1
|
Batkova M, Havlovicova M, Nocar A, Dudakova L, Macek M, Liskova P, Dostalova T. Dental abnormalities observed in the oculo-facio-cardio-dental (OFCD) syndrome present in two Czech families bearing novel de novo BCOR pathogenic variants. BMC Oral Health 2024; 24:1264. [PMID: 39438869 PMCID: PMC11494979 DOI: 10.1186/s12903-024-05005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The oculo-facio-cardio-dental syndrome (OFCD) is an ultra-rare multiple congenital anomaly. This report describes clinical findings emphasising dental phenotype in five, molecularly confirmed, female cases from two Czech families. CASE PRESENTATION Dental examinations were carried out. An orthopantomogram was taken in three patients, and all patients' intraoral cavities and teeth were photographed. Exome sequencing was performed in both probands. Results were validated by Sanger DNA sequencing which was also used to follow segregation of the variants in first-degree relatives. Dental abnormalities and congenital cataracts were present in all five cases, whilst other signs were variable and included facial dysmorphism, microphthalmia, and cardiac and skeletal abnormalities. Two individuals had cleft lip and/or cleft palate. Radiculomegaly occurred in three patients with permanent teeth and was diagnosed on orthopantomograms. Two patients had agenesis of permanent teeth. Malocclusion was also present in two patients due to crowding and a Class III malocclusion and mandibular overjet. De novo novel pathogenic variants in the BCOR gene were identified; c.2382del p.(Lys795Argfs*12) and c.3914dup p.(Gln1306Alafs*20) and co-segregated with the disease in each family. CONCLUSIONS The OFCD syndrome has a unique dental phenotype and dentists should be aware of signs of this ultra-rare genetic disorder. All patients with congenital cataracts and dental abnormalities, including those without a family history, should be referred for genetic testing and indicated to specialised dental care.
Collapse
Affiliation(s)
- M Batkova
- Department of Stomatology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - M Havlovicova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - A Nocar
- Department of Stomatology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - L Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - M Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Tatjana Dostalova
- Department of Stomatology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
2
|
BCOR variants are associated with X-linked recessive partial epilepsy. Epilepsy Res 2022; 187:107036. [DOI: 10.1016/j.eplepsyres.2022.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
|
3
|
Min Soe K, Ogawa T, Moriyama K. Molecular mechanism of hyperactive tooth root formation in oculo-facio-cardio-dental syndrome. Front Physiol 2022; 13:946282. [PMID: 35957990 PMCID: PMC9359619 DOI: 10.3389/fphys.2022.946282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the B-cell lymphoma 6 (BCL6) interacting corepressor (BCOR) cause oculo-facio-cardio-dental (OFCD) syndrome, a rare X-linked dominant condition that includes dental radiculomegaly among other characteristics. BCOR regulates downstream genes via BCL6 as a transcriptional corepressor. However, the molecular mechanism underlying the occurrence of radiculomegaly is still unknown. Thus, this study was aimed at identifying BCOR-regulated genetic pathways in radiculomegaly. The microarray profile of affected tissues revealed that the gene-specific transcriptional factors group, wherein nucleus factor 1B, distal-less homeobox 5, and zinc finger protein multitype 2 (ZFPM2) were the most upregulated, was significantly expressed in periodontal ligament (PDL) cells of the diseased patient with a frameshift mutation (c.3668delC) in BCOR. Wild-type BCOR overexpression in human periodontal ligament fibroblasts cells significantly hampered cellular proliferation and ZFPM2 mRNA downregulation. Promoter binding assays showed that wild-type BCOR was recruited in the BCL6 binding of the ZFPM2 promoter region after immunoprecipitation, while mutant BCOR, which was the same genotype as of our patient, failed to recruit these promoter regions. Knockdown of ZFPM2 expression in mutant PDL cells significantly reduced cellular proliferation as well as mRNA expression of alkaline phosphatase, an important marker of odontoblasts and cementoblasts. Collectively, our findings suggest that BCOR mutation-induced ZFPM2 regulation via BCL6 possibly contributes to hyperactive root formation in OFCD syndrome. Clinical data from patients with rare genetic diseases may aid in furthering the understanding of the mechanism controlling the final root length.
Collapse
|
4
|
Nonsyndromic Generalized Radiculomegaly of Permanent Dentition: A Rare Case Report. Case Rep Dent 2022; 2022:3548370. [PMID: 35392487 PMCID: PMC8983254 DOI: 10.1155/2022/3548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Radiculomegaly (marked elongation of dental roots) is a distinct dental abnormality with a major clinical significance that is closely related to oculofaciocardiodental syndrome (OFCD). Since OFCD syndrome was first identified in 1996, only a few cases of nonsyndromic/nonfamilial radiculomegaly have been reported. We report a new nonsyndromic/nonfamilial radiculomegaly case and the association of OFCD syndrome with the dental challenges. Case Presentation. 18-year-old medically free male presented to the screening dental clinics complaining of teeth malposition. Panoramic radiograph incidentally revealed extremely long and wide roots of almost all dentition. Apical radiographs and cone-beam computed tomography (CBCT) were taken to confirm this anomaly and to rule out any artifact. The images confirmed the excessive length of the roots. A cephalometric X-ray was performed on the patient to rule out any dentofacial deformity. History and physical examinations were negative for ocular or cardiac anomalies. Due to lack of evidence of physical signs and symptoms consistent with OFCD syndrome, genetic testing was not performed. Conclusion Dentists need to be informed of the clinical and radiographic features of different dental anomalies, especially radiculomegaly, as it is considered one of the significant features of OFCD syndrome. Challenges related to radiculomegaly face dentists while the current literature has not yet provided a solid baseline for managing such patients. The challenges include repairing the root canals, extracting and/or moving the teeth orthodontically. Early diagnosis of the syndrome is crucial to prevent dental challenges and provide the best dental care services.
Collapse
|
5
|
Zhuang J, Chen C, Chen Y, Zeng S, Jiang Y, Wang Y, Chen X, Xie Y, Wang G. Case Report: Prenatal Diagnosis of a Novel Variant c.251dupT (p.N87Kfs*6) in BCOR Resulting in Oculofaciocardiodental Syndrome Using Whole-Exome Sequencing. Front Genet 2022; 13:829613. [PMID: 35401667 PMCID: PMC8990034 DOI: 10.3389/fgene.2022.829613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oculofaciocardiodental (OFCD) syndrome is an X-linked dominant syndrome caused by BCOR variants, which manifests only in females and presumed leading to male lethality. Herein, we aim to present a prenatal diagnosis for OFCD syndrome associated with a novel hemizygous variant in BCOR gene. Case presentation: A 29-year-old pregnant woman from Quanzhou Fujian Province, China, with fetal ultrasound anomalies, was enrolled in this study. A normal 46, XY karyotype with no abnormalities was observed in the fetus detected on microarray. Furthermore, a whole-exome sequencing (WES) detection result demonstrated that a novel hemizygous variant of c.251dupT (p.N87Kfs*6) in the BCOR gene was identified in the fetus, which was a frameshift mutation and classified as a likely pathogenic variant, and may lead to OFCD syndrome according to the clinical feature of the fetus. In this case, male lethality had not occurred by the end of the second trimester, then termination of the pregnancy was conducted at a gestational age of 26 weeks. Sanger sequencing of parental samples revealed that the variant was maternally transmitted, which was consistent with the OFCD syndrome phenotypic features observed in her. Conclusions: In the study, we first present the affected male with a novel variant in BCOR that leads to the OFCD syndrome. Additionally, our study broadened the spectrum of BCOR results in the OFCD syndrome and provided the valuable references for prenatal genetic consultation.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu’e Chen
- Ultrasonography, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gaoxiong Wang, ; Yingjun Xie,
| | - Gaoxiong Wang
- Quanzhou Women’s and Children’s Hospital, Quanzhou, China
- *Correspondence: Gaoxiong Wang, ; Yingjun Xie,
| |
Collapse
|
6
|
Li D, March ME, Wang T, Merengwa V, Sertori Finoti L, Schrier Vergano SA, Hakonarson H, Bhoj EJ. Exome and RNA-Seq analyses of an incomplete penetrance variant in USP9X in female-specific syndromic intellectual disability. Am J Med Genet A 2022; 188:1808-1814. [PMID: 35253988 DOI: 10.1002/ajmg.a.62715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.(Lys296Serfs*4), in the USP9X gene with incomplete penetrance in two nontwin female siblings with phenotypic resemblance to female-specific syndromic ID (MIM 300969, also known as MRX99F). To investigate the possible genetic etiology of the reduced penetrance, X-inactivation, RNA-Seq, and full quad exome analyses were attempted, but failed to identify a promising candidate modifier. While the penetrance of pathogenic variants in USP9X in female appears to be high (95%) and the variants frequently occur de novo, incomplete penetrance should be considered.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiancheng Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Victoria Merengwa
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Livia Sertori Finoti
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Archer NE, Mercer L, Goobie S, Velsher L, Colaiacovo S, Prasad C. X-linked BCOR-related syndrome in two male siblings. Clin Dysmorphol 2021; 30:104-109. [PMID: 33229924 DOI: 10.1097/mcd.0000000000000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicole E Archer
- Department of Paediatrics, London Health Sciences Centre and Western University, London
| | - Leanne Mercer
- Thunder Bay Regional Health Sciences Centre Genetics Program, Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario
| | - Sharan Goobie
- Maritime Medical Genetic Service, Department of Pediatrics, Izaak Walton Killam (IWK) Health Centre, Halifax, Nova Scotia
| | - Lea Velsher
- Division of Clinical Genetics, North York General Hospital, North York
| | - Samantha Colaiacovo
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London
| | - Chitra Prasad
- Department of Paediatrics, London Health Sciences Centre and Western University, London.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Hamline MY, Corcoran CM, Wamstad JA, Miletich I, Feng J, Lohr JL, Hemberger M, Sharpe PT, Gearhart MD, Bardwell VJ. OFCD syndrome and extraembryonic defects are revealed by conditional mutation of the Polycomb-group repressive complex 1.1 (PRC1.1) gene BCOR. Dev Biol 2020; 468:110-132. [PMID: 32692983 PMCID: PMC9583620 DOI: 10.1016/j.ydbio.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
BCOR is a critical regulator of human development. Heterozygous mutations of BCOR in females cause the X-linked developmental disorder Oculofaciocardiodental syndrome (OFCD), and hemizygous mutations of BCOR in males cause gestational lethality. BCOR associates with Polycomb group proteins to form one subfamily of the diverse Polycomb repressive complex 1 (PRC1) complexes, designated PRC1.1. Currently there is limited understanding of differing developmental roles of the various PRC1 complexes. We therefore generated a conditional exon 9-10 knockout Bcor allele and a transgenic conditional Bcor expression allele and used these to define multiple roles of Bcor, and by implication PRC1.1, in mouse development. Females heterozygous for Bcor exhibiting mosaic expression due to the X-linkage of the gene showed reduced postnatal viability and had OFCD-like defects. By contrast, Bcor hemizygosity in the entire male embryo resulted in embryonic lethality by E9.5. We further dissected the roles of Bcor, focusing on some of the tissues affected in OFCD through use of cell type specific Cre alleles. Mutation of Bcor in neural crest cells caused cleft palate, shortening of the mandible and tympanic bone, ectopic salivary glands and abnormal tongue musculature. We found that defects in the mandibular region, rather than in the palate itself, led to palatal clefting. Mutation of Bcor in hindlimb progenitor cells of the lateral mesoderm resulted in 2/3 syndactyly. Mutation of Bcor in Isl1-expressing lineages that contribute to the heart caused defects including persistent truncus arteriosus, ventricular septal defect and fetal lethality. Mutation of Bcor in extraembryonic lineages resulted in placental defects and midgestation lethality. Ubiquitous over expression of transgenic Bcor isoform A during development resulted in embryonic defects and midgestation lethality. The defects we have found in Bcor mutants provide insights into the etiology of the OFCD syndrome and how BCOR-containing PRC1 complexes function in development.
Collapse
Affiliation(s)
- Michelle Y Hamline
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA; University of Minnesota Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Connie M Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph A Wamstad
- The Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jifan Feng
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Jamie L Lohr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Medical Research Council Centre for Transplantation, King's College London, London, SE1 9RT, UK
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Postema FAM, Oosterwijk JC, Hennekam RC. Genetic control of tumor development in malformation syndromes. Am J Med Genet A 2020; 185:324-335. [PMID: 33141500 DOI: 10.1002/ajmg.a.61947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
One of the questions that arises frequently when caring for an individual with a malformation syndrome, is whether some form of tumor surveillance is indicated. In some syndromes there is a highly variable increased risk to develop tumors, while in others this is not the case. The risks can be hard to predict and difficult to explain to affected individuals and their families, and often also to caregivers. The queries arise especially if syndrome causing mutations are also known to occur in tumors. It needs insight in the mechanisms to understand and explain differences of tumor occurrence, and to offer optimal care to individuals with syndromes. Here we provide a short overview of the major mechanisms of the control for tumor occurrences in malformation syndromes.
Collapse
Affiliation(s)
- Floor A M Postema
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan C Oosterwijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Nees SN, Chung WK. Genetic Basis of Human Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036749. [PMID: 31818857 DOI: 10.1101/cshperspect.a036749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics.,Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
11
|
Eintracht J, Corton M, FitzPatrick D, Moosajee M. CUGC for syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:679-690. [PMID: 31896778 PMCID: PMC7171178 DOI: 10.1038/s41431-019-0565-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Marta Corton
- Department of Genetics, IIS-University Hospital Fundación Jiménez Díaz-CIBERER, Madrid, Spain
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
12
|
El Ayachi I, Zou XY, Yan X, Lou Y, Huang GTJ. Expression of Normal or Mutated X-Linked BCOR Transcripts in OFCD iPSCs. J Dent Res 2019; 99:196-203. [PMID: 31775564 DOI: 10.1177/0022034519890323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reprogramming diseased cells with mutated genes into induced pluripotent stem cells (iPSCs) can allow studies of disease mechanism and correct the mutation. Oculofaciocardiodental (OFCD) syndrome is a developmental disorder caused by heterozygous mutations in the X-linked BCL-6 corepressor (BCOR) gene. In this present study, we aimed to reprogram stem cells from a tooth apical papilla (SCAP) of a patient with OFCD, termed SCAP-O, into iPSCs. The SCAP-O carry a copy of the BCOR gene having 1 nucleotide deletion in 1 of the alleles, therefore harboring a mixture of cells expressing either normal (SCAP-OBCOR-WT) or mutated (SCAP-OBCOR-mut) BCOR transcripts. We subcloned SCAP-O and separated SCAP-OBCOR-WT and SCAP-OBCOR-mut as verified by sequencing. The selected subclone SCAP-OBCOR-mut expressed only the mutated BCOR transcripts and remained in such condition after multiple passages. We reprogrammed SCAP-O and subclone SCAP-OBCOR-mut into transgene-free iPSCs using an excisable lentiviral vector system (hSTEMCCA-loxP) carrying 4 reprogramming factors in a single cassette, followed by removal of transgenes via Cre-mediated excision. We found that after reprogramming SCAP-O or subclone SCAP-OBCOR-mut into iPSCs, some of the iPSC clones expressed either solely the normal BCOR-WT or BCOR-mut transcripts, while other clones expressed both BCOR-WT and BCOR-mut transcripts. This is our first step toward establishing OFCD study models by generating isogenic control BCOR-WT iPSCs versus BCOR-mut iPSCs.
Collapse
Affiliation(s)
- I El Ayachi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - X-Y Zou
- Department of Cariology, Endodontology and Operative Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China.,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - X Yan
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Y Lou
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
13
|
Wu D, Chen Y, Chen Q, Wang G, Xu X, Peng A, Hao J, He J, Huang L, Dai J. Clinical presentation and genetic profiles of Chinese patients with velocardiofacial syndrome in a large referral centre. J Genet 2019. [DOI: 10.1007/s12041-019-1090-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Redwood A, Douzgou S, Waller S, Ramsden S, Roberts A, Bonin H, Lloyd IC, Ashworth J, Black GCM, Clayton-Smith J. Congenital cataracts in females caused by BCOR mutations; report of six further families demonstrating clinical variability and diverse genetic mechanisms. Eur J Med Genet 2019; 63:103658. [PMID: 31048080 DOI: 10.1016/j.ejmg.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/26/2019] [Accepted: 04/28/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pathogenic variants in the BCOR gene have been identified in males with X-linked recessive microphthalmia and in females with X-linked dominant oculofaciocardiodental (OFCD) syndrome. This latter condition has previously been regarded as rare but the increased availability of genetic testing in recent years has led to the identification of a greater number of patients. METHODS We report the clinical and molecular findings in a series of 10 patients with pathogenic BCOR variants from 5 families, all seen in a single institution over a two year period. RESULTS We emphasize the phenotypic variability in this cohort and the diverse genetic mechanisms involved which included point mutations and deletions of BCOR as well as the occurrence of gonadal and somatic mosaicism. CONCLUSION In this report we demonstrate the novel findings of four newly identified variants in BCOR associated with an OFCD phenotype, and suggest that the frequency of this condition in females presenting with congenital cataract, including unilateral cataract, is more common than anticipated. We demonstrate the utility of screening for genetic causes of congenital cataract. Although gonadal mosaicism in OFCD had previously been reported, we demonstrate the presence of somatic mosaicism where BCOR mutations may only be detected in DNA from tissues other than blood such as buccal cells.
Collapse
Affiliation(s)
- A Redwood
- University of Manchester Medical School, Manchester, United Kingdom
| | - S Douzgou
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - S Waller
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - S Ramsden
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - A Roberts
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - H Bonin
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - I C Lloyd
- Manchester Royal Eye Hospital, Oxford Rd, Manchester and Manchester University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom; Department of Clinical and Academic Ophthalmology, Great Ormond Street Hospital, London and UCL Academic Health Sciences Centre, United Kingdom
| | - J Ashworth
- Manchester Royal Eye Hospital, Oxford Rd, Manchester and Manchester University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom
| | - G C M Black
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom; Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, United Kingdom
| | - J Clayton-Smith
- Manchester Centre For Genomic Medicine, St Mary's Hospital, Manchester and University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, United Kingdom; Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, United Kingdom.
| |
Collapse
|
15
|
Myat AB, Ogawa T, Kadota-Watanabe C, Moriyama K. Nuclear import of transcriptional corepressor BCOR occurs through interaction with karyopherin α expressed in human periodontal ligament. Biochem Biophys Res Commun 2018; 507:67-73. [PMID: 30396568 DOI: 10.1016/j.bbrc.2018.10.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Mutations in the gene encoding BCL-6 corepressor (BCOR) are responsible for oculofaciocardiodental (OFCD) syndrome, which is a rare X-linked dominant disorder characterized by radiculomegaly of permanent teeth as the most typical symptom. To function as a transcriptional corepressor, BCOR needs to enter the nucleus; however, the molecular pathway for its nuclear translocation during dental root formation remains unclear. The purpose of this study was to determine the mechanism underlying BCOR transport into the nucleus. Our results showed that human periodontal ligament (PDL) cells expressed karyopherin α (KPNA)2, KPNA4, and KPNA6 belonging to a family of nuclear import proteins, which interacted with BCOR in the immunoprecipitation assay. Site-directed mutagenesis targeting the two nuclear localization signals (NLSs) within BCOR reduced its nuclear translocation; however, co-expression of KPNA2, KPNA4, or KPNA6 with BCOR carrying a previously described mutation which eliminated one of the two NLSs significantly increased nuclear accumulation of the mutant BCOR, indicating participation of KPNA in BCOR nuclear translocation. Comparative expression profiling of PDL cells isolated from normal and OFCD patients revealed significant downregulation of SMAD4, GLI1, and nuclear factor 1-C (NFIC) mRNA expression, suggesting that BCOR mutations cause hyperactive root formation in OFCD syndrome by inhibiting SMAD4-Hedgehog-NFIC signaling implicated in dental root development. Our study contributes to understanding of the mechanisms providing nuclear import of BCOR during root formation.
Collapse
Affiliation(s)
- Aung Bhone Myat
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Takuya Ogawa
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Chiho Kadota-Watanabe
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
16
|
Kraus C, Uebe S, Thiel CT, Ekici AB, Reis A, Zweier C. Microphthalmia is not a mandatory finding in X-linked recessive syndromic microphthalmia caused by the recurrent BCOR
variant p.Pro85Leu. Am J Med Genet A 2018; 176:2872-2876. [DOI: 10.1002/ajmg.a.40640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian T. Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
17
|
Smith MH, Cohen DM, Bhattacharyya I, Islam NM, Kashtwari D. Radiculomegaly: a case report of this rare dental finding with review of the associated oculo-facio-cardio-dental syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:e220-e227. [DOI: 10.1016/j.oooo.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 11/27/2022]
|
18
|
Ragge N, Isidor B, Bitoun P, Odent S, Giurgea I, Cogné B, Deb W, Vincent M, Le Gall J, Morton J, Lim D, Le Meur G, Zazo Seco C, Zafeiropoulou D, Bax D, Zwijnenburg P, Arteche A, Swafiri ST, Cleaver R, McEntagart M, Kini U, Newman W, Ayuso C, Corton M, Herenger Y, Jeanne M, Calvas P, Chassaing N. Expanding the phenotype of the X-linked BCOR microphthalmia syndromes. Hum Genet 2018; 138:1051-1069. [PMID: 29974297 DOI: 10.1007/s00439-018-1896-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia ('Lenz'-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome ('Lenz') usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome.
Collapse
Affiliation(s)
- Nicola Ragge
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK. .,West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.
| | - Bertrand Isidor
- Service de génétique médicale, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Pierre Bitoun
- SIDVA 91, Ophthalmic Genetics, 1 rue de la Cour de, 91260, Juvisy s/orge, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de référence CLAD-Ouest, Université Rennes 1, UMR 6290 CNRS IGDR, CHU Rennes, Rennes, France
| | - Irina Giurgea
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Assistance Publique, Hôpitaux de Paris, 75012, Paris, France.,Faculté de médecine, INSERM UMR S933, Sorbonne Université, 75012, Paris, France
| | - Benjamin Cogné
- Service de génétique médicale, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Wallid Deb
- Service de génétique médicale, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Marie Vincent
- Service de génétique médicale, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Jessica Le Gall
- Service de génétique médicale, Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Derek Lim
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Guylène Le Meur
- Service d'ophtalmologie, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Celia Zazo Seco
- UDEAR, UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Dimitra Zafeiropoulou
- Department of Human Genetics, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Dorine Bax
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Petra Zwijnenburg
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Anara Arteche
- Department of Genetics, Health Research Institute-Jiménez Díaz Foundation, University Hospital (IIS-FJD-UAM), Madrid, Spain
| | - Saoud Tahsin Swafiri
- Department of Genetics, Health Research Institute-Jiménez Díaz Foundation, University Hospital (IIS-FJD-UAM), Madrid, Spain
| | - Ruth Cleaver
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London, UK
| | - Meriel McEntagart
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford, UK
| | | | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Jiménez Díaz Foundation, University Hospital (IIS-FJD-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Department of Genetics, Health Research Institute-Jiménez Díaz Foundation, University Hospital (IIS-FJD-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Yvan Herenger
- Service de Génétique Médicale, CHU de Tours, Tours, France
| | - Médéric Jeanne
- Service de Génétique Médicale, CHU de Tours, Tours, France
| | - Patrick Calvas
- UDEAR, UMR 1056 Inserm, Université de Toulouse, Toulouse, France.,Department of Medical Genetics, CHU Toulouse, Purpan Hospital, 31059, Toulouse, France
| | - Nicolas Chassaing
- UDEAR, UMR 1056 Inserm, Université de Toulouse, Toulouse, France.,Department of Medical Genetics, CHU Toulouse, Purpan Hospital, 31059, Toulouse, France
| |
Collapse
|
19
|
Inhibition of the transcriptional repressor complex Bcl-6/BCoR induces endothelial sprouting but does not promote tumor growth. Oncotarget 2018; 8:552-564. [PMID: 27880939 PMCID: PMC5352177 DOI: 10.18632/oncotarget.13477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023] Open
Abstract
The oncogenic potential of the transcriptional repressor Bcl-6 (B-cell lymphoma 6) was originally discovered in non-Hodgkin patients and the soluble Bcl-6 inhibitor 79-6 was developed to treat diffuse large B-cell lymphomas with aberrant Bcl-6 expression. Since we found Bcl-6 and its co-repressor BCoR (Bcl-6 interacting co-repressor) to be regulated in human microvascular endothelium by colorectal cancer cells, we investigated their function in sprouting angiogenesis which is central to tumor growth. Based on Bcl-6/BCoR gene silencing we found that the transcriptional repressor complex in fact constitutes an endogenous inhibitor of vascular sprouting by supporting the stalk cell phenotype: control of Notch target genes (HES1, HEY1, DLL4) and cell cycle regulators (cyclin A and B1). Thus, when endothelial cells were transiently transfected with Bcl-6 and/or BCoR siRNA, vascular sprouting was prominently induced. Comparably, when the soluble Bcl-6 inhibitor 79-6 was applied in the mouse retina model of physiological angiogenesis, endothelial sprouting and branching were significantly enhanced. To address the question whether clinical treatment with 79-6 might therefore have detrimental therapeutic effects by promoting tumor angiogenesis, mouse xenograft models of colorectal cancer and diffuse large B-cell lymphoma were tested. Despite a tendency to increased tumor vessel density, 79-6 therapy did not enhance tumor expansion. In contrast, growth of colorectal carcinomas was significantly reduced which is likely due to a combined 79-6 effect on cancer cells and tumor stroma. These findings may provide valuable information regarding the future clinical development of Bcl-6 inhibitors.
Collapse
|
20
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
21
|
Zhou Y, Wojcik A, Sanders VR, Rahmani B, Kurup SP. Ocular findings in a patient with oculofaciocardiodental (OFCD) syndrome and a novel BCOR pathogenic variant. Int Ophthalmol 2017; 38:2677-2682. [PMID: 29058245 DOI: 10.1007/s10792-017-0754-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To report a case of OFCD associated with a de novo BCOR pathogenic variant and highlight the ocular findings and possible mechanisms. METHODS A retrospective chart review of the patient's ocular and systemic findings was performed. The patient underwent diagnostic whole exome sequencing (WES). RESULTS The patient had a comprehensive eye exam in infancy demonstrating bilateral congenital cataracts consisting of posterior lenticonus with a posterior cortical opacity. She also had blepharoptosis with a hooded appearance and retinal pigment hypertrophy of the inferior retina bilaterally. Systemic findings include atrial septal defect, patent ductus arteriosus, congenital clubfoot, syndactyly, tethered cord, and laryngeal cleft. WES identified a de novo heterozygous R1136X pathogenic variant in the BCOR gene. CONCLUSION The typical ocular manifestation of OFCD syndrome is congenital cataracts, which can have a significant impact on visual development and so should be considered in patients with multiple medical issues that may fit the diagnosis. A comprehensive eye exam in these patients is thus warranted.
Collapse
Affiliation(s)
- Yujia Zhou
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Antonina Wojcik
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Division of Genetics Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Victoria R Sanders
- Division of Genetics Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Bahram Rahmani
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudhi P Kurup
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA. .,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Recurrent BCOR internal tandem duplication and BCOR or BCL6 expression distinguish primitive myxoid mesenchymal tumor of infancy from congenital infantile fibrosarcoma. Mod Pathol 2017; 30:884-891. [PMID: 28256570 PMCID: PMC5680041 DOI: 10.1038/modpathol.2017.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023]
Abstract
Primitive myxoid mesenchymal tumor of infancy is a rare sarcoma that preferentially affects infants. It can be locally aggressive and rarely metastasizes, but the long-term outcome of children with this tumor is mostly unknown. Histologically, it is characterized by primitive cells with abundant myxoid stroma. Internal tandem duplication of B-cell CLL/lymphoma 6 (BCL6)-interacting co-repressor (BCOR) exon 15 has recently been described in clear cell sarcoma of kidney, central nervous system high-grade neuroepithelial tumor with BCOR alteration, and primitive myxoid mesenchymal tumor of infancy. Herein, we report five cases of primitive myxoid mesenchymal tumor of infancy: three girls and two boys with mean age of 6.5 months. The tumors were located in the paraspinal region (n=3), back (n=1), or foot (n=1) and ranged in size from 2.5 to 10.2 cm. BCOR internal tandem duplication was confirmed by PCR and sequencing in all five cases. The minimally duplicated region consisted of nine residues, which is shorter than was previously reported in other BCOR-associated tumors. To assess the clinical value and specificity of the BCOR internal tandem duplication, a group of 11 ETV6-rearranged congenital infantile fibrosarcomas were evaluated and no BCOR internal tandem duplication was identified in any case. Though not detected in congenital infantile fibrosarcomas, BCOR and BCL6 immunoreactivity was present in >90% of the nuclei of tumor cells in each of the five primitive myxoid mesenchymal tumor of infancy. The presence of BCOR internal tandem duplication in all five primitive myxoid mesenchymal tumors of infancy provides evidence that it is a recurrent somatic abnormality and substantiates the concept that this tumor is a unique sarcoma of infancy. Our findings indicate that identification of BCOR internal tandem duplication and/or nuclear immunoreactivity for BCOR or BCL6 can aid in the diagnosis of primitive myxoid mesenchymal tumor of infancy and help to differentiate it from congenital infantile fibrosarcoma.
Collapse
|
23
|
Zhu G, Fei T, Li Z, Yan X, Chen YG. Activin Regulates Self-renewal and Differentiation of Trophoblast Stem Cells by Down-regulating the X Chromosome Gene Bcor. J Biol Chem 2015. [PMID: 26221038 DOI: 10.1074/jbc.m115.674127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of a functional placenta is largely dependent upon proper proliferation and differentiation of trophoblast stem cells (TSCs). Activin signaling has long been regarded to play important roles during this process, but the exact mechanism is largely unknown. Here, we demonstrate that the X chromosome gene BCL-6 corepressor (Bcor) is a critical downstream effector of activin to fine-tune mouse TSC fate decision. Bcor was specifically down-regulated by activin A in TSCs in a dose-dependent manner, and immediately up-regulated upon TSC differentiation. Knockdown of Bcor partially compensated for the absence of activin A in maintaining the self-renewal of TSCs together with FGF4, while promoting syncytiotrophoblast differentiation in the absence of FGF4. Moreover, the impaired trophoblast giant cell and spongiotrophoblast differentiation upon Bcor knockdown also resembled the function of activin. Reporter analysis showed that BCOR inhibited the expression of the key trophoblast regulator genes Eomes and Cebpa by binding to their promoter regions. Our findings provide us with a better understanding of placental development and placenta-related diseases.
Collapse
Affiliation(s)
- Gaoyang Zhu
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Fei
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongwei Li
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Tang S, Lv J, Chen X, Bai L, Li H, Chen C, Wang P, Xu X, Lu J. Prenatal Diagnosis of DNA Copy Number Variations by Genomic Single-Nucleotide Polymorphism Array in Fetuses with Congenital Heart Defects. Fetal Diagn Ther 2015; 39:64-73. [DOI: 10.1159/000431320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022]
Abstract
Objectives: To evaluate the usefulness of single-nucleotide polymorphism (SNP) array for prenatal genetic diagnosis of congenital heart defect (CHD), we used this approach to detect clinically significant copy number variants (CNVs) in fetuses with CHDs. Methods: A HumanCytoSNP-12 array was used to detect genomic samples obtained from 39 fetuses that exhibited cardiovascular abnormalities on ultrasound and had a normal karyotype. The relationship between CNVs and CHDs was identified by using genotype-phenotype comparisons and searching of chromosomal databases. All clinically significant CNVs were confirmed by real-time PCR. Results: CNVs were detected in 38/39 (97.4%) fetuses: variants of unknown significance were detected in 2/39 (5.1%), and clinically significant CNVs were identified in 7/39 (17.9%). In 3 of the 7 fetuses with clinically significant CNVs, 3 rare and previously undescribed CNVs were detected, and these CNVs encompassed the CHD candidate genes FLNA (Xq28 dup), BCOR (Xp11.4 dup), and RBL2 (16q12.2 del). Conclusion: Compared with conventional cytogenetic genomics, SNP array analysis provides significantly improved detection of submicroscopic genomic aberrations in pregnancies with CHDs. Based on these results, we propose that genomic SNP array is an effective method which could be used in the prenatal diagnostic test to assist genetic counseling for pregnancies with CHDs.
Collapse
|
25
|
Surapornsawasd T, Ogawa T, Moriyama K. Identification of nuclear localization signals within the human BCOR protein. FEBS Lett 2015; 589:3313-20. [PMID: 26054978 DOI: 10.1016/j.febslet.2015.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022]
Abstract
Mutations in the BCL-6 corepressor (BCOR) gene, which encodes a transcriptional corepressor, were described to cause oculofaciocardiodental syndrome (MIM 300166). The purpose of this study was to localize the classical nuclear localization signals (NLSs) of the BCOR using reported human BCOR mutations with comparable phenotypes. The genotype-phenotype correlation among the mutations could not be clearly explained; however, the classical NLSs were identified at two possible sites; RVDRKRKVSGD at aa1131-1141 (NLS1) and LKAKRRRVSK at aa1158-1167 (NLS2). In addition, according to our results, NLS2 displayed a more efficient nuclear import function than NLS1.
Collapse
Affiliation(s)
- Thunyaporn Surapornsawasd
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Takuya Ogawa
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
26
|
Di Stefano C, Lombardo B, Fabbricatore C, Munno C, Caliendo I, Gallo F, Pastore L. Oculo-facio-cardio-dental (OFCD) syndrome: The first Italian case of BCOR and co-occurring OTC gene deletion. Gene 2015; 559:203-6. [DOI: 10.1016/j.gene.2015.01.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
|
27
|
Danda S, van Rahden VA, John D, Paul P, Raju R, Koshy S, Kutsche K. Evidence of Germline Mosaicism for a Novel BCOR Mutation in Two Indian Sisters with Oculo-Facio-Cardio-Dental Syndrome. Mol Syndromol 2014; 5:251-6. [PMID: 25337074 DOI: 10.1159/000365768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 02/04/2023] Open
Abstract
In this study, we report on 2 sisters from India with oculo-facio-cardio-dental (OFCD) syndrome caused by a novel heterozygous mutation c.3490C>T (p.R1164*) in the BCOR gene. OFCD syndrome is an X-linked inherited disorder which is lethal in males. Interestingly, both parents of the sisters were phenotypically normal, and DNA analysis from blood and buccal or saliva cells failed to detect the BCOR mutation found in their 2 daughters. To the best of our knowledge, for the first time, we provide indirect evidence of germline mosaicism for the BCOR mutation in one of the parents of the 2 sisters affected by OFCD syndrome. Although this condition is lethal in males, gonadal mosaicism could also be present in the father. The relevance of clinical diagnosis and mutation analysis required for genetic counseling is described in this family.
Collapse
Affiliation(s)
- Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, India
| | - Vanessa A van Rahden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deepa John
- Department of Ophthalmology, Christian Medical College and Hospital, Vellore, India
| | - Padma Paul
- Department of Ophthalmology, Christian Medical College and Hospital, Vellore, India
| | - Renu Raju
- Department of Ophthalmology, Christian Medical College and Hospital, Vellore, India
| | - Santosh Koshy
- Department of Dental Surgery, Christian Medical College and Hospital, Vellore, India
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
|
29
|
Surapornsawasd T, Ogawa T, Tsuji M, Moriyama K. Oculofaciocardiodental syndrome: novel BCOR mutations and expression in dental cells. J Hum Genet 2014; 59:314-20. [DOI: 10.1038/jhg.2014.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/20/2014] [Accepted: 02/28/2014] [Indexed: 11/10/2022]
|
30
|
A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome. Dev Biol 2014; 387:28-36. [PMID: 24440151 DOI: 10.1016/j.ydbio.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 01/16/2023]
Abstract
Pitx2 is the last effector of the left-right (LR) cascade known to date and plays a crucial role in the patterning of LR asymmetry. In Xenopus embryos, the expression of Pitx2 gene in the left lateral plate mesoderm (LPM) is directly regulated by Xnr1 signaling, which is mediated by Smads and FoxH1. Previous studies suggest that the suppression of Pitx2 gene in the left LPM is a potential cause of cardiac/laterality defects in Oculo-Facio-Cardio-Dental (OFCD) syndrome, which is known to be caused by mutations in BCL6 co-repressor (BCOR) gene. Recently, our work has revealed that the BCL6/BCOR complex blocks Notch-dependent transcriptional activity to protect the expression of Pitx2 in the left LPM from the inhibitory activity of Notch signaling. These studies indicated that uncontrolled Notch activity in the left LPM caused by dysfunction of BCOR may result in cardiac/laterality defects of OFCD syndrome. However, this Notch-dependent inhibitory mechanism of Pitx2 gene transcription still remains unknown. Here we report that transcriptional repressor ESR1, which acts downstream of Notch signaling, inhibits the expression of Pitx2 gene by binding to a left side-specific enhancer (ASE) region in Pitx2 gene and recruiting histone deacetylase 1 (HDAC1) to this region. Once HDAC1 is tethered, histone acetyltransferase p300 is no longer recruited to the Xnr1-dependent transcriptional complex on the ASE region, leading to the suppression of Pitx2 gene in the left LPM. The study presented here uncovers the regulatory mechanism of Pitx2 gene transcription which may contribute to an understanding of pathogenesis of OFCD syndrome.
Collapse
|
31
|
Suzumori N, Kaname T, Muramatsu Y, Yanagi K, Kumagai K, Mizuno S, Naritomi K, Saitoh S, Sugiura-Ogasawara M. Prenatal diagnosis of X-linked recessive Lenz microphthalmia syndrome. J Obstet Gynaecol Res 2013; 39:1545-7. [DOI: 10.1111/jog.12081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Nobuhiro Suzumori
- Departments of Obstetrics and Gynecology; Nagoya City University Graduate School of Medical Sciences; Nagoya
- Division of Clinical and Molecular Genetics; Nagoya City University Graduate School of Medical Sciences; Nagoya
| | - Tadashi Kaname
- Departments of Medical Genetics; University of the Ryukyus Faculty of Medicine; Nishihara
| | - Yukako Muramatsu
- Division of Clinical and Molecular Genetics; Nagoya City University Graduate School of Medical Sciences; Nagoya
- Department of Clinical Genetics; Central Hospital; Aichi Human Service Center; Kasugai Japan
| | - Kumiko Yanagi
- Departments of Medical Genetics; University of the Ryukyus Faculty of Medicine; Nishihara
| | - Kyoko Kumagai
- Departments of Obstetrics and Gynecology; Nagoya City University Graduate School of Medical Sciences; Nagoya
- Division of Clinical and Molecular Genetics; Nagoya City University Graduate School of Medical Sciences; Nagoya
| | - Seiji Mizuno
- Department of Clinical Genetics; Central Hospital; Aichi Human Service Center; Kasugai Japan
| | - Kenji Naritomi
- Departments of Medical Genetics; University of the Ryukyus Faculty of Medicine; Nishihara
| | - Shinji Saitoh
- Departments of Pediatrics and Neonatology; Nagoya City University Graduate School of Medical Sciences; Nagoya
| | - Mayumi Sugiura-Ogasawara
- Departments of Obstetrics and Gynecology; Nagoya City University Graduate School of Medical Sciences; Nagoya
| |
Collapse
|
32
|
Feberwee H, Feenstra I, Oberoi S, Sama I, Ockeloen C, Clum F, Slavotinek A, Kuijpers M, Dooijes D, Kuijpers-Jagtman A, Kleefstra T, Carels C. NovelBCORmutations in patients with oculofaciocardiodental (OFCD) syndrome. Clin Genet 2013; 85:194-7. [DOI: 10.1111/cge.12125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
| | - I. Feenstra
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | | | - C.W. Ockeloen
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - F. Clum
- Department of Pediatrics; University of California; San Francisco CA USA
| | | | | | - D. Dooijes
- Department of Medical Genetics; University Medical Centre Utrecht; Utrecht The Netherlands
| | | | - T. Kleefstra
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | | |
Collapse
|
33
|
Lozić B, Ljubković J, Pandurić DG, Saltvig I, Kutsche K, Krželj V, Zemunik T. Oculo-facio-cardio-dental syndrome in three succeeding generations: genotypic data and phenotypic features. Braz J Med Biol Res 2012; 45:1315-9. [PMID: 22983184 PMCID: PMC3854205 DOI: 10.1590/s0100-879x2012007500150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked disorder mainly manifesting in females. Patients show ocular, facial, cardiac, and dental abnormalities. OFCD syndrome is caused by heterozygous mutations in the BCOR gene, located in Xp11.4, encoding the BCL6 co-repressor. We report a Croatian family with four female members (grandmother, mother and monozygotic female twins) diagnosed with OFCD syndrome who carry the novel BCOR mutation c.4438C>T (p.R1480*). They present high intrafamilial phenotypic variability with special regard to cardiac defect and cataract that showed more severe disease expression in successive generations. Clinical and radiographic examination of the mother of the twins revealed a talon cusp involving the permanent maxillary right central incisor. This is the first known report of a talon cusp in OFCD syndrome with a novel mutation in the BCOR gene.
Collapse
Affiliation(s)
- B Lozić
- Department of Pediatrics, University Hospital Split, Split, Croatia
| | | | | | | | | | | | | |
Collapse
|
34
|
Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104:448-56. [PMID: 22005280 PMCID: PMC3224152 DOI: 10.1016/j.ymgme.2011.09.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33-95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, oculofaciocardiodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.
| |
Collapse
|
35
|
Rudrappa S, Kumar R, Kumar GS. Oculo-facio-cardio-dental syndrome in a girl and her mother. INDIAN JOURNAL OF HUMAN GENETICS 2011; 16:169-71. [PMID: 21206708 PMCID: PMC3009431 DOI: 10.4103/0971-6866.73416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Congenital heart defects are known to be associated with facial dysmorphism and other congenital anomalies. Oculo-facio-cardio-dental (OFCD) syndrome is one such rare multiple congenital anomaly syndrome inherited as an X-linked dominant condition characterized by congenital cataracts, multiple minor facial dysmorphic features, congenital heart defects and dental anomalies. It is unrecognized by many medical and dental professionals. Only 21 cases have been reported so far. This syndrome is often misrecognized as rubella embryopathy because of association of congenital cataract with cardiac anomalies. It is usually the orthodontists who diagnose the syndrome based on typical findings on dental panoramic radiographs. But we suspected our patient to be having OFCD syndrome based on typical facial dysmorphism, ocular and cardiac defects, and finally it was confirmed after noticing typical dental radiographic findings.
Collapse
Affiliation(s)
- Sudha Rudrappa
- Department of Pediatrics, Mysore Medical College and Research Institute, Mysore, Karnataka, India
| | | | | |
Collapse
|
36
|
Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, Natale RB, Luther G, Luo Q, Wang L, Rames R, Bi Y, Luo J, Luu HH, Haydon RC, Reid RR, He TC. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int 2011; 2011:201371. [PMID: 21772852 PMCID: PMC3137957 DOI: 10.4061/2011/201371] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 12/20/2022] Open
Abstract
Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.
Collapse
Affiliation(s)
- Chad M Teven
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Davoody A, Chen IP, Nanda R, Uribe F, Reichenberger EJ. Oculofaciocardiodental syndrome: a rare case and review of the literature. Cleft Palate Craniofac J 2011; 49:e55-60. [PMID: 21740180 DOI: 10.1597/10-256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oculofaciocardiodental syndrome is a rare genetic disorder affecting ocular, facial, dental, and cardiac systems. The clinical diagnosis of oculofaciocardiodental syndrome can be challenging due to a wide variety of symptoms. Oculofaciocardiodental syndrome is found only in females due to its X-linked inheritance pattern and embryonic lethality for males. Radiculomegaly of canines is the most consistent finding in these patients. In this report we present a female patient with characteristic facial features, as well as a comprehensive overview of oculofaciocardiodental syndrome. Diagnosis of oculofaciocardiodental syndrome in this patient was verified by genetic analysis, during which we found a novel mutation in BCOR.
Collapse
Affiliation(s)
- Amirparviz Davoody
- University of Connecticut Health Center, Department of Craniofacial Sciences, Division of Orthodontics, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
38
|
Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, Wang CY. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 2009; 11:1002-9. [PMID: 19578371 PMCID: PMC2752141 DOI: 10.1038/ncb1913] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/22/2009] [Indexed: 12/14/2022]
Abstract
BCOR (BCL6 co-repressor) represses gene transcription by interacting with BCL-6 1, 2. BCOR mutation is responsible for oculo-facio-cardio-dental (OFCD) syndrome, characterized by canine teeth with extremely long roots, congenital cataracts, craniofacial defects and congenital heart disease3–5. Here we show that BCOR mutation increased osteo/dentinogenic potentials of mesenchymal stem cells (MSCs) isolated from an OFCD patient, providing a molecular explanation for abnormal root growth. AP-2α was identified as a repressive target of BCOR, and BCOR mutation resulted in abnormal activation of AP-2α. Gain- and loss-of-function assays suggested that AP-2α was a key factor that mediated increased osteo/dentinogenic capacity of MSCs. Moreover, we found that BCOR maintained tissue homeostasis and gene silencing by epigenetic mechanisms. BCOR mutation increased histone H3K4/36 methylation in MSCs, thereby reactivating transcription of silenced target genes. In summary, by studying a rare human genetic disease, we unravel an epigenetic mechanism for control of human adult stem cell function.
Collapse
Affiliation(s)
- Zhipeng Fan
- Lab of Molecular Signaling, Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hilton E, Johnston J, Whalen S, Okamoto N, Hatsukawa Y, Nishio J, Kohara H, Hirano Y, Mizuno S, Torii C, Kosaki K, Manouvrier S, Boute O, Perveen R, Law C, Moore A, Fitzpatrick D, Lemke J, Fellmann F, Debray FG, Dastot-Le-Moal F, Gerard M, Martin J, Bitoun P, Goossens M, Verloes A, Schinzel A, Bartholdi D, Bardakjian T, Hay B, Jenny K, Johnston K, Lyons M, Belmont JW, Biesecker LG, Giurgea I, Black G. BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet 2009; 17:1325-35. [PMID: 19367324 DOI: 10.1038/ejhg.2009.52] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.
Collapse
Affiliation(s)
- Emma Hilton
- Academic Unit of Medical Genetics, St Mary's Hospital, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
42
|
Wamstad JA, Bardwell VJ. Characterization of Bcor expression in mouse development. Gene Expr Patterns 2007; 7:550-7. [PMID: 17344103 PMCID: PMC2002546 DOI: 10.1016/j.modgep.2007.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/04/2007] [Accepted: 01/24/2007] [Indexed: 11/24/2022]
Abstract
Mutation of the gene encoding the transcriptional corepressor BCOR results in the X-linked disorder Oculofaciocardiodental syndrome (OFCD or MCOPS2). Female OFCD patients suffer from severe ocular, craniofacial, cardiac, and digital developmental defects and males do not survive through gestation. BCOR can mediate transcriptional repression by the oncoprotein BCL6 and has the ability to reduce transcriptional activation by AF9, a known mixed-lineage leukemia (MLL) fusion partner. The essential role of BCOR in development and its ability to modulate activity of known oncogenic proteins prompted us to determine the expression profile of Bcor during mouse development. Identification of independently transcribed exons in the 5' untranslated region of Bcor suggests that three independent promoters control the expression of Bcor in mice. Although Bcor is widely expressed in adult mouse tissues, analysis of known spliced isoforms in the coding region of Bcor reveals differential isoform usage. Whole mount in situ hybridization of mouse embryos shows that Bcor is strongly expressed in the extraembryonic tissue during gastrulation and expression significantly increases throughout the embryo after embryonic turning. During organogenesis and fetal stages Bcor is differentially expressed in multiple tissue lineages, with a notable presence in the developing nervous system. Strikingly, we observed that Bcor expression in the eye, brain, neural tube, and branchial arches correlates with tissues affected in OFCD patients.
Collapse
Affiliation(s)
- Joseph A Wamstad
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To integrate knowledge on the embryologic and molecular basis of optic fissure closure with clinical observations in patients with uveal coloboma. RECENT FINDINGS Closure of the optic fissure has been well characterized and many genetic alterations have been associated with coloboma; however, molecular mechanisms leading to coloboma remain largely unknown. In the past decade, we have gained better understanding of genes critical to eye development; however, mutations in these genes have been found in few individuals with coloboma. CHD7 mutations have been identified in patients with CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth, genital anomalies, and ear anomalies or deafness). Animal models are bringing us closer to a molecular understanding of optic fissure closure. SUMMARY Optic fissure closure requires precise orchestration in timing and apposition of two poles of the optic cup. The relative roles of genetics and environment on this process remain elusive. While most cases of coloboma are sporadic, autosomal dominant, autosomal recessive, and X-linked inheritance patterns have been described. Genetically, colobomata demonstrate pleiotropy, heterogeneity, variable expressivity, and reduced penetrance. Coloboma is a complex disorder with a variable prognosis and requires regular examination to optimize visual acuity and to monitor for potential complications.
Collapse
Affiliation(s)
- Lan Chang
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Martínez-Garay I, Tomás M, Oltra S, Ramser J, Moltó MD, Prieto F, Meindl A, Kutsche K, Martínez F. A two base pair deletion in the PQBP1 gene is associated with microphthalmia, microcephaly, and mental retardation. Eur J Hum Genet 2006; 15:29-34. [PMID: 17033686 DOI: 10.1038/sj.ejhg.5201717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
X-linked mental retardation has been traditionally divided into syndromic (S-XLMR) and non-syndromic forms (NS-XLMR), although the borderlines between these phenotypes begin to vanish and mutations in a single gene, for example PQBP1, can cause S-XLMR as well as NS-XLMR. Here, we report two maternal cousins with an apparently X-linked phenotype of mental retardation (MR), microphthalmia, choroid coloboma, microcephaly, renal hypoplasia, and spastic paraplegia. By multipoint linkage analysis with markers spanning the entire X-chromosome we mapped the disease locus to a 28-Mb interval between Xp11.4 and Xq12, including the BCOR gene. A missense mutation in BCOR was described in a family with Lenz microphthalmia syndrome, a phenotype showing substantial overlapping features with that described in the two cousins. However, no mutation in the BCOR gene was found in both patients. Subsequent mutation analysis of PQBP1, located within the delineated linkage interval in Xp11.23, revealed a 2-bp deletion, c.461_462delAG, that cosegregated with the disease. Notably, the same mutation is associated with the Hamel cerebropalatocardiac syndrome, another form of S-XLMR. Haplotype analysis suggests a germline mosaicism of the 2-bp deletion in the maternal grandmother of both affected individuals. In summary, our findings demonstrate for the first time that mutations in PQBP1 are associated with an S-XLMR phenotype including microphthalmia, thereby further extending the clinical spectrum of phenotypes associated with PQBP1 mutations.
Collapse
Affiliation(s)
- Isabel Martínez-Garay
- Unidad de Genética, Hospital Universitario La Fe, Departamento de Genética, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|