1
|
Ofori E, Dziedzorm W, Buabeng A, Dogodzi F, Adusu‐Donkor L, Bernard S, Amponsah S, Asare‐Anane H. Comparative Determination of Mitochondrial Biomarkers and Their Relationship With Insulin Resistance in Type 2 Diabetic Patients: An Observational Cross-Sectional Study. Endocrinol Diabetes Metab 2024; 7:e507. [PMID: 38943337 PMCID: PMC11213964 DOI: 10.1002/edm2.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
INTRODUCTION Data suggest malfunctioning mitochondria reduce oxidation and adenosine triphosphate (ATP) production, disrupting insulin signalling. Cytochrome c (CC), acylcarnitine (AC) and citrate synthase (CS) are essential components of the mitochondria machinery and can be used as reliable biomarkers of mitochondrial dysfunction. This study aimed to determine whether mitochondrial biomarkers (AC, CS and CC) are altered in individuals with type 2 diabetes mellitus (T2DM) and to examine the association between these biomarkers and insulin resistance. METHODOLOGY A cross-sectional observational study that recruited 170 participants (88 with T2DM and 82 without DM) was conducted. Blood samples were collected from the recruits and analysed for levels of fasting glucose (FBG), AC, CS, CC, insulin, total cholesterol, triglycerides (TG), glycated haemoglobin (HbA1c) and magnesium. Blood pressure (BP) and anthropometric characteristics of participants were also taken. Appropriate formulas were used to determine %body fat, body mass index (BMI), waist-to-hip ratio (WHR), the homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity (HOMA-β). RESULTS Patients with T2DM had higher levels of CC, %body fat, FBG, TG, HbA1c, BMI and HOMA-IR than controls (p < 0.05, respectively). Results showed a significant relationship between circulating CC levels versus HOMA-β (r = -0.40, p = 0.001), CS (r = -0.70, p = 0.001) and AC (r = -0.72, p = 0.001) levels in patients with T2DM. The adjusted odds increased in the T2DM patients for VLDL (OR = 6.66, p = 0.002), HbA1c (OR = 6.50, p = 0.001), FPG (OR = 3.17, p = 0.001), TG (OR = 2.36, p = 0.010), being female (OR = 2.09, p = 0.020) and CC (OR = 1.14, p = 0.016). CONCLUSION Overall, alterations in mitochondrial biomarkers, measured by AC, CC and CS, were observed in people with T2DM and showed a direct relationship with insulin resistance. These findings are potentially significant in Africa, although additional confirmation from a larger cohort is necessary.
Collapse
Affiliation(s)
| | | | | | - Francis K. Dogodzi
- School of Veterinary Medicine, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | | | - Segla K. Bernard
- West African Centre for Cell Biology of Infectious PathogensAccraGhana
| | - Seth K. Amponsah
- Department of Medical PharmacologyUniversity of Ghana Medical SchoolAccraGhana
| | | |
Collapse
|
2
|
Fallah F, Mahdavi R. Ameliorating effects of L-carnitine and synbiotic co-supplementation on anthropometric measures and cardiometabolic traits in women with obesity: a randomized controlled clinical trial. Front Endocrinol (Lausanne) 2023; 14:1237882. [PMID: 37929031 PMCID: PMC10622781 DOI: 10.3389/fendo.2023.1237882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Background Obesity, a multifactorial disorder with pandemic dimensions, is conceded a major culprit of morbidity and mortality worldwide, necessitating efficient therapeutic strategies. Nutraceuticals and functional foods are considered promising adjuvant/complementary approaches for weight management in individuals with obesity who have low adherence to conventional treatments. Current literature supports the weight-reducing efficacy of pro/pre/synbiotics or L-carnitine; however, the superiority of the nutraceutical joint supplementation approach over common single therapies to counter obesity and accompanying comorbidities is well documented. This study was designed to assess the effects of L-carnitine single therapy compared with L-carnitine and multistrain/multispecies synbiotic co-supplementation on anthropometric and cardiometabolic indicators in women with obesity. Methods The current placebo-controlled double-blind randomized clinical trial was performed on 46 women with obesity, randomly allocated to either concomitant supplementation [L-carnitine tartrate (2 × 500 mg/day) + multistrain/multispecies synbiotic (1 capsule/day)] or monotherapy [L-carnitine tartrate (2 × 500 mg/day) + maltodextrin (1 capsule/day)] groups for 8 weeks. Participants in both groups received healthy eating dietary advice. Results Anthropometric, lipid, and glycemic indices significantly improved in both intervention groups; however, L-carnitine + synbiotic co-administration elicited a greater reduction in the anthropometric measures including body mass index (BMI), body weight, and neck, waist, and hip circumferences (p < 0.001, <0.001, <0.001, = 0.012, and =0.030, respectively) after adjusting for probable confounders. Moreover, L-carnitine + synbiotic joint supplementation resulted in a greater reduction in fasting blood sugar (FBS), insulin (though marginal), and homeostatic model assessment of insulin resistance (HOMA-IR) and more increment in quantitative insulin sensitivity check index (QUICKI; p = 0.014, 0.051, 0.024, and 0.019, respectively) compared with the L-carnitine + placebo monosupplementation. No significant intergroup changes were found for the lipid profile biomarkers, except for a greater increase in high-density lipoprotein-cholesterol concentrations (HDL-C) in the L-carnitine + synbiotic group (p = 0.009). Conclusion L-carnitine + synbiotic co-supplementation was more beneficial in ameliorating anthropometric indices as well as some cardiometabolic parameters compared with L-carnitine single therapy, suggesting that it is a promising adjuvant approach to ameliorate obesity or associated metabolic complications through potential synergistic or complementary mechanisms. Further longer duration clinical trials in a three-group design are demanded to verify the complementary or synergistic mechanisms. Clinical trial registration www.irct.ir, Iranian Registry of Clinical Trials IRCT20080904001197N13.
Collapse
Affiliation(s)
- Farnoush Fallah
- Student Research Committee, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Alhasaniah AH. l-carnitine: Nutrition, pathology, and health benefits. Saudi J Biol Sci 2023; 30:103555. [PMID: 36632072 PMCID: PMC9827390 DOI: 10.1016/j.sjbs.2022.103555] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.
Collapse
Key Words
- AD, Alzheimer's disease
- AIF, Apoptosis-inducing factor
- Anti-wasting effect
- BBB, Blood–brain barrier
- CC, Cancer cachexia
- CHF, Chronic heart failure
- COPD, Chronic obstructive pulmonary disease
- ESRD, End-stage renal disease
- GOT, Glutamic oxaloacetic transaminase
- HCC, Hepatocellular carcinoma
- HFD, High-Fat Diet
- HOI, Highest observed intake
- Health benefits
- LC, l-carnitine
- MI, myocardial infarction
- MTX, Methotrexate
- NF-kB, Nuclear factor-kB
- Nutrition
- OSL, Observed safe level
- PCD, Primary carnitine deficiency
- Pathology
- ROS, Reactive oxygen species
- SCD, Secondary carnitine deficiency
- TLE, Temporal lobe epilepsy
- VD, Vascular dementia
- l-carnitine
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
4
|
Milluzzo A, Barchitta M, Maugeri A, Magnano San Lio R, Favara G, Mazzone MG, Sciacca L, Agodi A. Do Nutrients and Nutraceuticals Play a Role in Diabetic Retinopathy? A Systematic Review. Nutrients 2022; 14:4430. [PMID: 36297113 PMCID: PMC9612209 DOI: 10.3390/nu14204430] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial neuro-microvascular disease, whose prevalence ranges from 25% to 60% of subjects affected by diabetes mellitus, representing the main cause of legal blindness in adults of industrialized countries. The treatment of advanced stage of DR is based on invasive and expensive therapies, while few strategies are available for the early stage or prevention. The mechanisms underlying DR involve a complex interplay between the detrimental effects of hyperglycemia, dyslipidemia, hypoxia, and oxidative stress, providing several pathways potentially targeted by nutrients and nutraceuticals. In this study, we conducted a systematic review of observational and interventional studies, evaluating the effect of nutrients and/or nutraceuticals on the risk of DR and their potential use for the treatment of patients with DR. The analysis of the 41 included studies (27 observational and 14 interventional studies) suggests a promising preventive role of some nutrients, in particular for vitamins B (i.e., B1 and B12), D, and E. However, further investigations are necessary to clarify the potential clinical application of nutraceuticals in the prevention and treatment of DR.
Collapse
Affiliation(s)
- Agostino Milluzzo
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95122 Catania, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Giuliana Favara
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Mazzone
- Research, Preclinical Development and Patents, SIFI S.p.A., Lavinaio-Aci S. Antonio, 95025 Catania, Italy
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95122 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
5
|
Porcu E, Gilardi F, Darrous L, Yengo L, Bararpour N, Gasser M, Marques-Vidal P, Froguel P, Waeber G, Thomas A, Kutalik Z. Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes. Sci Rep 2021; 11:6197. [PMID: 33737653 PMCID: PMC7973501 DOI: 10.1038/s41598-021-85684-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers.
Collapse
Affiliation(s)
- Eleonora Porcu
- grid.9851.50000 0001 2165 4204Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Federica Gilardi
- grid.150338.c0000 0001 0721 9812Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Liza Darrous
- grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Loic Yengo
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Nasim Bararpour
- grid.150338.c0000 0001 0721 9812Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marie Gasser
- grid.150338.c0000 0001 0721 9812Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- grid.8515.90000 0001 0423 4662Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Froguel
- grid.410463.40000 0004 0471 8845Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France ,grid.7445.20000 0001 2113 8111Department of Metabolism, Imperial College London, London, UK
| | - Gerard Waeber
- grid.8515.90000 0001 0423 4662Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aurelien Thomas
- grid.150338.c0000 0001 0721 9812Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital and Geneva University Hospitals, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Asbaghi O, Kashkooli S, Amini MR, Shahinfar H, Djafarian K, Clark CCT, Shab-Bidar S. The effects of L-carnitine supplementation on lipid concentrations inpatients with type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J Cardiovasc Thorac Res 2021; 12:246-255. [PMID: 33510873 PMCID: PMC7828761 DOI: 10.34172/jcvtr.2020.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
This meta-analysis was performed to assess the effect of L-carnitine supplementation on lipid profile. A systematic search were conducted in PubMed and Scopus to identify randomized clinical trials (RCTs) which evaluated the effects of L-carnitine on lipid profile. Pooled effect sizes were measured using random-effect model (Dersimonian-Laird). Meta-analysis showed that L-carnitine supplementation significantly reduced total cholesterol (TC) (weighted mean difference [WMD]: -8.17 mg/dL; 95% CI,-14.68 to -1.65, I2=52.2%, P = 0.041). Baseline level of TC was a source of heterogeneity, with a greater effect in studies with a baseline level of more than 200 mg/d (WMD: -11.93 mg/dL; 95% CI, -20.80 to-3.05). L-carnitine also significantly decreased low-density lipoprotein-cholesterol (LDL-C) (WMD:-5.22 mg/dL; 95% CI, -9.54 to -0.91, I2=66.7%, P = 0.010), and LDL-C level <100 mg/dL), trial duration,and L-carnitine dosage were potential sources of heterogeneity. L-carnitine supplementation appeared to have no significant effect on high-density lipoprotein-cholesterol (HDL-C) (WMD: -0.51 mg/dL;95% CI, -2.45 to 1.44) and triglyceride (TG) (WMD: 2.80 mg/dL; 95% CI, -8.09 to 13.69). This meta-analysisrevealed that L-carnitine may have favorable effects on lipid profile, especially LDL-C and TC. However, further RCTs are needed to confirm the veracity of these results, particularly among hyperlipidemic patients.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sara Kashkooli
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Shahinfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV15FB, UK
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021; 11:51. [PMID: 33466750 PMCID: PMC7829830 DOI: 10.3390/metabo11010051] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets.
Collapse
Affiliation(s)
- Marc R. McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Kathleen A. Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Shahouzehi B, Fallah H, Masoumi-Ardakani YI. L-carnitine administration effects on AMPK, APPL1 and PPAR? genes expression in the liver and serum adiponectin levels and HOMA-IR in type 2 diabetes rat model induced by STZ and nicotinamide. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Sumarriva K, Uppal K, Ma C, Herren DJ, Wang Y, Chocron IM, Warden C, Mitchell SL, Burgess LG, Goodale MP, Osborn MP, Ferreira AJ, Law JC, Cherney EF, Jones DP, Brantley MA. Arginine and Carnitine Metabolites Are Altered in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:3119-3126. [PMID: 31323682 PMCID: PMC6645705 DOI: 10.1167/iovs.19-27321] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine plasma metabolite and metabolic pathway differences between patients with type 2 diabetes with diabetic retinopathy (DR) and without retinopathy (diabetic controls), and between patients with proliferative DR (PDR) and nonproliferative DR (NPDR). Methods Using high-resolution mass spectrometry with liquid chromatography, untargeted metabolomics was performed on plasma samples from 83 DR patients and 90 diabetic controls. Discriminatory metabolic features were identified through partial least squares discriminant analysis, and linear regression was used to adjust for age, sex, diabetes duration, and hemoglobin A1c. Pathway analysis was performed using Mummichog 2.0. Results In the adjusted analysis, 126 metabolic features differed significantly between DR patients and diabetic controls. Pathway analysis revealed alterations in the metabolism of amino acids, leukotrienes, niacin, pyrimidine, and purine. Arginine, citrulline, glutamic γ-semialdehyde, and dehydroxycarnitine were key contributors to these pathway differences. A total of 151 features distinguished PDR patients from NPDR patients, and pathway analysis revealed alterations in the β-oxidation of saturated fatty acids, fatty acid metabolism, and vitamin D3 metabolism. Carnitine was a major contributor to the pathway differences. Conclusions This study demonstrates that arginine and citrulline-related pathways are dysregulated in DR, and fatty acid metabolism is altered in PDR patients compared with NPDR patients.
Collapse
Affiliation(s)
- Katherine Sumarriva
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Karan Uppal
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Chunyu Ma
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - David J Herren
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yating Wang
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Isaac M Chocron
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Cassandra Warden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sabrina L Mitchell
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - L Goodwin Burgess
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Megan P Goodale
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melissa P Osborn
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Allison J Ferreira
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janice C Law
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Edward F Cherney
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Surface molecularly imprinted polymer on magnetic multi-walled carbon nanotubes for selective recognition and preconcentration of metformin in biological fluids prior to its sensitive chemiluminescence determination: Central composite design optimization. Anal Chim Acta 2019; 1089:78-89. [DOI: 10.1016/j.aca.2019.08.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
|
11
|
Askarpour M, Hadi A, Dehghani Kari Bozorg A, Sadeghi O, Sheikhi A, Kazemi M, Ghaedi E. Effects of l-carnitine supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Hum Hypertens 2019; 33:725-734. [DOI: 10.1038/s41371-019-0248-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
|
12
|
Effect of lifelong carnitine supplementation on plasma and tissue carnitine status, hepatic lipid metabolism and stress signalling pathways and skeletal muscle transcriptome in mice at advanced age. Br J Nutr 2019; 121:1323-1333. [DOI: 10.1017/s0007114519000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractWhile strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.
Collapse
|
13
|
Davani-Davari D, Karimzadeh I, Sagheb MM, Khalili H. The Renal Safety of L-Carnitine, L-Arginine, and Glutamine in Athletes and Bodybuilders. J Ren Nutr 2018; 29:221-234. [PMID: 30341034 DOI: 10.1053/j.jrn.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
One of the major concerns about taking amino acid supplements is their potential adverse effects on the kidney as a major organ involved in the metabolism and excretion of exogenous substances. The aim of this study is to review available data about renal safety of the most prominent amino acid supplements including L-arginine, glutamine and also L-carnitine as well as creatine (as amino acid derivatives) in athletes and bodybuilders. The literature was searched by keywords such as "L-carnitine", "L-arginine", "glutamine", and "kidney injury" in databases such as Scopus, Medline, Embase, and ISI Web of Knowledge. Articles published from 1950 to December 2017 were included. Among 3171, 5740, and 1608 records after primary search in the relevant databases, 8, 7, and 5 studies have been finally included, respectively, for L-carnitine, L-arginine, and glutamine in this review. Arginine appears to have both beneficial and detrimental effects on kidney function. However, adverse effects are unlikely to occur with the routine doses (from 3 to >100 g/day). The risks and benefits of L-carnitine on the athletes' and bodybuilders' kidney have not been evaluated yet. However, L-carnitine up to 6000 mg/day is generally considered to be a safe supplement at least in healthy adults. Both short-term (20-30 g within a few hours) and long-term (0.1 g/kg four times daily for 2 weeks) glutamine supplementation in healthy athletes were associated with no significant adverse effects, but it can cause glomerulosclerosis and serum creatinine level elevation in the setting of diabetic nephropathy. Creatine supplementation (ranged from 5 to 30 g/day) also appears to have no detrimental effects on kidney function of individuals without underlying renal diseases. More clinical data are warranted to determine the optimal daily dose and intake duration of common supplemental amino acids associated with the lowest renal adverse effects in sportsmen and sports women.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdi Sagheb
- Nephrology-Urology Research Center and Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Imbe A, Tanimoto K, Inaba Y, Sakai S, Shishikura K, Imbe H, Tanimoto Y, Terasaki J, Imagawa A, Hanafusa T. Effects of L-carnitine supplementation on the quality of life in diabetic patients with muscle cramps. Endocr J 2018. [PMID: 29515058 DOI: 10.1507/endocrj.ej17-0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetic patients often suffer from muscle cramps. This study aimed to compare the quality of life (QOL) of diabetic patients with and without muscle cramps and to investigate the effect of L-carnitine supplementation in diabetic patients with muscle cramps. A total of 91 patients with diabetes were enrolled in this study: 69 patients with muscle cramps and 22 patients without muscle cramps. Muscle cramps and QOL were evaluated using the muscle cramp questionnaire and the Short Form 36 health survey version 2 (SF-36), respectively. Clinical characteristics were compared between diabetic patients with and without muscle cramps. In the prospective portion of the study, 25 diabetic patients with muscle cramps received L-carnitine supplementation (600 mg/day orally) for 4 months. The questionnaires were administered before and after supplementation. The SF-36 scores in diabetic patients with muscle cramps were lower than those in patients without muscle cramps on the subscales of physical function, role physical, bodily pain, vitality, general health, and social function. In the 25 patients with muscle cramps who received L-carnitine supplementation, the monthly frequency of muscle cramps and Wong-Baker FACES® Pain Rating Scale scores were significantly decreased. Scores on the following SF-36 subscales improved after L-carnitine supplementation: body pain, vitality, social function, and role emotional. This study demonstrated that muscle cramps decrease the QOL in patients with diabetes, and L-carnitine supplementation may improve the QOL by reducing the frequency and severity of muscle cramps in these patients.
Collapse
Affiliation(s)
- Ayumi Imbe
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Keiji Tanimoto
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yuiko Inaba
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Satoshi Sakai
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kanako Shishikura
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hisashi Imbe
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshimi Tanimoto
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Jungo Terasaki
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
15
|
Ramazani M, Qujeq D, Moazezi Z. Assessing the Levels of L-Carnitine and Total Antioxidant Capacity in Adults With Newly Diagnosed and Long-Standing Type 2 Diabetes. Can J Diabetes 2018; 43:46-50.e1. [PMID: 30026047 DOI: 10.1016/j.jcjd.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study is essentially a correlative study that examines the potential of reduced levels of L-carnitine (LC) when combined with the pathophysiology of type 2 diabetes. The aim of the study was to assess the levels of LC, total antioxidant capacity (TAOC), fasting blood sugar (FBS), triglycerides and cholesterol in people with newly diagnosed and long-standing type 2 diabetes and in healthy controls. METHODS The study was done in 90 adult subjects, including 30 with newly diagnosed diabetes, 30 with long-standing type 2 diabetes and 30 healthy controls. Plasma samples were used to assay the biochemical parameters. RESULTS In this study, both groups (newly diagnosed and long-standing type 2 diabetes) were significantly different in baseline characteristics, such as age, height, weight, body mass index, FBS, cholesterol and triglycerides, compared to the healthy controls. Plasma LC levels in patients with newly diagnosed and long-standing type 2 diabetes were significantly lower than in healthy controls (p<0.001). Also, the mean plasma TAOC level in the patients with newly diagnosed and long-standing type 2 diabetes was slightly lower than in the healthy controls. Nevertheless, TAOC levels were not significantly different across all the groups (p=0.87). The plasma LC levels were significantly positive when compared to the plasma TAOC levels (r=0.516), which means that an increase in LC levels is associated with an increase in TAOC levels. However, a negative correlation was observed between LC levels and FBS (r=-0.387), triglycerides (-0.159) and body mass indexes (r=-0.068). This means that a decrease in LC levels is associated with increases in FBS, triglyceride and body mass index levels. CONCLUSIONS According to the effects of reduced LC levels on the metabolic profiles of patients with long-standing type 2 diabetes, setting the LC content value to prevent diabetes through the use of effective drugs or nutrition containing LC can be useful in managing diabetes.
Collapse
Affiliation(s)
- Millad Ramazani
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Zoleika Moazezi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Internal Medicine, Ayatollah Rouhhani Hospital, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 2018; 8:8. [PMID: 29549241 PMCID: PMC5856836 DOI: 10.1038/s41387-018-0017-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is a highly prevalent chronic metabolic disorder characterized by hyperglycemia and associated with several complications such as retinopathy, hyperlipidemia and polyneuropathy. The dysregulated fatty acid metabolism along with tissue lipid accumulation is generally assumed to be associated in the development of insulin resistance and T2D. Moreover, several studies suggest a central role for oxidative stress in the pathogenesis of the disease. Since L-carnitine (LC) has an indispensable role in lipid metabolism via its involvement in the β-oxidation of long-chain fatty acids and it has antioxidant properties as well, carnitine supplementation may prove to be an effective tool in the management of the clinical course of T2D. In this review we summarize the results from animal and clinical studies demonstrating the effects of supplementation with LC or LC derivatives (acetyl-LC, propionyl-LC) on various metabolic and clinical parameters associated with T2D.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary. .,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary.
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| | - Bela Melegh
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| |
Collapse
|
17
|
Hamza RT, Elkabbany ZA, Shedid AM, Hamed AI, Ebrahim AO. Serum Chemerin in Obese Children and Adolescents Before and After L-Carnitine Therapy: Relation to Nonalcoholic Fatty Liver Disease and Other Features of Metabolic Syndrome. Arch Med Res 2016; 47:541-549. [DOI: 10.1016/j.arcmed.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023]
|
18
|
Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr 2016; 55:1793-807. [PMID: 24279396 DOI: 10.1080/10408398.2012.708368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nutritional ergogenic aids have been in use for a long time to enhance exercise and sports performance. Dietary components that exhibit ergogenic activity are numerous and their consumption is common and popular among athletes. They often come under scrutiny by legal authorities for their claimed benefits and safety concerns. Amino acid derivatives are propagated as being effective aids to enhance physical and mental performance in many ways, even though studies have pointed out that individuals who are deficient are more likely to benefit from dietary supplementation of amino acid derivatives than normal humans. In this review, some of the most common and widely used amino acids derivatives in sports and athletics namely creatine, tyrosine, carnitine, HMB, and taurine have been discussed for their effects on exercise performance, mental activity as well as body strength and composition. Creatine, carnitine, HMB, and taurine are reported to delay the onset of fatigue, improve exercise performance, and body strength. HMB helps in increasing fat-free mass and reduce exercise induced muscle injury. Taurine has been found to reduce oxidative stress during exercise and also act as an antihypertensive agent. Although, studies have not been able to find any favorable effect of tyrosine administration on exercise performance, it has been proved to be very effective in fighting stress, improving mood and cognitive performance particularly in sleep-deprived subjects. While available data from published studies and findings are equivocal about the efficacy of creatine, tyrosine, and HMB, more comprehensive researches on carnitine and taurine are necessary to provide evidence for the theoretical basis of their ergogenic role in nutritional modification and supplementation.
Collapse
|
19
|
Wang Z, Hong D, Zhang W, Li W, Shi X, Zhao D, Yang X, Lv H, Yuan Y. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2016; 26:170-5. [DOI: 10.1016/j.nmd.2015.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
20
|
Bae JC, Lee WY, Yoon KH, Park JY, Son HS, Han KA, Lee KW, Woo JT, Ju YC, Lee WJ, Cho YY, Lee MK. Improvement of Nonalcoholic Fatty Liver Disease With Carnitine-Orotate Complex in Type 2 Diabetes (CORONA): A Randomized Controlled Trial. Diabetes Care 2015; 38:1245-52. [PMID: 25877813 DOI: 10.2337/dc14-2852] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to evaluate the effects of carnitine-orotate complex in patients with nonalcoholic fatty liver disease (NAFLD) and diabetes. RESEARCH DESIGN AND METHODS Eight hospitals in Korea participated in this randomized, controlled, double-blind trial of patients with diabetes and NAFLD. Seventy-eight patients were randomly assigned in a 1:1 ratio to receive carnitine-orotate complex (824 mg, three times daily) or matching placebo. The primary study outcome was decline in alanine aminotransferase (ALT) to the normal range. Secondary study outcomes were change in ALT, radiological hepatic steatosis, parameters for anthropometry, liver function, lipid profiles, and glycemic control. Hepatic steatosis was assessed using Hounsfield units on noncontrast computed tomography (CT) imaging with hepatic attenuation. RESULTS After 12 weeks of treatment, compared with placebo group, carnitine-orotate complex-treated participants had a significantly higher rate of normalization of serum ALT level (17.9% vs. 89.7%, P < 0.001). On hepatic CT analysis, participants treated with carnitine-orotate complex showed an increased liver attenuation index (0.74 ± 8.05 vs. 6.21 ± 8.96, P < 0.008). A significant decrease in HbA1c was observed in the carnitine-orotate complex group (-0.33 ± 0.82% [-3.6 ± 9.0 mmol/mol], P = 0.007), but no significant change was seen in the placebo group. CONCLUSIONS Treatment with carnitine-orotate complex improves serum ALT and may improve hepatic steatosis as assessed by CT in patients with diabetes and NAFLD. Further studies using more advanced magnetic resonance imaging and liver histology as an end point are needed to assess its efficacy in NAFLD.
Collapse
Affiliation(s)
- Ji Cheol Bae
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Won Young Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kun Ho Yoon
- Division of Endocrinology and Metabolism, Department of Medicine, Seoul St. Mary's Hospital, The Catholic University School of Medicine, Seoul, Korea
| | - Joong Yeol Park
- Division of Endocrinology and Metabolism, Department of Medicine, Seoul Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Sik Son
- Division of Endocrinology and Metabolism, Department of Medicine, Uijeongbu St. Mary's Hospital, The Catholic University School of Medicine, Seoul, Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Jeong Taek Woo
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Young Cheol Ju
- Research and Development Department, Celltrion Pharm, Inc., Seoul, Korea
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Young Cho
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Zhang X, Zhang C, Chen L, Han X, Ji L. Human serum acylcarnitine profiles in different glucose tolerance states. Diabetes Res Clin Pract 2014; 104:376-82. [PMID: 24837145 DOI: 10.1016/j.diabres.2014.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/30/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
AIMS To understand the relationship between serum acylcarnitine profiles and glucose tolerance status. METHODS We analyzed 61 subjects who were divided into three groups based on their glucose tolerance status: normal glucose tolerance (NGT; n=20,M/F=9/11, mean age 48 years), pre-diabetes (Pre-DM; n=20,M/F=11/9, mean age 51 years), or newly diagnosed type 2 diabetes mellitus (T2DM; n=21,M/F=8/13, mean age 49 years). Fasting serum free carnitine and acylcarnitine concentrations were determined using isotope dilution electrospray ionization mass spectrometry coupled with high performance liquid chromatography. RESULTS In comparison with NGT subjects, Pre-DM and type 2 diabetes subjects showed serum metabonomic changes highlighted by dysregulation of mitochondrial fatty acid combustion. Of the long-chain carnitine esters, significantly higher palmitoylcarnitine (C16), 3-OH-hexadecanoylcarnitine (C16-OH), carnitine C20, carnitine C22, and carnitine C24 concentrations (all P<0.05) were noted in the newly diagnosed type 2 diabetes group, and even the pre-diabetes group. CONCLUSIONS This research provides further evidence of alterations in serum acylcarnitine profiles being associated with worse glucoseintolerance. The findings may suggest different degrees of involvement of dysregulated mitochondrial function and incomplete long-chain fatty acid oxidation pathways in the natural course of type 2 diabetes.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Chunfang Zhang
- Department of Clinical Epidemiology, Peking University People's Hospital, Beijing, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China.
| |
Collapse
|
22
|
Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, Kozlowska G, Bibik-Malinowska K, Vallejo M, García A, Barbas C, Ramos MP. Metabolic fingerprint of Gestational Diabetes Mellitus. J Proteomics 2014; 103:57-71. [PMID: 24698665 DOI: 10.1016/j.jprot.2014.03.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/28/2014] [Accepted: 03/22/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Gestational Diabetes (GDM) is causing severe short- and long-term complications for mother, fetus or neonate. As yet, the metabolic alterations that are specific for the development of GDM have not been fully determined, which also precludes the early diagnosis and prognosis of this pathology. In this pilot study, we determine the metabolic fingerprint, using a multiplatform LC-QTOF/MS, GC-Q/MS and CE-TOF/MS system, of plasma and urine samples of 20 women with GDM and 20 with normal glucose tolerance in the second trimester of pregnancy. Plasma fingerprints allowed for the discrimination of GDM pregnant women from controls. In particular, lysoglycerophospholipids showed a close association with the glycemic state of the women. In addition, we identified some metabolites with a strong discriminative power, such as LPE(20:1), (20:2), (22:4); LPC(18:2), (20:4), (20:5); LPI(18:2), (20:4); LPS(20:0) and LPA(18:2), as well as taurine-bile acids and long-chain polyunsaturated fatty acid derivatives. Finally, we provide evidence for the implication of these compounds in metabolic routes, indicative of low-grade inflammation and altered redox-balance, that may be related with the specific pathophysiological context of the genesis of GDM. This highlights their potential use as prognostic markers for the identification of women at risk to develop severe glucose intolerance during pregnancy. BIOLOGICAL SIGNIFICANCE Gestational Diabetes Mellitus (GDM) is increasing worldwide and, although diabetes usually remits after pregnancy, women with GDM have a high risk of developing postpartum type 2-diabetes, particularly when accompanied by obesity. Therefore, understanding the pathophysiology of GDM, as well as the identification of potentially modifiable risk factors and early diagnostic markers for GDM are relevant issues. In the present study, we devised a multiplatform metabolic fingerprinting approach to obtain a comprehensive picture of the early metabolic alternations that occur in GDM, and may reflect on the specific pathophysiological context of the disease. Future studies at later stages of gestation will allow us to validate the discriminant power of the identified metabolites.
Collapse
Affiliation(s)
- Danuta Dudzik
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain; Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Zorawski
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Skotnicki
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Wieslaw Zarzycki
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Gabryela Kozlowska
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Bibik-Malinowska
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - María Vallejo
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Antonia García
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - M Pilar Ramos
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.
| |
Collapse
|
23
|
Seiler SE, Martin OJ, Noland RC, Slentz DH, DeBalsi KL, Ilkayeva OR, An J, Newgard CB, Koves TR, Muoio DM. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J Lipid Res 2014; 55:635-44. [PMID: 24395925 DOI: 10.1194/jlr.m043448] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Sarah E Seiler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27704
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Couturier A, Ringseis R, Mooren FC, Krüger K, Most E, Eder K. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle. Nutr Metab (Lond) 2013; 10:48. [PMID: 23842456 PMCID: PMC3717057 DOI: 10.1186/1743-7075-10-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes.
Collapse
Affiliation(s)
- Aline Couturier
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Frank-Christoph Mooren
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Marieke G. Schooneman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frédéric M. Vaz
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander M. Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Corresponding author: Maarten R. Soeters,
| |
Collapse
|
26
|
Bene J, Márton M, Mohás M, Bagosi Z, Bujtor Z, Oroszlán T, Gasztonyi B, Wittmann I, Melegh B. Similarities in serum acylcarnitine patterns in type 1 and type 2 diabetes mellitus and in metabolic syndrome. ANNALS OF NUTRITION AND METABOLISM 2012; 62:80-5. [PMID: 23296094 DOI: 10.1159/000345759] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/10/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS In type 1 diabetes (T1D), type 2 diabetes (T2D) and metabolic syndrome (MetS), the associated complex metabolomic changes in the involvement of carnitine metabolism in total carnitine ester level has already been documented; here we extended the investigations to the individual acylcarnitines. METHODS The fasting serum acylcarnitine concentrations were determined in 49 T1D, 38 T2D and 38 MetS patients and 40 controls by isotope dilution electrospray ionization tandem mass spectrometry. RESULTS The acylcarnitine profiles of the 3patient groups shared elements with the controls. Considerably higher levels of almost all short-chain acylcarnitines (p < 0.05) and lower levels of some long-chain acylcarnitines were detected in T2D and MetS patients. The amounts of C3 and C4 carnitine were higher and most of the medium-chain and long-chain acylcarnitine levels were lower (p < 0.05) in T1D and MetS patients than in the controls. In T1D and T2D, the levels of C3 and C4 acylcarnitines were markedly elevated and some long-chain acylcarnitines were lower than the controls (p < 0.05). Moreover, significantly lower concentrations of free- and total carnitine were observed in T1D patients (p < 0.05). CONCLUSIONS Profound alterations were detected in acylcarnitine profiles in the 3 patient groups. Similarities in the patterns suggest different degrees of involvement of the same metabolic systems in a systems biology approach.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liepinsh E, Skapare E, Vavers E, Konrade I, Strele I, Grinberga S, Pugovics O, Dambrova M. High L-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients. Nutr Res 2012; 32:320-7. [PMID: 22652370 DOI: 10.1016/j.nutres.2012.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 12/30/2022]
Abstract
Increased intake of L-carnitine, a cofactor in cellular energy metabolism, is recommended for diabetic patients with late complications. However, its clinical benefits remain controversial. We hypothesized that patients with low L-carnitine levels would have an increased rate of diabetic complications. To test this hypothesis, we evaluated the relationship of L-carnitine concentrations in blood with the prevalence and severity of late diabetic complications in type 1 and 2 diabetic patients. Human blood samples were collected from 93 and 87 patients diagnosed as having type 1 or type 2 diabetes, respectively, and 122 nondiabetic individuals. The determination of free L-carnitine concentrations in whole blood lysates was performed using ultra-performance liquid chromatography with tandem mass spectrometry. In diabetic patients, diabetic complications such as neuropathy, retinopathy, nephropathy, or hypertension were recorded. The average L-carnitine concentration in the blood of control subjects was 33 ± 8 nmol/mL, which was not significantly different from subgroups of patients with type 1 (32 ± 10 nmol/mL) or type 2 diabetes (36 ± 11 nmol/mL). Patients with low (<20 nmol/mL) l-carnitine levels did not have increased occurrences of late diabetic complications. In addition, patient subgroups with higher L-carnitine concentrations did not have decreased prevalence of late diabetic complications. Our results provide evidence that higher L-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, Latvia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 2011; 51:1-18. [PMID: 22134503 DOI: 10.1007/s00394-011-0284-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Although carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation. METHODS The present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis. RESULTS Carnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity. CONCLUSIONS In view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.
Collapse
|
29
|
Galloway SDR, Craig TP, Cleland SJ. Effects of oral L-carnitine supplementation on insulin sensitivity indices in response to glucose feeding in lean and overweight/obese males. Amino Acids 2010; 41:507-15. [PMID: 20963457 DOI: 10.1007/s00726-010-0770-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/30/2010] [Indexed: 12/25/2022]
Abstract
Infusion of carnitine has been observed to increase non-oxidative glucose disposal in several studies, but the effect of oral carnitine on glucose disposal in non-diabetic lean versus overweight/obese humans has not been examined. This study examined the effects of 14 days of L-carnitine L-tartrate oral supplementation (LC) on blood glucose, insulin, NEFA and GLP-1 responses to an oral glucose tolerance test (OGTT). Sixteen male participants were recruited [lean (n = 8) and overweight/obese (n = 8)]. After completing a submaximal predictive exercise test, participants were asked to attend three experimental sessions. These three visits were conducted in the morning to obtain fasting blood samples and to conduct 2 h OGTTs. The first visit was a familiarisation trial and the final two visits were conducted 2 weeks apart following 14 days of ingestion of placebo (PL, 3 g glucose/day) and then LC (3 g LC/day) ingested as two capsules 3×/day with meals. On each visit, blood was drawn at rest, at intervals during the OGTT for analysis of glucose, insulin, non-esterified fatty acids (NEFA) and total glucagon-like peptide-1 (GLP-1). Data obtained were used for determination of usual insulin sensitivity indices (HOMA-IR, AUC glucose, AUC insulin, 1st phase and 2nd phase β-cell function, estimated insulin sensitivity index and estimated metabolic clearance rate). Data were analysed using RMANOVA and post hoc comparisons where appropriate. There was a significant difference between groups for body mass, % fat and BMI with no significant difference in age and height. Mean (SEM) plasma glucose concentration at 30 min was significantly lower (p < 0.05) in the lean group on the LC trial compared with PL [8.71(0.70) PL; 7.32(0.36) LC; mmol/L]. Conversely, plasma glucose concentration was not different at 30 min, but was significantly higher at 90 min (p < 0.05) in the overweight/obese group on the LC trial [5.09(0.41) PL; 7.11(0.59) LC; mmol/L]. Estimated first phase and second phase β-cell function both tended to be greater following LC in the lean group only. No effects of LC were observed on NEFA or total GLP-1 response to OGTT. It is concluded that LC supplementation induces changes in blood glucose handling/disposal during an OGTT, which is not influenced by GLP-1. The glucose handling/disposal response to oral LC is different between lean and overweight/obese suggesting that further investigation is required. LC effects on gastric emptying and/or direct 'insulin-like' actions on tissues should be examined in larger samples of overweight/obese and lean participants, respectively.
Collapse
Affiliation(s)
- Stuart D R Galloway
- Sport, Health and Exercise Sciences Research Group, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | | | | |
Collapse
|
30
|
L-carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis--a randomized and controlled clinical trial. Am J Gastroenterol 2010; 105:1338-45. [PMID: 20068559 DOI: 10.1038/ajg.2009.719] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Nonalcoholic steatohepatitis (NASH) is a known metabolic disorder of the liver. No treatment has been conclusively shown to improve NASH or prevent disease progression. The function of L-carnitine to modulate lipid profile, glucose metabolism, oxidative stress, and inflammatory responses has been shown. The aim of this study was to evaluate the effects of L-carnitine's supplementation on regression of NASH. METHODS In patients with NASH and control subjects, we randomly dispensed one 1-g L-carnitine tablet after breakfast plus diet and one 1 g tablet after dinner plus diet for 24 weeks or diet alone at the same dosage and regimen. We evaluated liver enzymes, lipid profile, fasting plasma glucose, C-reactive protein (CRP), tumor necrosis factor (TNF)-alpha, homeostasis model assessment (HOMA)-IR, body mass index, and histological scores. RESULTS At the end of the study, L-carnitine-treated patients showed significant improvements in the following parameters: aspartate aminotransferase (P=0.000), alanine aminotransferase (ALT) (P=0.000), gamma-glutamyl-transpeptidase (gamma-GT) (P=0.000), total cholesterol (P=0.000), low-density lipoprotein (LDL) (P=0.000), high-density lipoprotein (HDL) (P=0.000), triglycerides (P=0.000), glucose (P=0.000), HOMA-IR (P=0.000), CRP (P=0.000), TNF-alpha (P=0.000), and histological scores (P=0.000). CONCLUSIONS L-carnitine supplementation to diet is useful for reducing TNF-alpha and CRP, and for improving liver function, glucose plasma level, lipid profile, HOMA-IR, and histological manifestations of NASH.
Collapse
|
31
|
Evans JD, Jacobs TF, Evans EW. Role of acetyl-L-carnitine in the treatment of diabetic peripheral neuropathy. Ann Pharmacother 2008; 42:1686-91. [PMID: 18940920 DOI: 10.1345/aph.1l201] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To examine the role of acetyl-L-carnitine (ALC) in the treatment of diabetic peripheral neuropathy (DPN). DATA SOURCES A MEDLINE search (1966-April 2008) of the English-language literature was performed using the search terms carnitine, diabetes, nerve, and neuropathy. Studies identified were then cross-referenced for their citations. STUDY SELECTION AND DATA EXTRACTION The search was limited to clinical trials, meta-analyses, and reviews addressing the use of ALC for the treatment of DPN. Studies that included other disease states that could cause peripheral neuropathy were excluded. Two large clinical studies that used ALC for the treatment of DPN were identified. No case studies were identified. DATA SYNTHESIS The results from 2 published clinical trials involving 1679 subjects were included. Subjects who received at least 2 g daily of ALC showed decreases in pain scores. One study showed improvements in electrophysiologic factors such as nerve conduction velocities, while the other did not. Patients who had neuropathic pain reported reductions in pain using a visual analog scale. Nerve regeneration was documented in one trial. The supplement was well tolerated. A proprietary form of ALC was used in both studies. CONCLUSIONS Data on treatment of DPN with ALC support its use. It should be recommended to patients early in the disease process to provide maximal benefit. Further studies should be conducted to determine the effectiveness of ALC in the treatment and prevention of the worsening symptoms of DPN.
Collapse
Affiliation(s)
- Jeffery D Evans
- Department of Clinical and Administrative Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | | | | |
Collapse
|
32
|
Cave MC, Hurt RT, Frazier TH, Matheson PJ, Garrison RN, McClain CJ, McClave SA. Obesity, inflammation, and the potential application of pharmaconutrition. Nutr Clin Pract 2008; 23:16-34. [PMID: 18203961 DOI: 10.1177/011542650802300116] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity is an emerging problem worldwide. Hospitalized obese patients often have a worse outcome than patients of normal weight, particularly in the setting of trauma and critical care. Obesity creates a low-grade systemic inflammatory response syndrome (SIRS) that is similar (but on a much smaller scale) to gram-negative sepsis. This process involves up-regulation of systemic immunity, is characterized clinically by insulin resistance and the metabolic syndrome, and puts the patient at increased risk for organ failure, infectious morbidity, and mortality. Through lipotoxicity and cytokine dysregulation, obesity may act to prime the immune system, predisposing to an exaggerated subsequent immune response when a second clinical insult occurs (such as trauma, burns, or myocardial infarction). Specialized nutrition therapy for such patients currently consists of a hypocaloric, high-protein diet. However, this approach does not address the putative pathophysiologic mechanisms of inflammation and altered metabolism associated with obesity. A number of dietary agents such as arginine, fish oil, and carnitine may correct these problems at the molecular level. Pharmaconutrition formulas may provide exciting innovations for the nutrition therapy of the obese patient.
Collapse
Affiliation(s)
- Matt C Cave
- Department of Medicine, University of Louisville School of Medicine, 500 S. Jackson Street, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|