1
|
Hassan NT, Adelson DL. Fake IDs? Widespread misannotation of DNA transposons as a general transcription factor. Genome Biol 2023; 24:260. [PMID: 37957683 PMCID: PMC10641963 DOI: 10.1186/s13059-023-03102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Accurate annotation of genes and transposable elements (TEs) is vital for understanding genomes, but current annotation pipelines often misannotate TEs as genes. This study reveals how the general transcription factor II-I repeat domain-containing protein 2 (GTF2IRD2) erroneously annotated DNA transposons in non-mammalian species, as it contains a 3' fused hAT transposase domain. We also demonstrate the generality of this problem by identifying misannotated TEs as genes in other vertebrate genomes. Such misannotations can lead to errors in phylogenetic analyses and wasted time for investigators. The study proposes adding a final TE-check to gene annotation pipelines to mitigate this problem.
Collapse
Affiliation(s)
- Nozhat T Hassan
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
2
|
Coronado-Zamora M, González J. Transposons contribute to the functional diversification of the head, gut, and ovary transcriptomes across Drosophila natural strains. Genome Res 2023; 33:1541-1553. [PMID: 37793782 PMCID: PMC10620055 DOI: 10.1101/gr.277565.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Transcriptomes are dynamic, with cells, tissues, and body parts expressing particular sets of transcripts. Transposable elements (TEs) are a known source of transcriptome diversity; however, studies often focus on a particular type of chimeric transcript, analyze single body parts or cell types, or are based on incomplete TE annotations from a single reference genome. In this work, we have implemented a method based on de novo transcriptome assembly that minimizes the potential sources of errors while identifying a comprehensive set of gene-TE chimeras. We applied this method to the head, gut, and ovary dissected from five Drosophila melanogaster natural strains, with individual reference genomes available. We found that ∼19% of body part-specific transcripts are gene-TE chimeras. Overall, chimeric transcripts contribute a mean of 43% to the total gene expression, and they provide protein domains for DNA binding, catalytic activity, and DNA polymerase activity. Our comprehensive data set is a rich resource for follow-up analysis. Moreover, because TEs are present in virtually all species sequenced to date, their role in spatially restricted transcript expression is likely not exclusive to the species analyzed in this work.
Collapse
Affiliation(s)
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona 08003, Spain
| |
Collapse
|
3
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
4
|
Brzáčová Z, Peťková M, Veljačiková K, Zajičková T, Tomáška Ľ. Reconstruction of human genome evolution in yeast: an educational primer for use with "systematic humanization of the yeast cytoskeleton discerns functionally replaceable from divergent human genes". Genetics 2021; 219:6380399. [PMID: 34849890 DOI: 10.1093/genetics/iyab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
The evolution of eukaryotic organisms starting with the last eukaryotic common ancestor was accompanied by lineage-specific expansion of gene families. A paper by Garge et al. provides an excellent opportunity to have students explore how expansion of gene families via gene duplication results in protein specialization, in this case in the context of eukaryotic cytoskeletal organization . The authors tested hypotheses about conserved protein function by systematic "humanization" of the yeast cytoskeletal components while employing a wide variety of methodological approaches. We outline several exercises to promote students' ability to explore the genomic databases, perform bioinformatic analyses, design experiments for functional analysis of human genes in yeast and critically interpret results to address both specific and general questions.
Collapse
Affiliation(s)
- Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Mária Peťková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Terézia Zajičková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| |
Collapse
|
5
|
Heide M, Huttner WB. Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells 2021; 10:1209. [PMID: 34063381 PMCID: PMC8156310 DOI: 10.3390/cells10051209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene ARHGAP11B and on the gene family comprising the three human-specific genes NOTCH2NLA, -B, and -C. These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| |
Collapse
|
6
|
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 2021; 371:eabc6405. [PMID: 33602827 PMCID: PMC8186458 DOI: 10.1126/science.abc6405] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruiling Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Alan Zhong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nathaniel Garry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Pan Y, Iejima D, Nakayama M, Suga A, Noda T, Kaur I, Das T, Chakrabarti S, Guymer RH, DeAngelis MM, Yamamoto M, Baird PN, Iwata T. Binding of Gtf2i-β/δ transcription factors to the ARMS2 gene leads to increased circulating HTRA1 in AMD patients and in vitro. J Biol Chem 2021; 296:100456. [PMID: 33636181 PMCID: PMC8039566 DOI: 10.1016/j.jbc.2021.100456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The disease-initiating molecular events for age-related macular degeneration (AMD), a multifactorial retinal disease affecting many millions of elderly individuals worldwide, are still unknown. Of the over 30 risk and protective loci so far associated with AMD through whole genome-wide association studies (GWAS), the Age-Related Maculopathy Susceptibility 2 (ARMS2) gene locus represents one of the most highly associated risk regions for AMD. A unique insertion/deletion (in/del) sequence located immediately upstream of the High Temperature Requirement A1 (HTRA1) gene in this region confers high risk for AMD. Using electrophoretic mobility shift assay (EMSA), we identified that two Gtf2i-β/δ transcription factor isoforms bind to the cis-element 5'- ATTAATAACC-3' contained in this in/del sequence. The binding of these transcription factors leads to enhanced upregulation of transcription of the secretory serine protease HTRA1 in transfected cells and AMD patient-derived induced pluripotent stem cells (iPSCs). Overexpression of Htra1 in mice using a CAG-promoter demonstrated increased blood concentration of Htra1 protein, caused upregulation of vascular endothelial growth factor (VEGF), and produced a choroidal neovascularization (CNV)-like phenotype. Finally, a comparison of 478 AMD patients to 481 healthy, age-matched controls from Japan, India, Australia, and the USA showed a statistically increased level of secreted HTRA1 blood concentration in AMD patients compared with age-matched controls. Taken together, these results suggest a common mechanism across ethnicities whereby increased systemic blood circulation of secreted serine protease HTRA1 leads to subsequent degradation of Bruch's membrane and eventual CNV in AMD.
Collapse
Affiliation(s)
- Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Daisuke Iejima
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Mao Nakayama
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Toru Noda
- Division of Ophthalmology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Robyn H Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia; Department of Surgery, Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, East Melbourne, Victoria, Australia
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; JAC Ltd, Tokyo, Japan
| | - Paul N Baird
- Department of Surgery, Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, East Melbourne, Victoria, Australia
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
9
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Venegas-Vega CA, Yáñez-Téllez MG, Silva-Pereyra J, Salgado-Ceballos H, Arias-Trejo N, De León Miranda MA. An Exploration of Social Cognition in Children with Different Degrees of Genetic Deletion in Williams Syndrome. J Autism Dev Disord 2020; 51:1695-1704. [PMID: 32812194 DOI: 10.1007/s10803-020-04656-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An explanation for the social dysfunction observed in Williams syndrome may be deficits in social cognition. This study explored aspects of social cognition in children with Williams syndrome with different genotypes. The 12 participants included one with a 1.1 Mb deletion that retained the GTF2IRD1, GTF2I, and GTF2IRD2 genes, seven with a 1.5 Mb deletion that preserved the GTF2IRD2 gene, and four with a 1.8 Mb deletion with loss of all three genes. The participant retaining all three genes was found to have better performance on social judgment and first-order theory of mind tasks than the group with loss of all three genes. These results may reflect the influence of the GTF2I gene family on social cognition in Williams syndrome.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.,Iskalti Atención y Educación Psicológica SC, CDMX, México
| | - Belén Prieto-Corona
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.
| | - Mario Rodríguez-Camacho
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | - Ma Guillermina Yáñez-Téllez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | - Juan Silva-Pereyra
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | | | | |
Collapse
|
10
|
Cognitive, Behavioral, and Adaptive Profiles in Williams Syndrome With and Without Loss of GTF2IRD2. J Int Neuropsychol Soc 2018; 24:896-904. [PMID: 30375319 DOI: 10.1017/s1355617718000711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED Williams syndrome (WS) is a neurodevelopmental disorder that results from a heterozygous microdeletion on chromosome 7q11.23. Most of the time, the affected region contains ~1.5 Mb of sequence encoding approximately 24 genes. Some 5-8% of patients with WS have a deletion exceeding 1.8 Mb, thereby affecting two additional genes, including GTF2IRD2. Currently, there is no consensus regarding the implications of GTF2IRD2 loss for the neuropsychological phenotype of WS patients. OBJECTIVES The present study aimed to identify the role of GTF2IRD2 in the cognitive, behavioral, and adaptive profile of WS patients. METHODS Twelve patients diagnosed with WS participated, four with GTF2IRD2 deletion (atypical WS group), and eight without this deletion (typical WS group). The age range of both groups was 7-18 years old. Each patient's 7q11.23 deletion scope was determined by chromosomal microarray analysis. Cognitive, behavioral, and adaptive abilities were assessed with a battery of neuropsychological tests. RESULTS Compared with the typical WS group, the atypical WS patients with GTF2IRD2 deletion had more impaired visuospatial abilities and more significant behavioral problems, mainly related to the construct of social cognition. CONCLUSIONS These findings provide new evidence regarding the influence of the GTF2IRD2 gene on the severity of behavioral symptoms of WS related to social cognition and certain visuospatial abilities. (JINS, 2018, 24, 896-904).
Collapse
|
11
|
vonHoldt BM, Ji SS, Aardema ML, Stahler DR, Udell MAR, Sinsheimer JS. Activity of Genes with Functions in Human Williams-Beuren Syndrome Is Impacted by Mobile Element Insertions in the Gray Wolf Genome. Genome Biol Evol 2018; 10:1546-1553. [PMID: 29860323 PMCID: PMC6007319 DOI: 10.1093/gbe/evy112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
In canines, transposon dynamics have been associated with a hyper-social behavioral syndrome, although the functional mechanism has yet to be described. We investigate the epigenetic and transcriptional consequences of these behavior-associated mobile element insertions (MEIs) in dogs and Yellowstone gray wolves. We posit that the transposons themselves may not be the causative feature; rather, their transcriptional regulation may exert the functional impact. We survey four outlier transposons associated with hyper-sociability, with the expectation that they are targeted for epigenetic silencing. We predict hyper-methylation of MEIs, suggestive that the epigenetic silencing of and not the MEIs themselves may be driving dysregulation of nearby genes. We found that transposon-derived sequences are significantly hyper-methylated, regardless of their copy number or species. Further, we have assessed transcriptome sequence data and found evidence that MEIs impact the expression levels of six genes (WBSCR17, LIMK1, GTF2I, WBSCR27, BAZ1B, and BCL7B), all of which have known roles in human Williams-Beuren syndrome due to changes in copy number, typically hemizygosity. Although further evidence is needed, our results suggest that a few insertions alter local expression at multiple genes, likely through a cis-regulatory mechanism that excludes proximal methylation.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, New Jersey
| | - Sarah S Ji
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California
| | - Matthew L Aardema
- Department of Biology, Montclair State University, New Jersey
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming
| | - Monique A R Udell
- Department of Animal & Rangeland Sciences, Oregon State University, Oregon
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
12
|
Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, Chi J, Cohen P, Koliwad SK, Kajimura S. Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metab 2018; 27:180-194.e6. [PMID: 29320702 PMCID: PMC5765755 DOI: 10.1016/j.cmet.2017.12.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/25/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
Adipose tissue fibrosis is a hallmark of malfunction that is linked to insulin resistance and type 2 diabetes; however, what regulates this process remains unclear. Here we show that the PRDM16 transcriptional complex, a dominant activator of brown/beige adipocyte development, potently represses adipose tissue fibrosis in an uncoupling protein 1 (UCP1)-independent manner. By purifying the PRDM16 complex, we identified GTF2IRD1, a member of the TFII-I family of DNA-binding proteins, as a cold-inducible transcription factor that mediates the repressive action of the PRDM16 complex on fibrosis. Adipocyte-selective expression of GTF2IRD1 represses adipose tissue fibrosis and improves systemic glucose homeostasis independent of body-weight loss, while deleting GTF2IRD1 promotes fibrosis in a cell-autonomous manner. GTF2IRD1 represses the transcription of transforming growth factor β-dependent pro-fibrosis genes by recruiting PRDM16 and EHMT1 onto their promoter/enhancer regions. These results suggest a mechanism by which repression of obesity-associated adipose tissue fibrosis through the PRDM16 complex leads to an improvement in systemic glucose homeostasis.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Kenji Ikeda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Chen
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana L Alba
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Stifler
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kosaku Shinoda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Takashi Hosono
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Pema Maretich
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yangyu Yang
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Suneil K Koliwad
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Chailangkarn T, Noree C, Muotri AR. The contribution of GTF2I haploinsufficiency to Williams syndrome. Mol Cell Probes 2018; 40:45-51. [PMID: 29305905 DOI: 10.1016/j.mcp.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder involving hemideletion of as many as 26-28 genes, resulting in a constellation of unique physical, cognitive and behavior phenotypes. The haploinsufficiency effect of each gene has been studied and correlated with phenotype(s) using several models including WS subjects, animal models, and peripheral cell lines. However, links for most of the genes to WS phenotypes remains unclear. Among those genes, general transcription factor 2I (GTF2I) is of particular interest as its haploinsufficiency is possibly associated with hypersociability in WS. Here, we describe studies of atypical WS cases as well as mouse models focusing on GTF2I that support a role for this protein in the neurocognitive and behavioral profiles of WS individuals. We also review collective studies on diverse molecular functions of GTF2I that may provide mechanistic explanation for phenotypes recently reported in our relevant cellular model, namely WS induced pluripotent stem cell (iPSC)-derived neurons. Finally, in light of the progress in gene-manipulating approaches, we suggest their uses in revealing the neural functions of GTF2I in the context of WS.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Virology and Cell Technology Laboratory, Pathum Thani, 12120, Thailand.
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, UCSD Stem Cell Program, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92037, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| |
Collapse
|
14
|
vonHoldt BM, Shuldiner E, Koch IJ, Kartzinel RY, Hogan A, Brubaker L, Wanser S, Stahler D, Wynne CDL, Ostrander EA, Sinsheimer JS, Udell MAR. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. SCIENCE ADVANCES 2017; 3:e1700398. [PMID: 28776031 PMCID: PMC5517105 DOI: 10.1126/sciadv.1700398] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/15/2017] [Indexed: 05/04/2023]
Abstract
Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1, genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.
Collapse
Affiliation(s)
- Bridgett M. vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Corresponding author.
| | - Emily Shuldiner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Translational Genetics and Genomics Unit, National Institute of Arthritis and Musculoskeletal and Skin Disorders, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Ilana Janowitz Koch
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca Y. Kartzinel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrew Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Brubaker
- Department of Animal and Rangeland Sciences, Oregon State University, OR 97331, USA
| | - Shelby Wanser
- Department of Animal and Rangeland Sciences, Oregon State University, OR 97331, USA
| | - Daniel Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY 82190, USA
| | - Clive D. L. Wynne
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janet S. Sinsheimer
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Monique A. R. Udell
- Department of Animal and Rangeland Sciences, Oregon State University, OR 97331, USA
| |
Collapse
|
15
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
16
|
Abstract
hAT transposons are ancient in their origin and they are widespread across eukaryote kingdoms. They can be present in large numbers in many genomes. However, only a few active forms of these elements have so far been discovered indicating that, like all transposable elements, there is selective pressure to inactivate them. Nonetheless, there have been sufficient numbers of active hAT elements and their transposases characterized that permit an analysis of their structure and function. This review analyzes these and provides a comparison with the several domesticated hAT genes discovered in eukaryote genomes. Active hAT transposons have also been developed as genetic tools and understanding how these may be optimally utilized in new hosts will depend, in part, on understanding the basis of their function in genomes.
Collapse
|
17
|
Carmona-Mora P, Widagdo J, Tomasetig F, Canales CP, Cha Y, Lee W, Alshawaf A, Dottori M, Whan RM, Hardeman EC, Palmer SJ. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet 2015; 134:1099-115. [PMID: 26275350 DOI: 10.1007/s00439-015-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jocelyn Widagdo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Florence Tomasetig
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Yeojoon Cha
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Wei Lee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Abdullah Alshawaf
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
18
|
Arnaoty A, Gouilleux-Gruart V, Casteret S, Pitard B, Bigot Y, Lecomte T. Reliability of the nanopheres-DNA immunization technology to produce polyclonal antibodies directed against human neogenic proteins. Mol Genet Genomics 2013; 288:347-63. [DOI: 10.1007/s00438-013-0754-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 10/26/2022]
|
19
|
Abstract
Three genes GTF2IRD1, GTF2I, and GTF2IRD2, which encode members of the GTF2I (or TFII-I) family of so-called general transcription factors, were discovered and studied during the last two decades. Chromosome location and similarity of exon-intron structures suggest that the family evolved by duplications. The initial duplication of ancestral proto-GTF2IRD1 gene likely occurred in early vertebrates prior to origin of cartilaginous fish and led to formation of GTF2I (>450 MYA), which was later lost in bony fish but successfully evolved in the land vertebrates. The second duplication event, which created GTF2IRD2, occurred prior to major radiation events of eutherian mammalian evolution (>100 MYA). During recent steps of primate evolution there was another duplication which led to formation of GTF2IRD2B (<4 MYA). Two latest duplications were coupled with inversions. Genes belonging to the family have several highly conservative repeats which are implicated in DNA binding. Phylogenetic analysis of the repeats revealed a pattern of intragenic duplications, deletions and substitutions which led to diversification of the genes and proteins. Distribution of statistically rare atypical substitutions (p ≤ 0.01) sheds some light on structural differentiation of repeats and hence evolution of the genes. The atypical substitutions are often located on secondary structures joining α-helices and affect 3D arrangement of the protein globule. Such substitutions are commonly traced at the early stages of evolution in Tetrapoda, Amniota, and Mammalia.
Collapse
|
20
|
Porter MA, Dobson-Stone C, Kwok JBJ, Schofield PR, Beckett W, Tassabehji M. A role for transcription factor GTF2IRD2 in executive function in Williams-Beuren syndrome. PLoS One 2012; 7:e47457. [PMID: 23118870 PMCID: PMC3485271 DOI: 10.1371/journal.pone.0047457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Executive functions are amongst the most heritable cognitive traits with twin studies indicating a strong genetic origin. However genes associated with this domain are unknown. Our research into the neurodevelopmental disorder Williams-Beuren syndrome (WBS) has identified a gene within the causative recurrent 1.5/1.6 Mb heterozygous microdeletion on chromosome 7q11.23, which may be involved in executive functioning. Comparative genome array screening of 55 WBS patients revealed a larger ∼1.8 Mb microdeletion in 18% of cases, which results in the loss of an additional gene, the transcription factor GTF2IRD2. The GTF gene family of transcription factors (GTF2I, GTF2IRD1 and GTF2IRD2) are all highly expressed in the brain, and GTF2I and GTF2IRD1 are involved in the pathogenesis of the cognitive and behavioural phenotypes associated with WBS. A multi-level analysis of cognitive, behavioural and psychological functioning in WBS patients showed that those with slightly larger deletions encompassing GTF2IRD2 were significantly more cognitively impaired in the areas of spatial functioning, social reasoning, and cognitive flexibility (a form of executive functioning). They also displayed significantly more obsessions and externalizing behaviours, a likely manifestation of poor cognitive flexibility and executive dysfunction. We provide the first evidence for a role for GTF2IRD2 in higher-level (executive functioning) abilities and highlight the importance of integrating detailed molecular characterisation of patients with comprehensive neuropsychological profiling to uncover additional genotype-phenotype correlations. The identification of specific genes which contribute to executive function has important neuropsychological implications in the treatment of patients with conditions like WBS, and will allow further studies into their mechanism of action.
Collapse
Affiliation(s)
| | - Carol Dobson-Stone
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John B. J. Kwok
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William Beckett
- Genetic Medicine, University of Manchester & St Mary's Hospital, Manchester, United Kingdom
| | - May Tassabehji
- Genetic Medicine, University of Manchester & St Mary's Hospital, Manchester, United Kingdom
| |
Collapse
|
21
|
Palmer SJ, Taylor KM, Santucci N, Widagdo J, Chan YKA, Yeo JL, Adams M, Gunning PW, Hardeman EC. GTF2IRD2 from the Williams-Beuren critical region encodes a mobile-element-derived fusion protein that antagonizes the action of its related family members. J Cell Sci 2012; 125:5040-50. [PMID: 22899722 DOI: 10.1242/jcs.102798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
GTF2IRD2 belongs to a family of transcriptional regulators (including TFII-I and GTF2IRD1) that are responsible for many of the key features of Williams-Beuren syndrome (WBS). Sequence evidence suggests that GTF2IRD2 arose in eutherian mammals by duplication and divergence from the gene encoding TFII-I. However, in GTF2IRD2, most of the C-terminal domain has been lost and replaced by the domesticated remnant of an in-frame hAT-transposon mobile element. In this first experimental analysis of function, we show that transgenic expression of each of the three family members in skeletal muscle causes significant fiber type shifts, but the GTF2IRD2 protein causes an extreme shift in the opposite direction to the two other family members. Mating of GTF2IRD1 and GTF2IRD2 mice restores the fiber type balance, indicating an antagonistic relationship between these two paralogs. In cells, GTF2IRD2 localizes to cytoplasmic microtubules and discrete speckles in the nuclear periphery. We show that it can interact directly with TFII-Iβ and GTF2IRD1, and upon co-transfection changes the normal distribution of these two proteins into a punctate nuclear pattern typical of GTF2IRD2. These data suggest that GTF2IRD2 has evolved as a regulator of GTF2IRD1 and TFII-I; inhibiting their function by direct interaction and sequestration into inactive nuclear zones.
Collapse
Affiliation(s)
- Stephen J Palmer
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anxious, hypoactive phenotype combined with motor deficits in Gtf2ird1 null mouse model relevant to Williams syndrome. Behav Brain Res 2012; 233:458-73. [DOI: 10.1016/j.bbr.2012.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
|
23
|
Cooper DN, Kehrer-Sawatzki H. Exploring the potential relevance of human-specific genes to complex disease. Hum Genomics 2011; 5:99-107. [PMID: 21296743 PMCID: PMC3525227 DOI: 10.1186/1479-7364-5-2-99] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org) revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
24
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
25
|
Teixeira FR, Yokoo S, Gartner CA, Manfiolli AO, Baqui MMA, Assmann EM, Maragno ALGC, Yu H, de Lanerolle P, Kobarg J, Gygi SP, Gomes MD. Identification of FBXO25-interacting proteins using an integrated proteomics approach. Proteomics 2010; 10:2746-57. [PMID: 20473970 DOI: 10.1002/pmic.200900419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
FBXO25 is one of the 68 human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of s-phase-kinase associated protein 1, really interesting new gene-box 1, Cullin 1, and F-box protein (SCF1) that are involved in targeting proteins for destruction across the ubiquitin proteasome system. We recently reported that the FBXO25 protein accumulates in novel subnuclear structures named FBXO25-associated nuclear domains (FAND). Combining two-step affinity purification followed by MS with a classical two-hybrid screen, we identified 132 novel potential FBXO25 interacting partners. One of the identified proteins, beta-actin, physically interacts through its N-terminus with FBXO25 and is enriched in the FBXO25 nuclear compartments. Inhibitors of actin polymerization promote a significant disruption of FAND, indicating that they are compartments influenced by the organizational state of actin in the nucleus. Furthermore, FBXO25 antibodies interfered with RNA polymerase II transcription in vitro. Our results open new perspectives for the understanding of this novel compartment and its nuclear functions.
Collapse
Affiliation(s)
- Felipe R Teixeira
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Merla G, Brunetti-Pierri N, Micale L, Fusco C. Copy number variants at Williams–Beuren syndrome 7q11.23 region. Hum Genet 2010; 128:3-26. [DOI: 10.1007/s00439-010-0827-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/13/2010] [Indexed: 01/06/2023]
|
27
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
28
|
Ohazama A, Sharpe PT. TFII-I gene family during tooth development: candidate genes for tooth anomalies in Williams syndrome. Dev Dyn 2008; 236:2884-8. [PMID: 17823943 DOI: 10.1002/dvdy.21311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Williams syndrome is a rare congenital disorder involving the cardiovascular system, mental retardation, distinctive facial features, and tooth anomalies. It is caused by the heterozygous deletion of approximately 1.6 Mb encompassing 28 genes on human chromosome 7q11.23. It has been suggested that the genes responsible for craniofacial anomalies are located in the telomeric end region, which harbors three members of the TFII-I gene family (Tassabehji et al. [2005] Science 310:1184). To recognize potential candidate genes for the tooth anomalies in Williams syndrome, we carried out comparative in situ hybridization analysis of members of TFII-I gene family during murine odontogenesis. Gtf2i showed widespread expression in the developing head but was higher in the developing teeth than surrounding tissues throughout tooth development. At the bud stage, Gtf2ird1 and Gtf2ird2 were expressed in the epithelial buds. At the early bell stage, expression of Gtf2ird1 and Gtf2ird2 was observed in preameloblasts and preodontoblasts.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, United Kingdom
| | | |
Collapse
|
29
|
Young EJ, Lipina T, Tam E, Mandel A, Clapcote SJ, Bechard AR, Chambers J, Mount HTJ, Fletcher PJ, Roder JC, Osborne LR. Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice. GENES BRAIN AND BEHAVIOR 2007; 7:224-34. [PMID: 17680805 PMCID: PMC2883608 DOI: 10.1111/j.1601-183x.2007.00343.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The GTF2IRD1 general transcription factor is a candidate for involvement in the varied cognitive and neurobehavioral symptoms of the microdeletion disorder, Williams-Beuren syndrome (WBS). We show that mice with heterozygous or homozygous disruption of Gtf2ird1 exhibit decreased fear and aggression and increased social behaviors. These findings are reminiscent of the hypersociability and diminished fear of strangers that are hallmarks of WBS. Other core features of WBS, such as increased anxiety and problems with spatial learning were not present in the targeted mice. Investigation of a possible neurochemical basis for the altered behaviors in these mice using high-performance liquid chromatography analysis showed increased levels of serotonin metabolites in several brain regions, including the amygdala, frontal cortex and parietal cortex. Serotonin levels have previously been implicated in fear and aggression, through modulation of the neural pathway connecting the prefrontal cortex and amygdala. These results suggest that hemizygosity for GTF2IRD1 may play a role in the complex behavioral phenotype seen in patients with WBS, either individually, or in combination with other genes, and that the GTF2I transcription factors may influence fear and social behavior through the alteration of neurochemical pathways.
Collapse
Affiliation(s)
- E. J. Young
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - T. Lipina
- Centre for Neurodevelopment and Cognitive Function, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - E. Tam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A. Mandel
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - S. J. Clapcote
- Centre for Neurodevelopment and Cognitive Function, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - A. R. Bechard
- Centre for Neurodevelopment and Cognitive Function, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - J. Chambers
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - H. T. J. Mount
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - P. J. Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J. C. Roder
- Centre for Neurodevelopment and Cognitive Function, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - L. R. Osborne
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: L. R. Osborne, Department of Medicine, University of Toronto, 7360 Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Thompson PD, Webb M, Beckett W, Hinsley T, Jowitt T, Sharrocks AD, Tassabehji M. GTF2IRD1 regulates transcription by binding an evolutionarily conserved DNA motif ‘GUCE’. FEBS Lett 2007; 581:1233-42. [PMID: 17346708 DOI: 10.1016/j.febslet.2007.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 12/28/2022]
Abstract
GTF2IRD1 is a member of a family of transcription factors whose defining characteristic is varying numbers of a helix-loop-helix like motif, the I-repeat. Here, we present functional analysis of human GTF2IRD1 in regulation of three genes (HOXC8, GOOSECOID and TROPONIN I(SLOW)). We define a regulatory motif (GUCE-GTF2IRD1 Upstream Control Element) common to all three genes. GUCE is bound in vitro by domain I-4 of GTF2IRD1 and mediates transcriptional regulation by GTF2IRD1 in vivo. Definition of this site will assist in identification of other downstream targets of GTF2IRD1 and elucidation of its role in the human developmental disorder Williams-Beuren syndrome.
Collapse
Affiliation(s)
- P D Thompson
- Academic Unit of Medical Genetics, The University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Chimge NO, Mungunsukh O, Ruddle F, Bayarsaihan D. Expression profiling of BEN regulated genes in mouse embryonic fibroblasts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:209-24. [PMID: 17041962 DOI: 10.1002/jez.b.21129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BEN is a member of the TFII-I family of helix-loop-helix transcription factors. Both TFII-I and BEN are involved in gene regulation through interactions with tissue-specific transcription factors and chromatin remodeling complexes. Identification of the downstream target genes of TFII-I proteins is critical in delineating the regulatory effects of these proteins. In this study, we conducted a microarray analysis to determine gene expression alterations following the overexpression of BEN in primary mouse embryonic fibroblasts (MEFs). We found the BEN-dependent modulation in the expression of large groups of genes representing a wide variety of functional categories including genes important in the immune response, cell cycle, transcriptional regulation and cell signaling. A set of genes identified by the microarray analysis was validated by independent real-time PCR analysis. Among upregulated genes were Shrm, Tgfb2, Ube2l6, G1p2, Ccl7 while downregulated genes were Folr1, Tgfbr2, Csrp2, and Dlk1. These results support a versatile function of TFII-I proteins in vertebrate physiology and lead to an increased understanding of the BEN-dependent molecular events.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
32
|
Palmer SJ, Tay ESE, Santucci N, Cuc Bach TT, Hook J, Lemckert FA, Jamieson RV, Gunnning PW, Hardeman EC. Expression of Gtf2ird1, the Williams syndrome-associated gene, during mouse development. Gene Expr Patterns 2006; 7:396-404. [PMID: 17239664 DOI: 10.1016/j.modgep.2006.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/22/2006] [Accepted: 11/24/2006] [Indexed: 12/29/2022]
Abstract
The gene GTF2IRD1 is localized within the critical region on chromosome 7 that is deleted in Williams syndrome patients. Genotype-phenotype comparisons of patients carrying variable deletions within this region have implicated GTF2IRD1 and a closely related homolog, GTF2I, as prime candidates for the causation of the principal symptoms of Williams syndrome. We have generated mice with an nls-LacZ knockin mutation of the Gtf2ird1 allele to study its functional role and examine its expression profile. In adults, expression is most prominent in neurons of the central and peripheral nervous system, the retina of the eye, the olfactory epithelium, the spiral ganglion of the cochlea, brown fat adipocytes and to a lesser degree myocytes of the heart and smooth muscle. During development, a dynamic pattern of expression is found predominantly in musculoskeletal tissues, the pituitary, craniofacial tissues, the eyes and tooth buds. Expression of Gtf2ird1 in these tissues correlates with the manifestation of some of the clinical features of Williams syndrome.
Collapse
Affiliation(s)
- Stephen J Palmer
- Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, 2145, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Del Campo M, Antonell A, Magano LF, Muñoz FJ, Flores R, Bayés M, Pérez Jurado LA. Hemizygosity at the NCF1 gene in patients with Williams-Beuren syndrome decreases their risk of hypertension. Am J Hum Genet 2006; 78:533-42. [PMID: 16532385 PMCID: PMC1424678 DOI: 10.1086/501073] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/06/2006] [Indexed: 12/28/2022] Open
Abstract
Williams-Beuren syndrome (WBS), caused by a heterozygous deletion at 7q11.23, represents a model for studying hypertension, the leading risk factor for mortality worldwide, in a genetically determined disorder. Haploinsufficiency at the elastin gene is known to lead to the vascular stenoses in WBS and is also thought to predispose to hypertension, present in approximately 50% of patients. Detailed clinical and molecular characterization of 96 patients with WBS was performed to explore clinical-molecular correlations. Deletion breakpoints were precisely defined and were found to result in variability at two genes, NCF1 and GTF2IRD2. Hypertension was significantly less prevalent in patients with WBS who had the deletion that included NCF1 (P=.02), a gene coding for the p47(phox) subunit of the NADPH oxidase. Decreased p47(phox) protein levels, decreased superoxide anion production, and lower protein nitrotyrosination were all observed in cell lines from patients hemizygous at NCF1. Our results indicate that the loss of a functional copy of NCF1 protects a proportion of patients with WBS against hypertension, likely through a lifelong reduced angiotensin II-mediated oxidative stress. Therefore, antioxidant therapy that reduces NADPH oxidase activity might have a potential benefit in identifiable patients with WBS in whom serious complications related to hypertension have been reported, as well as in forms of essential hypertension mediated by a similar pathogenic mechanism.
Collapse
Affiliation(s)
- Miguel Del Campo
- Unitat de Genètica, Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Tassabehji M, Hammond P, Karmiloff-Smith A, Thompson P, Thorgeirsson SS, Durkin ME, Popescu NC, Hutton T, Metcalfe K, Rucka A, Stewart H, Read AP, Maconochie M, Donnai D. GTF2IRD1 in craniofacial development of humans and mice. Science 2005; 310:1184-7. [PMID: 16293761 DOI: 10.1126/science.1116142] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Craniofacial abnormalities account for about one-third of all human congenital defects, but our understanding of the genetic mechanisms governing craniofacial development is incomplete. We show that GTF2IRD1 is a genetic determinant of mammalian craniofacial and cognitive development, and we implicate another member of the TFII-I transcription factor family, GTF2I, in both aspects. Gtf2ird1-null mice exhibit phenotypic abnormalities reminiscent of the human microdeletion disorder Williams-Beuren syndrome (WBS); craniofacial imaging reveals abnormalities in both skull and jaws that may arise through misregulation of goosecoid, a downstream target of Gtf2ird1. In humans, a rare WBS individual with an atypical deletion, including GTF2IRD1, shows facial dysmorphism and cognitive deficits that differ from those of classic WBS cases. We propose a mechanism of cumulative dosage effects of duplicated and diverged genes applicable to other human chromosomal disorders.
Collapse
Affiliation(s)
- May Tassabehji
- Academic Unit of Medical Genetics, University of Manchester, St. Mary's Hospital, Manchester M13 9PL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sadowski I, Mitchell DA. TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. Eur J Cancer 2005; 41:2528-36. [PMID: 16223582 DOI: 10.1016/j.ejca.2005.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The HIV-1 long terminal repeat (LTR) is stringently controlled by T cell activation signals, and binds a variety of transcription factors whose activities are regulated downstream of the T cell receptor. One of the most highly conserved cis-elements on the LTR, designated RBEIII, binds the factor RBF-2 which is comprised of a USF-1/USF-2 heterodimer and a co-factor TFII-I. RBF-2 is necessary for transcription from the LTR in response to RAS-MAPK activation through T cell receptor engagement, but is also required for repression of viral expression in unstimulated cells. Considering the defined activities of USF and TFII-I, RBF-2 may be responsible for regulating promoter context by controlling chromatin organisation, thereby coordinating opportunity for transcriptional activation by additional factors bound to the enhancer region.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
36
|
Antonell A, de Luis O, Domingo-Roura X, Pérez-Jurado LA. Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res 2005; 15:1179-88. [PMID: 16140988 PMCID: PMC1199532 DOI: 10.1101/gr.3944605] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/09/2005] [Indexed: 01/22/2023]
Abstract
About 5% of the human genome consists of segmental duplications or low-copy repeats, which are large, highly homologous (>95%) fragments of sequence. It has been estimated that these segmental duplications emerged during the past approximately 35 million years (Myr) of human evolution and that they correlate with chromosomal rearrangements. Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that is the result of a frequent de novo deletion at 7q11.23, mediated by large (approximately 400-kb) region-specific complex segmental duplications composed of different blocks. We have precisely defined the structure of the segmental duplications on human 7q11.23 and characterized the copy number and structure of the orthologous regions in other primates (macaque, orangutan, gorilla, and chimpanzee). Our data indicate a recent origin and rapid evolution of the 7q11.23 segmental duplications, starting before the diversification of hominoids (approximately 12-16 million years ago [Mya]), with species-specific duplications and intrachromosomal rearrangements that lead to significant differences among those genomes. Alu sequences are located at most edges of the large hominoid-specific segmental duplications, suggesting that they might have facilitated evolutionary rearrangements. We propose a mechanistic model based on Alu-mediated duplicated transposition along with nonallelic homologous recombination for the generation and local expansion of the segmental duplications. The extraordinary rate of evolutionary turnover of this region, rich in segmental duplications, results in important genomic variation among hominoid species, which could be of functional relevance and predispose to disease.
Collapse
Affiliation(s)
- Anna Antonell
- Unitat de Genètica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Smoot L, Zhang H, Klaiman C, Schultz R, Pober B. Medical overview and genetics of Williams-Beuren syndrome. PROGRESS IN PEDIATRIC CARDIOLOGY 2005. [DOI: 10.1016/j.ppedcard.2005.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Jackson TA, Taylor HE, Sharma D, Desiderio S, Danoff SK. Vascular endothelial growth factor receptor-2: counter-regulation by the transcription factors, TFII-I and TFII-IRD1. J Biol Chem 2005; 280:29856-63. [PMID: 15941713 DOI: 10.1074/jbc.m500335200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The vascular endothelial growth factor receptor-2 (VEGFR-2/KDR/flk-1) functions as the primary mediator of vascular endothelial growth factor activation in endothelial cells. Regulation of VEGFR-2 expression appears critical in mitogenesis, differentiation, and angiogenesis. Transcriptional regulation of the VEGFR-2 is complex and may involve multiple putative upstream regulatory elements including E boxes. Transcript initiation is dependent on an initiator (Inr) element flanking the transcriptional start site. The transcription factor, TFII-I, enhances VEGFR-2 transcription in an Inr-dependent fashion. TFII-I is unusual both structurally and functionally. The TFII-I transcription factor family members contain multiple putative DNA binding domains. Functionally, TFII-I acts at both the basal, Inr element as well as at several distinct upstream regulatory sites. It has been postulated that the structure of TFII-I might allow simultaneous interaction with both basal and regulatory sites in a given promoter. As TFII-I is known to act at regulatory sites including E boxes as well as at the basal Inr element, we evaluated the possibility of Inr-independent TFII-I activation of the VEGFR-2 promoter. We found that an Inr-mutated VEGFR-2 reporter construct retains TFII-I-stimulated activity. We demonstrated that TFII-I binds to both the Inr and to three regulatory E boxes in the human VEGFR-2 promoter. In addition, reduction in TFII-I expression by siRNA results in decreased VEGFR-2 expression. We also describe counter-regulation of the VEGFR-2 promoter by TFII-IRD1. We found that TFII-I is capable of acting at both basal and regulatory sites in one promoter and that the human VEGFR-2 promoter is functionally counter-regulated by TFII-I and TFII-IRD1.
Collapse
Affiliation(s)
- Tanisha A Jackson
- Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
39
|
Iiyama K, Chieda Y, Yasunaga-Aoki C, Hayasaka S, Shimizu S. Analyses of the Ribosomal DNA Region in Nosema bombycis NIS 001. J Eukaryot Microbiol 2004; 51:598-604. [PMID: 15666716 DOI: 10.1111/j.1550-7408.2004.tb00592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribosomal DNA (rDNA) containing small subunit (SSU) rDNA and both flanking regions in the entomopathogenic microsporidian Nosema bombycis NIS 001 was amplified from genomic DNA with a primer set based on the sequence of an inverse polymerase chain reaction (PCR)-derived fragment. In this fragment, SSU rDNA was divided by a 618-bp insert at nt 599, and 5S rDNA was located downstream of the SSU rDNA, fragmented by 284-bp intergenic spacer. In addition, the 48-bp 3'-end of large subunit (LSU) rDNA was located 118 bp upstream of the fragmented SSU rDNA. In the amplicon, the region upstream of the LSU rDNA was a homologue of the C-terminal CHARLIE8 transposon-like element of human GTF2IRD2. In this organism, another fragmented SSU rDNA, which was divided by a 231-bp insert at nt 50, was also detected. Both the intact (insertless) and fragmented SSU rDNAs clustered with LSU rDNA and 5S rDNA and the intergenic sequences between SSU rDNA and 5S rDNA were divergent in an organism. Reverse transcription (RT)-PCR assay indicated that not only the intact SSU rDNA but also the fragmened SSU rDNA were transcribed in N. bombycis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- DNA Transposable Elements/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Genes, rRNA
- Molecular Sequence Data
- Moths
- Nosema/genetics
- RNA, Protozoan/analysis
- RNA, Protozoan/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
40
|
Hinsley TA, Cunliffe P, Tipney HJ, Brass A, Tassabehji M. Comparison of TFII-I gene family members deleted in Williams-Beuren syndrome. Protein Sci 2004; 13:2588-99. [PMID: 15388857 PMCID: PMC2286546 DOI: 10.1110/ps.04747604] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/30/2004] [Accepted: 07/02/2004] [Indexed: 12/21/2022]
Abstract
Williams-Beuren syndrome (WBS) is a neurological disorder resulting from a microdeletion, typically 1.5 megabases in size, at 7q11.23. Atypical patients implicate genes at the telomeric end of this multigene deletion as the main candidates for the pathology of WBS in particular the unequal cognitive profile associated with the condition. We recently identified a gene (GTF2IRD2) that shares homology with other members of a unique family of transcription factors (TFII-I family), which reside in the critical telomeric region. Using bioinformatics tools this study focuses on the detailed assessment of this gene family, concentrating on their characteristic structural components such as the leucine zipper (LZ) and I-repeat elements, in an attempt to identify features that could aid functional predictions. Phylogenetic analysis identified distinct I-repeat clades shared between family members. Linking functional data to one such clade has implicated them in DNA binding. The identification of PEST, synergy control motifs, and sumoylation sites common to all family members suggest a shared mechanism regulating the stability and transcriptional activity of these factors. In addition, the identification/isolation of short truncated isoforms for each TFII-I family member implies a mode of self-regulation. The exceptionally high identity shared between GTF2I and GTF2IRD2, suggests that heterodimers as well as homodimers are possible, and indicates overlapping functions between their respective short isoforms. Such cross-reactivity between GTF2I and GTF2IRD2 short isoforms might have been the evolutionary driving force for the 7q11.23 chromosomal rearrangement not present in the syntenic region in mice.
Collapse
Affiliation(s)
- Timothy A Hinsley
- Academic Department of Medical Genetics, St. Mary's Hospital, Hathersage Road, Manchester, M13 0JH, UK
| | | | | | | | | |
Collapse
|
41
|
Makeyev AV, Erdenechimeg L, Mungunsukh O, Roth JJ, Enkhmandakh B, Ruddle FH, Bayarsaihan D. GTF2IRD2 is located in the Williams-Beuren syndrome critical region 7q11.23 and encodes a protein with two TFII-I-like helix-loop-helix repeats. Proc Natl Acad Sci U S A 2004; 101:11052-7. [PMID: 15243160 PMCID: PMC503739 DOI: 10.1073/pnas.0404150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Williams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix-loop-helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix-loop-helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams-Beuren syndrome critical region.
Collapse
Affiliation(s)
- Aleksandr V Makeyev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|