl acetates (75 mg each of d(3)-RRR-alpha-tocopheryl acetate and d(6)-all-rac-alpha-tocopherols acetate) for 6 evenings (days -6 to -1). Plasma alpha-tocopherols, ascorbic acid, uric acid, and F(2alpha)-isoprostanes were measured in blood samples collected on days -6 through 17. The urinary alpha-tocopherol metabolite, alpha-carboxy-ethyl-hydroxy-chroman (alpha-CEHC), was measured on days -6, 0, and 17 in 24-h urine samples. RESULTS F(2alpha)-isoprostanes were, on average, approximately 40% higher in smokers than in nonsmokers. On day 0, plasma labeled and unlabeled alpha-tocopherol concentrations were not significantly different between groups. Smoking resulted in faster fractional disappearance of plasma alpha-tocopherol (0.215 +/- 0.011 compared with 0.191 +/- 0.009 pools/d; P < 0.05). Fractional disappearance rates of alpha-tocopherol correlated with plasma ascorbic acid concentrations in smokers (P = 0.021) but not in nonsmokers despite plasma ascorbic acid concentrations that were not significantly different between groups. By day 17, cigarette smoking resulted in lower plasma alpha-tocopherol concentrations and urinary excretion of labeled and unlabeled alpha-CEHC (P < 0.05). CONCLUSIONS Cigarette smoking increased alpha-tocopherol disappearance. Greater rates of alpha-tocopherol disappearance in smokers appear to be related to increased oxidative stress accompanied by lower plasma ascorbic acid concentrations. Thus, smokers have an increased requirement for both alpha-tocopherol and ascorbic acid.
Collapse
Affiliation(s)
- Richard S Bruno
- Department of Human Nutrition, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|