1
|
Llanos-Ardaiz A, Lantero A, Neri L, Mauleón I, Ruiz de Galarreta M, Trigueros-Motos L, Weber ND, Ferrer V, Aldabe R, Gonzalez-Aseguinolaza G. In Vivo Selection of S/MAR Sequences to Favour AAV Episomal Maintenance in Dividing Cells. Int J Mol Sci 2024; 25:12734. [PMID: 39684442 DOI: 10.3390/ijms252312734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy has emerged as a promising alternative to liver transplantation for monogenic metabolic hepatic diseases. AAVs are non-integrative vectors that are maintained primarily as episomes in quiescent cells like adult hepatocytes. This quality, while advantageous from a safety perspective due to a decreased risk of insertional mutagenesis, becomes a disadvantage when treating dividing cells, as it inevitably leads to the loss of the therapeutic genome. This is a challenge for the treatment of hereditary liver diseases that manifest in childhood. One potential approach to avoid vector genome loss involves putting scaffold/matrix attachment regions (S/MARs) into the recombinant AAV (rAAV) genome to facilitate its replication together with the cellular genome. We found that the administration of AAVs carrying the human β-interferon S/MAR sequence to neonatal and infant mice resulted in the maintenance of higher levels of viral genomes. However, we also observed that its inclusion at the 3' end of the mRNA negatively impacted its stability, leading to reduced mRNA and protein levels. This effect can be partially attenuated by incorporating nonsense-mediated decay (NMD)-inhibitory sequences into the S/MAR containing rAAV genome, whose introduction may aid in the development of more efficient and longer-lasting gene therapy rAAV vectors.
Collapse
Affiliation(s)
- Andrea Llanos-Ardaiz
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | - Leire Neri
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Itsaso Mauleón
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | | | | | | | - Rafael Aldabe
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
2
|
Lazaris VM, Simantirakis E, Stavrou EF, Verras M, Sgourou A, Keramida MK, Vassilopoulos G, Athanassiadou A. Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells. Genes (Basel) 2023; 14:1774. [PMID: 37761914 PMCID: PMC10530965 DOI: 10.3390/genes14091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
β-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating and non-coding for viral proteins, may be helpful in generating valid alternatives to viral vectors. We constructed a non-viral, episomal vector pEPβ-globin for the physiological β-globin gene based on two human chromosomal elements: the scaffold or matrix attachment region (S/MAR), allowing for long nuclear retention and non-integration and the β-globin replication initiation region (IR), allowing for enhancement of replication and establishment. After nucleofections into K562 cells with a transfection efficiency of 24.62 ± 7.7%, the vector induces stable transfection and is detected in long-term cultures as a non-integrating, circular episome expressing the β-globin gene efficiently. Transfections into CD34+ cells demonstrate an average efficiency of 15.57 ± 11.64%. In the colony-forming cell assay, fluorescent colonies are 92.21%, which is comparable to those transfected with vector pEP-IR at 92.68%. Additionally, fluorescent colonies produce β-globin mRNA at a physiologically 3-fold higher level than the corresponding non-transfected cells. Vector pEPβ-globin provides the basis for the development of therapeutic EV for gene therapy of β-thalassemias.
Collapse
Affiliation(s)
- Vassileios M. Lazaris
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Emmanouil Simantirakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.S.); (G.V.)
| | - Eleana F. Stavrou
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Meletios Verras
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece;
| | - Maria K. Keramida
- IVF and Andrology Labs, IVF Unit, General University Hospital of Patras, 26504 Patras, Greece;
| | - George Vassilopoulos
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.S.); (G.V.)
| | - Aglaia Athanassiadou
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| |
Collapse
|
3
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
Khan SU, Khan MU, Khan MI, Kalsoom F, Zahra A. Current Landscape and Emerging Opportunities of Gene Therapy with Non-viral Episomal Vectors. Curr Gene Ther 2023; 23:135-147. [PMID: 36200188 DOI: 10.2174/1566523222666221004100858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027,People's Republic of China
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Fadia Kalsoom
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Aqeela Zahra
- Department of Family and Community Medicine. College of Medicine, University of Ha'il, Ha'il 81451, Saudi Arabia
| |
Collapse
|
5
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
6
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|
7
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
8
|
Di Blasi R, Marbiah MM, Siciliano V, Polizzi K, Ceroni F. A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation. Nat Commun 2021; 12:2545. [PMID: 33953169 PMCID: PMC8099865 DOI: 10.1038/s41467-021-22795-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Transient transfections are routinely used in basic and synthetic biology studies to unravel pathway regulation and to probe and characterise circuit designs. As each experiment has a component of intrinsic variability, reporter gene expression is usually normalized with co-delivered genes that act as transfection controls. Recent reports in mammalian cells highlight how resource competition for gene expression leads to biases in data interpretation, with a direct impact on co-transfection experiments. Here we define the connection between resource competition and transient transfection experiments and discuss possible alternatives. Our aim is to raise awareness within the community and stimulate discussion to include such considerations in future experimental designs, for the development of better transfection controls.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Masue M Marbiah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Velia Siciliano
- Synthetic and Systems Biology lab for Biomedicine, Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples (ITA), Italy
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK. .,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
9
|
Wang T, Chen Y, Goodale D, Allan AL, Ronald JA. A survivin-driven, tumor-activatable minicircle system for prostate cancer theranostics. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:209-219. [PMID: 33665359 PMCID: PMC7889447 DOI: 10.1016/j.omto.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Gene vectors regulated by tumor-specific promoters to express transgenes specifically in cancer cells are an emerging approach for cancer diagnosis and treatment. Minicircles are shortened plasmids stripped of prokaryotic sequences that have potency and safety characteristics beneficial for clinical translation. Previously, we developed minicircles driven by the tumor-specific survivin promoter, which exhibits elevated transcriptional activity in aggressive cancers, to express a secreted reporter for blood-based cancer detection. Here we present the first activatable, cancer theranostic minicircle system featuring a pair of diagnostic and therapeutic minicircles expressing Gaussia luciferase for urine-based cancer detection or cytosine deaminase:uracil phosphoribosyltransferase for gene-directed enzyme prodrug therapy. Diagnostic minicircles revealed urinary reporter output related to cellular survivin levels. Notably, mice with aggressive prostate tumors exhibited significantly higher urine reporter activity than mice with non-aggressive tumors and healthy mice after intratumoral minicircle administration. Therapeutic minicircles displayed specific cytotoxicity in survivin-rich cancer cells and significantly attenuated growth of aggressive orthotopic prostate tumors in mice. Use of these minicircles together creates a theranostic system that can first identify individuals carrying aggressive prostate cancer via a urinary test, followed by stringent control of tumor progression in stratified individuals who carry high-risk prostate lesions.
Collapse
Affiliation(s)
- TianDuo Wang
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada
| | - Yuanxin Chen
- Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Science Centre, London, ON N6C 2R5, Canada
| | - Alison L Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,London Regional Cancer Program, London Health Science Centre, London, ON N6C 2R5, Canada.,Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada.,Robarts Research Institute - Imaging Research Laboratories, London, ON N6A 3K7, Canada.,Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
10
|
Stavrou EF, Simantirakis E, Verras M, Barbas C, Vassilopoulos G, Peterson KR, Athanassiadou A. Episomal vectors based on S/MAR and the β-globin Replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells. Sci Rep 2019; 9:19765. [PMID: 31874995 PMCID: PMC6930265 DOI: 10.1038/s41598-019-56056-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/30/2019] [Indexed: 12/19/2022] Open
Abstract
We report the development of episomal vectors for the specific γ-globin transcription activation in its native position by activator Zif-VP64, based on the Scaffold/Matrix Attachment Region (S/MAR) for episomal retention and the β-globin Replicator, the DNA replication-Initiation Region from the β-globin locus. Vector Zif-VP64-Ep1 containing transcription cassettes CMV- Zif-VP64 and CMV-eGFP-S/MAR transfected a)K562 cells; b)murine β-YAC bone marrow cells (BMC); c)human haematopoietic progenitor CD34+ cells, with transfection efficiencies of 46.3 ± 5.2%, 23.0 ± 2.1% and 24.2 ± 2.4% respectively. K562 transfections generated stable cell lines running for 28 weeks with and without selection, with increased levels of γ-globin mRNA by 3.3 ± 0.13, of γ-globin protein by 6.75 ± 3.25 and HbF protein by 2 ± 0.2 fold, while the vector remained episomal and non integrated. In murine β-YAC BMCs the vector mediated the activation of the silent human γ-globin gene and in CD34+ cells, increased γ-globin mRNA, albeit only transiently. A second vector Zif-VP64-Ep2, with both transcription cassettes carrying promoter SFFV instead of CMV and the addition of β-globin Replicator, transferred into CD34+ cells, produced CD34+ eGFP+ cells, that generated colonies in colony forming cell cultures. Importantly, these were 100% fluorescent, with 2.11 ± 0.13 fold increased γ-globin mRNA, compared to non-transfected cells. We consider these episomal vectors valid, safer alternatives to viral vectors.
Collapse
Affiliation(s)
- Eleana F Stavrou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece.
| | - Emannuouil Simantirakis
- Hematology Clinic, Medical School, University of Thessaly and Gene and Cell Therapy Laboratory, BRFAA, Athens, Greece
| | - Meletios Verras
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Carlos Barbas
- Skaggs Institute for Chemical Biology, Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA
| | - George Vassilopoulos
- Hematology Clinic, Medical School, University of Thessaly and Gene and Cell Therapy Laboratory, BRFAA, Athens, Greece
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aglaia Athanassiadou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
11
|
Sugimoto N, Maehara K, Yoshida K, Ohkawa Y, Fujita M. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells. Nucleic Acids Res 2019; 46:6683-6696. [PMID: 29893900 PMCID: PMC6061783 DOI: 10.1093/nar/gky476] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
In metazoan cells, only a limited number of mini chromosome maintenance (MCM) complexes are fired during S phase, while the majority remain dormant. Several methods have been used to map replication origins, but such methods cannot identify dormant origins. Herein, we determined MCM7-binding sites in human cells using ChIP-Seq, classified them into firing and dormant origins using origin data and analysed their association with various chromatin signatures. Firing origins, but not dormant origins, were well correlated with open chromatin regions and were enriched upstream of transcription start sites (TSSs) of transcribed genes. Aggregation plots of MCM7 signals revealed minimal difference in the efficacy of MCM loading between firing and dormant origins. We also analysed common fragile sites (CFSs) and found a low density of origins at these sites. Nevertheless, firing origins were enriched upstream of the TSSs. Based on the results, we propose a model in which excessive MCMs are actively loaded in a genome-wide manner, irrespective of chromatin status, but only a fraction are passively fired in chromatin areas with an accessible open structure, such as regions upstream of TSSs of transcribed genes. This plasticity in the specification of replication origins may minimize collisions between replication and transcription.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Efficient episomal gene transfer to human hepatic cells using the pFAR4–S/MAR vector. Mol Biol Rep 2019; 46:3203-3211. [PMID: 30980265 DOI: 10.1007/s11033-019-04777-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
|
13
|
Hagedorn C, Gogol-Döring A, Schreiber S, Epplen JT, Lipps HJ. Genome-wide profiling of S/MAR-based replicon contact sites. Nucleic Acids Res 2017; 45:7841-7854. [PMID: 28609784 PMCID: PMC5570033 DOI: 10.1093/nar/gkx522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/05/2017] [Indexed: 11/14/2022] Open
Abstract
Autonomously replicating vectors represent a simple and versatile model system for genetic modifications, but their localization in the nucleus and effect on endogenous gene expression is largely unknown. Using circular chromosome conformation capture we mapped genomic contact sites of S/MAR-based replicons in HeLa cells. The influence of cis-active sequences on genomic localization was assessed using replicons containing either an insulator sequence or an intron. While the original and the insulator-containing replicons displayed distinct contact sites, the intron-containing replicon showed a rather broad genomic contact pattern. Our results indicate a preference for certain chromatin structures and a rather non-dynamic behaviour during mitosis. Independent of inserted cis-active elements established vector molecules reside preferentially within actively transcribed regions, especially within promoter sequences and transcription start sites. However, transcriptome analyses revealed that established S/MAR-based replicons do not alter gene expression profiles of host genome. Knowledge of preferred contact sites of exogenous DNA, e.g. viral or non-viral episomes, contribute to our understanding of episome behaviour in the nucleus and can be used for vector improvement and guiding of DNA sequences to specific subnuclear sites.
Collapse
Affiliation(s)
- Claudia Hagedorn
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany
| | - Andreas Gogol-Döring
- Technische Hochschule Mittelhessen (University of Applied Sciences), Department of Bioinformatics, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Sabrina Schreiber
- Department of Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jörg T Epplen
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany.,Department of Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hans J Lipps
- University of Witten/Herdecke, ZBAF, Institute of Cell Biology, Stockumer Strasse 10, 58453 Witten, Germany
| |
Collapse
|
14
|
Hagedorn C, Schnödt-Fuchs M, Boehme P, Abdelrazik H, Lipps HJ, Büning H. S/MAR Element Facilitates Episomal Long-Term Persistence of Adeno-Associated Virus Vector Genomes in Proliferating Cells. Hum Gene Ther 2017; 28:1169-1179. [PMID: 28665147 DOI: 10.1089/hum.2017.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are one of the most frequently applied gene transfer systems in research and human clinical trials. Since AAV vectors do not possess an integrase activity, application is restricted to terminally differentiated tissues if transgene expression is required long term. To overcome this limitation and to generate AAV vectors that persist episomally in dividing cells, AAV vector genomes were equipped with a scaffold/matrix attachment region (S/MAR). After a mild antibiotic selection, cells transduced with AAV-S/MAR established colonies that maintained long-term transgene expression (>50 population doublings) from replicating AAV vector episomes in the absence of further selection. Unexpectedly, with a lesser but still significant efficiency, the control vector (AAV-ΔS/MAR), a standard single-stranded AAV vector, also established stable transgene-expressing colonies, most of which were maintained as replicating episomes rather than integrated vector genomes. Thus, based on the result in HeLa cells, it is concluded that AAV vector genomes per se possess the ability to establish episomal maintenance in proliferating cells, a feature that can be enhanced by incorporation of a foreign genomic element such as an S/MAR element.
Collapse
Affiliation(s)
- Claudia Hagedorn
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Maria Schnödt-Fuchs
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 German Center for Infection Research (DZIF) , partner sites Bonn-Cologne and Hannover-Braunschweig
| | - Philip Boehme
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany .,5 Institute of Virology and Microbiology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Heba Abdelrazik
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,6 Clinical Pathology Department, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Hans J Lipps
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Hildegard Büning
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 German Center for Infection Research (DZIF) , partner sites Bonn-Cologne and Hannover-Braunschweig.,7 Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
15
|
Chen F, Qi X, Zhang R, Wu ZY, Yan CE, Li J, Liu QY, Qi J. Episomal lentiviral vectors confer erythropoietin expression in dividing cells. Plasmid 2017; 90:15-19. [PMID: 28189631 DOI: 10.1016/j.plasmid.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/07/2023]
Abstract
Lentiviral vectors are now widely considered as one of the most common gene delivery tools for dividing and non-dividing cells. However, insertional mutagenesis has been found in clinical trials with retroviral vectors, which poses a safety risk. The use of non-integrating lentiviral (NIL) vectors, which avoid integration, eliminates the insertional mutagenesis problem. These NIL vectors are unable to mediate stable gene delivery into dividing cells, which makes them of limited use in the clinical practice of gene therapy. In this study, we constructed a NIL vector which harbors the scaffold/matrix attachment region (S/MAR) sequence and a therapeutic gene. NIL retained episomal erythropoietin (EPO) gene expression for 74days in dividing cells both with and without selection. Furthermore, Southern blot analysis showed that the NIL vector was retained extrachromosomally in CHO cells. In conclusion, the NIL vector based on an S/MAR sequence retained the extrachromosomal expression of a therapeutic gene in dividing cells. Our results show that NIL vectors maybe a safe and effective means of gene delivery, which is of potential clinical significance.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China.
| | - Xin Qi
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, PR China
| | - Rong Zhang
- Department of Clinical Laboratory, Central Hospital of Qingdao, Qingdao 266042, Shandong, PR China
| | - Zong-Yong Wu
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Cui-E Yan
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Jia Li
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Qiu-Ying Liu
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Jun Qi
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| |
Collapse
|
16
|
Stavrou EF, Lazaris VM, Giannakopoulos A, Papapetrou E, Spyridonidis A, Zoumbos NC, Gkountis A, Athanassiadou A. The β-globin Replicator greatly enhances the potential of S/MAR based episomal vectors for gene transfer into human haematopoietic progenitor cells. Sci Rep 2017; 7:40673. [PMID: 28106085 PMCID: PMC5247744 DOI: 10.1038/srep40673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
Specific human chromosomal elements enhance the performance of episomal gene-transfer vectors. S/MAR-based episomal vector pEPI-eGFP transfects CD34+ haematopoietic cells, but only transiently. To address this issue we reinforced (1) transgene transcription by replacing the CMV promoter driving eGFP with the EF1/HTLV or SFFV promoters to produce vectors pEPI-EF1/HTLV and pEPI-SFFV, respectively; and (2) plasmid replication by inserting the replication-Initiation Region (IR) from the β-globin locus into vector pEPI-SFFV to produce vector pEP-IR. All vectors supported stable transfections in K562 cells. Transfections of CD34+ cells from peripheral blood of healthy donors reached 30% efficiency. Upon evaluation of CD34+/eGFP+ cells in colony-forming cell (CFC) assays, vector pEP-IR showed superior performance after 14 days, by fluorescent microscopy: 100% eGFP+-colonies against 0% for pEPI-eGFP, 56.9% for pEPI-SFFV and 49.8% for pEPI-EF1/HTLV; 50% more plasmid copies per cell and 3-fold eGFP expression compared to the latter two constructs, by quantitative (q)PCR and RT-qPCR, respectively. Importantly, the establishment rate in CFC assays was 15% for pEP-IR against 5.5% for pEPI-SFFV and 5% for pEPI-EF1/HTLV. Vector pEP-IR shows extremely low delivery rate but supports eGFP expression in thalassaemic mouse haematopoietic progenitor cells. The IR is a novel human control element for improved episomal gene transfer into progenitor cells.
Collapse
Affiliation(s)
- Eleana F. Stavrou
- Department of General Biology, School of Medicine, University of Patras, Greece
| | | | | | - Eirini Papapetrou
- Department of General Biology, School of Medicine, University of Patras, Greece
| | - Alexandros Spyridonidis
- Haematology Unit Department of Internal Medicine, School of Medicine, University of Patras, Greece
| | - Nikolas C. Zoumbos
- Haematology Unit Department of Internal Medicine, School of Medicine, University of Patras, Greece
| | - Antonis Gkountis
- Gene and Cell Therapy Center, Haematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | | |
Collapse
|
17
|
Sugimoto N, Fujita M. Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:61-78. [PMID: 29357053 DOI: 10.1007/978-981-10-6955-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA replication is a fundamental process required for the accurate and timely duplication of chromosomes. During late mitosis to G1 phase, the MCM2-7 complex is loaded onto chromatin in a manner dependent on ORC, CDC6, and Cdt1, and chromatin becomes licensed for replication. Although every eukaryotic organism shares common features in replication control, there are also some differences among species. For example, in higher eukaryotic cells including human cells, no strict sequence specificity has been observed for replication origins, unlike budding yeast or bacterial replication origins. Therefore, elements other than beyond DNA sequences are important for regulating replication. For example, the stability and precise positioning of nucleosomes affects replication control. However, little is known about how nucleosome structure is regulated when replication licensing occurs. During the last decade, histone acetylation enzyme HBO1, chromatin remodeler SNF2H, and histone chaperone GRWD1 have been identified as chromatin-handling factors involved in the promotion of replication licensing. In this review, we discuss how the rearrangement of nucleosome formation by these factors affects replication licensing.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
18
|
Xu Z, Chen F, Zhang L, Lu J, Xu P, Liu G, Xie X, Mu W, Wang Y, Liu D. Non-integrating lentiviral vectors based on the minimal S/MAR sequence retain transgene expression in dividing cells. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1024-1033. [PMID: 27614752 DOI: 10.1007/s11427-016-0067-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2016] [Indexed: 01/10/2023]
Abstract
Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.
Collapse
Affiliation(s)
- Zhen Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Feng Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lingling Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jing Lu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Peng Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xuemin Xie
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenli Mu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yajun Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Depei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
19
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
20
|
Impact of Different Promoters on Episomal Vectors Harbouring Characteristic Motifs of Matrix Attachment Regions. Sci Rep 2016; 6:26446. [PMID: 27226236 PMCID: PMC4881036 DOI: 10.1038/srep26446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that the characteristic sequence of matrix attachment regions (MARs) allows transgenes to be maintained episomally in CHO cells. In the present study, six commonly used promoters from human cytomegalovirus major immediate-early (CMV), simian vacuolating virus 40 (SV40), Rous sarcoma virus, Homo sapiens ubiquitin C, phosphoglycerate kinase, and β-globin, respectively, were evaluated to determine their effects on transgene expression and stability in CHO cells stably transfected via the episomal vector harbouring characteristic MAR motifs. The CHO cells were transfected with vectors and then screened using G418, after which the stably transfected cells were split into two and further cultured either in the presence or absence of G418. Of the six promoters, the CMV promoter yielded the highest transgene expression levels and the highest transfection efficiency, whereas the SV40 promoter maintained transgene expression more stably during long-term culture than the other promoters did. The CMV and SV40 promoter-containing vectors were furthermore episomally maintained and conferred sustained eGFP expression in the cells even under nonselective conditions. On the basis of these findings, we conclude that the CMV promoter performs best in terms of yielding both high expression levels and high levels of stability using this episomal vector system.
Collapse
|
21
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
22
|
Rizwani W, Chellappan SP. In vitro replication assay with mammalian cell extracts. Methods Mol Biol 2015; 1288:349-62. [PMID: 25827890 DOI: 10.1007/978-1-4939-2474-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India,
| | | |
Collapse
|
23
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
24
|
Lin Y, Li Z, Wang T, Wang X, Wang L, Dong W, Jing C, Yang X. MAR characteristic motifs mediate episomal vector in CHO cells. Gene 2015; 559:137-43. [DOI: 10.1016/j.gene.2015.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/24/2023]
|
25
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
26
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
27
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
28
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
29
|
Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. ADVANCES IN GENETICS 2014; 89:113-152. [PMID: 25620010 DOI: 10.1016/bs.adgen.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
Collapse
Affiliation(s)
- Suet Ping Wong
- Leukocyte Biology Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Verghese SC, Goloviznina NA, Skinner AM, Lipps HJ, Kurre P. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection. Nucleic Acids Res 2014; 42:e53. [PMID: 24474068 PMCID: PMC3985655 DOI: 10.1093/nar/gku082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 01/11/2023] Open
Abstract
Insertional oncogene activation and aberrant splicing have proved to be major setbacks for retroviral stem cell gene therapy. Integrase-deficient human immunodeficiency virus-1-derived vectors provide a potentially safer approach, but their circular genomes are rapidly lost during cell division. Here we describe a novel lentiviral vector (LV) that incorporates human ß-interferon scaffold/matrix-associated region sequences to provide an origin of replication for long-term mitotic maintenance of the episomal LTR circles. The resulting 'anchoring' non-integrating lentiviral vector (aniLV) achieved initial transduction rates comparable with integrating vector followed by progressive establishment of long-term episomal expression in a subset of cells. Analysis of aniLV-transduced single cell-derived clones maintained without selective pressure for >100 rounds of cell division showed sustained transgene expression from episomes and provided molecular evidence for long-term episome maintenance. To evaluate aniLV performance in primary cells, we transduced lineage-depleted murine hematopoietic progenitor cells, observing GFP expression in clonogenic progenitor colonies and peripheral blood leukocyte chimerism following transplantation into conditioned hosts. In aggregate, our studies suggest that scaffold/matrix-associated region elements can serve as molecular anchors for non-integrating lentivector episomes, providing sustained gene expression through successive rounds of cell division and progenitor differentiation in vitro and in vivo.
Collapse
Affiliation(s)
- Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA, Department of Surgery/Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA, Center for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, Witten 58453, Germany, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA and Department of Cell & Developmental Biology Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalya A. Goloviznina
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA, Department of Surgery/Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA, Center for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, Witten 58453, Germany, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA and Department of Cell & Developmental Biology Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy M. Skinner
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA, Department of Surgery/Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA, Center for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, Witten 58453, Germany, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA and Department of Cell & Developmental Biology Oregon Health & Science University, Portland, OR 97239, USA
| | - Hans J. Lipps
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA, Department of Surgery/Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA, Center for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, Witten 58453, Germany, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA and Department of Cell & Developmental Biology Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Kurre
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA, Department of Surgery/Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA, Center for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, Witten 58453, Germany, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA and Department of Cell & Developmental Biology Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
31
|
Gros J, Devbhandari S, Remus D. Origin plasticity during budding yeast DNA replication in vitro. EMBO J 2014; 33:621-36. [PMID: 24566988 DOI: 10.1002/embj.201387278] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre-replicative complexes (pre-RCs) license origins by loading Mcm2-7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2-7 DNA helicase. Budding yeast pre-RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre-RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.
Collapse
Affiliation(s)
- Julien Gros
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
32
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Epigenetic landscape for initiation of DNA replication. Chromosoma 2013; 123:183-99. [PMID: 24337246 DOI: 10.1007/s00412-013-0448-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
The key genetic process of DNA replication is initiated at specific sites referred to as replication origins. In eukaryotes, origins of DNA replication are not specified by a defined nucleotide sequence. Recent studies have shown that the structural context and topology of DNA sequence, chromatin features, and its transcriptional activity play an important role in origin choice. During differentiation and development, significant changes in chromatin organization and transcription occur, influencing origin activity and choice. In the last few years, a number of different genome-wide studies have broadened the understanding of replication origin regulation. In this review, we discuss the epigenetic factors and mechanisms that modulate origin choice and firing.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Russian Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
33
|
Genomic cis-acting Sequences Improve Expression and Establishment of a Nonviral Vector. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e118. [PMID: 24002728 PMCID: PMC3759742 DOI: 10.1038/mtna.2013.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/30/2023]
Abstract
The vector pEPI was the first nonviral and episomally replicating vector. Its functional element is an expression unit linked to a chromosomal scaffold/matrix attached region (S/MAR). The vector replicates autonomously with low copy number in various cell lines, is mitotically stable in the absence of selection over hundreds of generations, and was successfully used for the efficient generation of genetically modified pigs. Since it is assumed that establishment of the vector is a stochastic event and strongly depends on the nuclear compartment it reaches after transfection, it is of great interest to identify genomic sequences that guide DNA sequences into certain nuclear compartments. Here we inserted genomic cis-acting sequences into pEPI and examined their impact on transgene expression, long-term stability, and vector establishment. We demonstrated that a ubiquitous chromatin-opening element (UCOE) mediated enhanced transgene expression, while an insulator sequence (cHS4) increased establishment efficiency, presumably via an additional interaction with the nuclear matrix. Thus, besides being a promising alternative to currently used viral vectors in gene therapeutic approaches, pEPI may also serve as a tool to study nuclear compartmentalization; identification of genomic cis-acting sequences that are involved in nuclear organization will contribute to our understanding of the interplay between transgene expression, plasmid establishment, and nuclear architecture.
Collapse
|
34
|
Lombraña R, Almeida R, Revuelta I, Madeira S, Herranz G, Saiz N, Bastolla U, Gómez M. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013; 32:2631-44. [PMID: 23995398 DOI: 10.1038/emboj.2013.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022] Open
Abstract
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.
Collapse
Affiliation(s)
- Rodrigo Lombraña
- 1Functional Organization of the Genome Group, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Development and validation of non-integrative, self-limited, and replicating minicircles for safe reporter gene imaging of cell-based therapies. PLoS One 2013; 8:e73138. [PMID: 24015294 PMCID: PMC3756008 DOI: 10.1371/journal.pone.0073138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/24/2013] [Indexed: 12/24/2022] Open
Abstract
Reporter gene (RG) imaging of cell-based therapies provides a direct readout of therapeutic efficacy by assessing the fate of implanted cells. To permit long-term cellular imaging, RGs are traditionally required to be integrated into the cellular genome. This poses a potential safety risk and regulatory bottleneck for clinical translation as integration can lead to cellular transformation. To address this issue, we have developed non-integrative, replicating minicircles (MCs) as an alternative platform for safer monitoring of cells in living subjects. We developed both plasmids and minicircles containing the scaffold/matrix attachment regions (S/MAR) of the human interferon-beta gene, driven by the CMV promoter, and expressing the bioluminescence RG firefly luciferase. Constructs were transfected into breast cancer cells, and expanded S/MAR minicircle clones showed luciferase signal for greater than 3 months in culture and minicircles remained as episomes. Importantly, luciferase activity in clonal populations was slowly lost over time and this corresponded to a loss of episome, providing a way to reversibly label cells. To monitor cell proliferation in vivo, 1.5×106 cells carrying the S/MAR minicircle were implanted subcutaneously into mice (n = 5) and as tumors developed significantly more bioluminescence signal was noted at day 35 and 43 compared to day 7 post-implant (p<0.05). To our knowledge, this is the first work examining the use of episomal, self-limited, replicating minicircles to track the proliferation of cells using non-invasive imaging in living subjects. Continued development of S/MAR minicircles will provide a broadly applicable vector platform amenable with any of the numerous RG technologies available to allow therapeutic cell fate to be assessed in individual patients, and to achieve this without the need to manipulate the cell's genome so that safety concerns are minimized. This will lead to safe tools to assess treatment response at earlier time points and improve the precision of cell-based therapies.
Collapse
|
36
|
Voigtlander R, Haase R, Mück-Hausl M, Zhang W, Boehme P, Lipps HJ, Schulz E, Baiker A, Ehrhardt A. A Novel Adenoviral Hybrid-vector System Carrying a Plasmid Replicon for Safe and Efficient Cell and Gene Therapeutic Applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e83. [PMID: 23549553 PMCID: PMC3650243 DOI: 10.1038/mtna.2013.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives. Our hybrid-vector system synergizes high-capacity adenoviral vectors (HCAdV) for efficient delivery and the scaffold/matrix attachment region (S/MAR)–based pEPito plasmid replicon for episomal persistence. After proving that this plasmid replicon can be excised from adenovirus in vitro, colony forming assays were performed. We found an increased number of colonies of up to sevenfold in cells that received the functional plasmid replicon proving that the hybrid-vector system is functional. Transgene expression could be maintained for 6 weeks and the extrachromosomal plasmid replicon was rescued. To show efficacy in vivo, the adenoviral hybrid-vector system was injected into C57Bl/6 mice. We found that the plasmid replicon can be released from adenoviral DNA in murine liver resulting in long-term transgene expression. In conclusion, we demonstrate the efficacy of our novel HCAdV-pEPito hybrid-vector system in vitro and in vivo.
Collapse
Affiliation(s)
- Richard Voigtlander
- 1] Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany [2] Current address: Research Laboratory Endocrinology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Argyros O, Wong SP, Gowers K, Harbottle RP. Genetic modification of cancer cells using non-viral, episomal S/MAR vectors for in vivo tumour modelling. PLoS One 2012; 7:e47920. [PMID: 23110132 PMCID: PMC3482240 DOI: 10.1371/journal.pone.0047920] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/20/2012] [Indexed: 01/03/2023] Open
Abstract
The development of genetically marked animal tumour xenografts is an area of ongoing research to enable easier and more reliable testing of cancer therapies. Genetically marked tumour models have a number of advantages over conventional tumour models, including the easy longitudinal monitoring of therapies and the reduced number of animals needed for trials. Several different methods have been used in previous studies to mark tumours genetically, however all have limitations, such as genotoxicity and other artifacts related to the usage of integrating viral vectors. Recently, we have generated an episomally maintained plasmid DNA (pDNA) expression system based on Scaffold/Matrix Attachment Region (S/MAR), which permits long-term luciferase transgene expression in the mouse liver. Here we describe a further usage of this pDNA vector with the human Ubiquitin C promoter to create stably transfected human hepatoma (Huh7) and human Pancreatic Carcinoma (MIA-PaCa2) cell lines, which were delivered into “immune deficient” mice and monitored longitudinally over time using a bioluminometer. Both cell lines revealed sustained episomal long-term luciferase expression and formation of a tumour showing the pathological characteristics of hepatocellular carcinoma (HCC) and pancreatic carcinoma (PaCa), respectively. This is the first demonstration that a pDNA vector can confer sustained episomal luciferase transgene expression in various mouse tumour models and can thus be readily utilised to follow tumour formation without interfering with the cellular genome.
Collapse
Affiliation(s)
- Orestis Argyros
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Suet Ping Wong
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kate Gowers
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Richard Paul Harbottle
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Zhao Q, Lu B, George SK, Yoo JJ, Atala A. Safeguarding pluripotent stem cells for cell therapy with a non-viral, non-integrating episomal suicide construct. Biomaterials 2012; 33:7261-71. [DOI: 10.1016/j.biomaterials.2012.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/22/2012] [Indexed: 02/03/2023]
|
40
|
Papior P, Arteaga-Salas JM, Günther T, Grundhoff A, Schepers A. Open chromatin structures regulate the efficiencies of pre-RC formation and replication initiation in Epstein-Barr virus. ACTA ACUST UNITED AC 2012; 198:509-28. [PMID: 22891264 PMCID: PMC3514025 DOI: 10.1083/jcb.201109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of EBV replication origins demonstrate an excess of pre-replication
complexes that are formed at flexible MNase-sensitive sites in the genome. Whether or not metazoan replication initiates at random or specific but flexible
sites is an unsolved question. The lack of sequence specificity in origin
recognition complex (ORC) DNA binding complicates genome-scale chromatin
immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as
chromatinized minichromosomes that are replicated by the host replication
machinery. We used EBV to investigate the link between zones of pre-replication
complex (pre-RC) assembly, replication initiation, and micrococcal nuclease
(MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The
dyad symmetry element (DS) of EBV’s latent origin, a well-established and
very efficient pre-RC assembly region, served as an internal control. We
identified 64 pre-RC zones that correlate spatially with 57 short nascent strand
(SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to
regions of increased MNase sensitivity, which is a marker of origin strength.
Interestingly, although spatially correlated, pre-RC and SNS zones were
characterized by different features. We propose that pre-RCs are formed at
flexible but distinct sites, from which only a few are activated per single
genome and cell cycle.
Collapse
Affiliation(s)
- Peer Papior
- DNA Replication and Epigenetics group, Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 München, Germany
| | | | | | | | | |
Collapse
|
41
|
Mohr H, Mohr CA, Schneider MR, Scrivano L, Adler B, Kraner-Schreiber S, Schnieke A, Dahlhoff M, Wolf E, Koszinowski UH, Ruzsics Z. Cytomegalovirus replicon-based regulation of gene expression in vitro and in vivo. PLoS Pathog 2012; 8:e1002728. [PMID: 22685399 PMCID: PMC3369935 DOI: 10.1371/journal.ppat.1002728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 04/18/2012] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV) origin of lytic replication (oriLyt), were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed. All herpesviruses show a precisely regulated gene expression profile, including true-late genes, which are turned on only after the onset of DNA replication. We used this intrinsic viral mechanism to generate a versatile conditional gene expression system that exploits the activity of the murine cytomegalovirus (MCMV) viral origin of lytic replication (oriLyt). Upon virus infection, replication of the viral genome also led to the replication and activation of the oriLyt-coupled episomal transgene. The oriLyt-based replicons were silenced in all stable cell lines and transgenic mice; however, virus infection liberated the plasmids from histone-deacetylase-induced inactivation. As maximum gene expression relied on relief from silencing via replication of the episomal constructs, very strong induction of the reporter gene was achieved. We showed that this system can be used for trans-complementation of late, toxic viral genes, to block virus production by activating dominant-negative (DN) transgenes, and to provide a new tool to study the principles of viral replication.
Collapse
Affiliation(s)
- Hermine Mohr
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian A. Mohr
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laura Scrivano
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Maik Dahlhoff
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
42
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|
43
|
Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2011; 34:119-25. [PMID: 22086495 DOI: 10.1002/bies.201100126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cellular identity and its response to external or internal signalling variations are encoded in a cell's genome as regulatory information. The genomic regions that specify this type of information are highly variable and degenerated in their sequence determinants, as it is becoming increasingly evident through the application of genome-scale methods to study gene expression. Here, we speculate that the same scenario applies to the regulatory regions controlling where DNA replication starts in the metazoan genome. We propose that replication origins cannot be defined as unique genomic features, but rather that DNA synthesis initiates opportunistically from accessible DNA sites, making cells highly robust and adaptable to environmental or developmental changes.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
44
|
Thomae AW, Baltin J, Pich D, Deutsch MJ, Ravasz M, Zeller K, Gossen M, Hammerschmidt W, Schepers A. Different roles of the human Orc6 protein in the replication initiation process. Cell Mol Life Sci 2011; 68:3741-56. [PMID: 21461783 PMCID: PMC11114885 DOI: 10.1007/s00018-011-0675-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 01/05/2023]
Abstract
In eukaryotes, binding of the six-subunit origin recognition complex (ORC) to DNA provides an interactive platform for the sequential assembly of pre-replicative complexes. This process licenses replication origins competent for the subsequent initiation step. Here, we analyze the contribution of human Orc6, the smallest subunit of ORC, to DNA binding and pre-replicative complex formation. We show that Orc6 not only interacts with Orc1-Orc5 but also with the initiation factor Cdc6. Biochemical and imaging experiments reveal that this interaction is required for licensing DNA replication competent. Furthermore, we demonstrate that Orc6 contributes to the interaction of ORC with the chaperone protein HMGA1a (high mobility group protein A1a). Binding of human ORC to replication origins is not specified at the level of DNA sequence and the functional organization of origins is poorly understood. We have identified HMGA1a as one factor that might direct ORC to AT-rich heterochromatic regions. The systematic analysis of the interaction between ORC and HMGA1a revealed that Orc6 interacts with the acidic C-terminus of HMGA1a and also with its AT-hooks. Both domains support autonomous replication if targeted to DNA templates. As such, Orc6 functions at different stages of the replication initiation process. Orc6 can interact with ORC chaperone proteins such as HMGA1a to facilitate chromatin binding of ORC and is also an essential factor for pre-RC formation.
Collapse
Affiliation(s)
- Andreas W. Thomae
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
- Adolf-Butenandt-Institut, Ludwig-Maximilians-University, Schillerstraße 44, 80336 Munich, Germany
| | - Jens Baltin
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Dagmar Pich
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Manuel J. Deutsch
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Máté Ravasz
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Krisztina Zeller
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, BCRT, Campus Virchow-Klinikum, Föhrer Straße 15, 13353 Berlin, Germany
| | - Wolfgang Hammerschmidt
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
45
|
Hagedorn C, Wong SP, Harbottle R, Lipps HJ. Scaffold/Matrix Attached Region-Based Nonviral Episomal Vectors. Hum Gene Ther 2011; 22:915-23. [DOI: 10.1089/hum.2011.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Claudia Hagedorn
- Centre for Biomedical Education and Research, Institute of Cell Biology, University Witten/Herdecke, 58453 Witten, Germany
| | - Suet-Ping Wong
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Harbottle
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hans J. Lipps
- Centre for Biomedical Education and Research, Institute of Cell Biology, University Witten/Herdecke, 58453 Witten, Germany
| |
Collapse
|
46
|
Argyros O, Wong SP, Harbottle RP. Non-viral episomal modification of cells using S/MAR elements. Expert Opin Biol Ther 2011; 11:1177-91. [PMID: 21548848 DOI: 10.1517/14712598.2011.582035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The early potential of gene therapy is slowly becoming realized following the recent treatment of patients with severe combined immunodeficiency and ocular diseases. However at present the field of gene therapy is tempered by the toxicity issues, mainly that of the integrated retroviral vector used in most trials which led to oncogenesis in several of the treated patients. The development of safer, alternative vectors is therefore vital for further progress in this field, in particular vectors which remain episomal and are therefore less genotoxic. One such unique class of vectors are those based on scaffold matrix attachment regions (S/MARs) elements, which are maintained extra-chromosomally and replicate in vitro and in vivo. AREAS COVERED The overview here describes the most relevant studies utilizing the S/MAR element to episomally modify mammalian cells and tissues with a particular focus on liver tissue, as well as the brain, the muscle, the eye, cancer cells, embryonic cells and neonatal mice. For this purpose, recently published data in these areas (mainly articles published between 2000 and 2010) are reviewed. EXPERT OPINION The utilisation of vectors harbouring an S/MAR element is an efficient, safe and cost-effective way to episomally modify mammalian cells.
Collapse
Affiliation(s)
- Orestis Argyros
- Imperial College London, Gene Therapy Research Group, Sir Alexander Fleming Building, National Heart and Lung Institute, South Kensington, London SW7 2AZ, UK.
| | | | | |
Collapse
|
47
|
Ott E, Norio P, Ritzi M, Schildkraut C, Schepers A. The dyad symmetry element of Epstein-Barr virus is a dominant but dispensable replication origin. PLoS One 2011; 6:e18609. [PMID: 21603652 PMCID: PMC3095595 DOI: 10.1371/journal.pone.0018609] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/07/2011] [Indexed: 01/13/2023] Open
Abstract
OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites.
Collapse
Affiliation(s)
- Elisabeth Ott
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Paolo Norio
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
| | - Marion Ritzi
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Carl Schildkraut
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AS); (CS)
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
- * E-mail: (AS); (CS)
| |
Collapse
|
48
|
Wade-Martins R. Developing extrachromosomal gene expression vector technologies: an overview. Methods Mol Biol 2011; 738:1-17. [PMID: 21431716 DOI: 10.1007/978-1-61779-099-7_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extrachromosomal, or episomal, vectors offer a number of advantages for therapeutic and scientific applications compared to integrating vectors. Extrachromosomal vectors persist in the nucleus without the requirement to integrate into the host genome, hence avoiding the recent concerns surrounding the genotoxic effects of vector integration. By avoiding integration, episomal vectors avoid vector rearrangement, which can occur at integration, and also avoid any effect of surrounding DNA activity on transgene expression ("position effect"). Extrachromosomal vectors offer a very high transgene capacity, allowing either the incorporation of large promoter and regulatory elements into an expression cassette, or the use of complete genomic loci of up to 100 kb or larger as transgenes. Whole genomic loci transgenes offer an elegant means to express genes under physiological and developmental-stage regulation, to express multiple transcript variants from a single locus, and to express multiple genes from a single tract of genomic DNA. The combined advantages of episomal vectors of prolonged transgene persistence in the absence of vector integration, avoiding silencing by flanking heterochromatin, and high capacity, facilitating delivery and expression of genomic DNA transgenes, will be reviewed here and potential therapeutic and scientific uses outlined.
Collapse
Affiliation(s)
- Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Tessadori F, Zeng K, Manders E, Riool M, Jackson D, van Driel R. Stable S/MAR-based episomal vectors are regulated at the chromatin level. Chromosome Res 2010; 18:757-75. [PMID: 21080054 PMCID: PMC2996544 DOI: 10.1007/s10577-010-9165-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/02/2023]
Abstract
Episomal vectors assembled from defined genetic components are a promising alternative to traditional gene therapy vectors that integrate in the host genome and may cause insertional mutations. The vector pEPI-eGFP is stably retained in the episomal state in cultured mammalian cells at low copy number for many generations without integration into the host genome. Although pEPI-eGFP is a fully engineered vector, little is known about how it interacts with the host genome and about the molecular mechanisms that are responsible for its transcriptional activity. We have analyzed the expression of the episomal reporter gene eGFP under conditions that affect the chromatin state of the genome. We have also constructed pEPI derivatives carrying a tandem array of lac operator sequences, which allows in vivo visualization and manipulation of the chromatin state of the episome. We show that changes in chromatin state of both the host and pEPI-eGFP induces changes in episomal gene activity and influences the episome’s nuclear distributions. We conclude that episomal genes are subject to control systems of the host, similarly to their counterparts in the host genome.
Collapse
Affiliation(s)
- Federico Tessadori
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090GE, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Rangasamy D. An S/MAR-based L1 retrotransposition cassette mediates sustained levels of insertional mutagenesis without suffering from epigenetic silencing of DNA methylation. Epigenetics 2010; 5:601-11. [PMID: 20595816 DOI: 10.4161/epi.5.7.12647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
L1 is an insertional mutagen that is capable of mediating permanent gene disruption in mammalian genomes. However, currently available L1 retrotransposition vectors exhibit low or unstable transgene expression when expressed in somatic cells and tissues. This restriction limits their potential utility in long-term screening procedures or somatic mutagenesis applications. In this study, we addressed this problem by developing a minicircle, nonviral L1 retrotransposition vector using a scaffold/matrix attachment region (S/MAR) in the vector backbone and evaluated its utility in human cell lines. The S/MAR-based L1 retrotransposition vector provides stable, elevated levels of L1 expression compared to the currently used EBNA1-based L1 vector. In addition, the S/MAR elements effectively mediate sustained levels of L1 retrotransposition in prolonged cell culturing without suffering from epigenetic silencing by DNA methylation or from vector integration problems even in the absence of selection pressure. These findings indicate that the simple inclusion of S/MAR in the vector backbone increased levels of L1 expression and retrotransposition that can be used as an effective tool to generate insertional mutagenesis in large-scale somatic mutagenesis applications in mammalian cells.
Collapse
Affiliation(s)
- Danny Rangasamy
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|