1
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Dong N, Ma HX, Liu XQ, Li D, Liu LH, Shi Q, Ju XL. Histidine re-sensitizes pediatric acute lymphoblastic leukemia to 6-mercaptopurine through tetrahydrofolate consumption and SIRT5-mediated desuccinylation. Cell Death Dis 2024; 15:216. [PMID: 38485947 PMCID: PMC10940622 DOI: 10.1038/s41419-024-06599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Despite progressive improvements in the survival rate of pediatric B-cell lineage acute lymphoblastic leukemia (B-ALL), chemoresistance-induced disease progression and recurrence still occur with poor prognosis, thus highlighting the urgent need to eradicate drug resistance in B-ALL. The 6-mercaptopurine (6-MP) is the backbone of ALL combination chemotherapy, and resistance to it is crucially related to relapse. The present study couples chemoresistance in pediatric B-ALL with histidine metabolism deficiency. Evidence was provided that histidine supplementation significantly shifts the 6-MP dose-response in 6-MP-resistant B-ALL. It is revealed that increased tetrahydrofolate consumption via histidine catabolism partially explains the re-sensitization ability of histidine. More importantly, this work provides fresh insights into that desuccinylation mediated by SIRT5 is an indispensable and synergistic requirement for histidine combination therapy against 6-MP resistance, which is undisclosed previously and demonstrates a rational strategy to ameliorate chemoresistance and protect pediatric patients with B-ALL from disease progression or relapse.
Collapse
Affiliation(s)
- Na Dong
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Hui-Xian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Xue-Qin Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Ling-Hong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Xiu-Li Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
3
|
Wang X, Su W, Jiang Y, Jia F, Huang W, Zhang J, Yin Y, Wang H. Regulation of Nucleotide Metabolism with Nutrient-Sensing Nanodrugs for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200482. [PMID: 35508896 PMCID: PMC9284143 DOI: 10.1002/advs.202200482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/27/2022] [Indexed: 05/03/2023]
Abstract
The continual growth of tumor cells requires considerable nutrient consumption. Methotrexate (MTX) is used to treat certain types of cancer by blocking the DNA and RNA productions through interfering one-carbon metabolism and de novo purine and pyrimidine synthesis. However, treatment of MTX may cause many serious adverse effects, which hamper its clinical application. Herein, the authors synthesize ferrous ions, histidine, and MTX assembled nanoparticles (FHM) to deliver MTX at tumor site and enhance the sensitivity of tumor cells to MTX with histidine catabolism. Furthermore, fasting-mimicking diet (FMD) is applied to intervene in the one-carbon metabolism and enhance the cytotoxicity of MTX. Meanwhile, FMD treatment can significantly augment the cellular uptake and tumor accumulation of FHM nanoparticles. Due to the triple inhibitions of the one-carbon metabolism, the proliferation of tumor cells is strongly disturbed, as which is highly replying on DNA and RNA production. Taken together, a 95% lower dose of MTX adopted in combined therapy significantly inhibits the growth of two types of murine tumors without evident systemic toxicity. This strategy may provide a promising nucleotide metabolism-based nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Xinye Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | | | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Cao Q, Zhang W, Liu X, Li Y. AtFTCD-L, a trans-Golgi network localized protein, modulates root growth of Arabidopsis in high-concentration agar culture medium. PLANTA 2022; 256:3. [PMID: 35637390 DOI: 10.1007/s00425-022-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
AtFTCD-L protein is localized on the TGN vesicles in Arabidopsis root cap cells. AtFTCD-L mutation resulted in slow root growth of Arabidopsis in high-concentration agar culture medium. Arabidopsis formiminotransferase cyclodeaminase-like protein (AtFTCD-L) in Arabidopsis is homologous to the formiminotransferase cyclodeaminase (FTCD) protein in animal cells. However, the localization and function of AtFTCD-L remain unknown in Arabidopsis. In this study, we generated and analyzed a deletion mutant of AtFTCD-L with a T-DNA insertion. We found that the growth of Arabidopsis roots with the T-DNA insertion mutation in AtFTCD-L was slower than that of wild-type roots when grown in high-concentration 1/2 MS agar culture medium. AtFTCD-L-GFP could restore the ftcd-l mutant phenotype. In addition, the AtFTCD-L protein was localized on the trans-Golgi network (TGN) vesicles in Arabidopsis root cap cells. Fluorescence recovery after photobleaching (FRAP) experiment using Arabidopsis pollen-specific receptor-like kinase-GFP (AtPRK1-GFP) stably transformed plants showed that the deficiency of AtFTCD-L protein in Arabidopsis led to slower secretion in the root cap peripheral cells. The AtFTCD-L protein deficiency also resulted in a significantly reduced monosaccharides content in the culture medium. Based on the above results, we speculate that the AtFTCD-L protein may be involved in sorting and/or transportation of TGN vesicles in root cap peripheral cells, thereby regulating the extracellular secretion of mucilage components in the root cap.
Collapse
Affiliation(s)
- Qijiang Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences and Engineering, Shenyang University, Liaoning, 110044, China
| | - Wei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Structure of putative tumor suppressor ALDH1L1. Commun Biol 2022; 5:3. [PMID: 35013550 PMCID: PMC8748788 DOI: 10.1038/s42003-021-02963-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
Putative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4'-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD, 21701, USA.
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Zhang W, Wu C, Ni R, Yang Q, Luo L, He J. Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1. PLoS Genet 2021; 17:e1009980. [PMID: 34941873 PMCID: PMC8741050 DOI: 10.1371/journal.pgen.1009980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/07/2022] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction. Under starvation, the liver initiates a series of metabolic adaptations to maintain energy homeostasis that is critical for survival. During this process, mTORC1 pathway is downregulated to reduce anabolism and promote catabolism, ensuring adequate usage of limited resources. However, mechanisms underlying the downregulation of mTORC1 remain incompletely understood. In a zebrafish genetic screen aiming to characterize factors important for starvation response in the liver, we identify an ftcd mutation that causes liver hypertrophy and dysfunction under fasting. FTCD acts upstream to inactivate mTORC1 in response to starvation. Our work reveals previously unappreciated roles of FTCD in the responses to energy stress through modulating mTORC1 activities, moreover implicates a potential liver disorder risk of FTCD deficiency under the circumstances of starvation.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Yubei, Chongqing, China
| | - Chaoying Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- * E-mail: (LL); (JH)
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- * E-mail: (LL); (JH)
| |
Collapse
|
7
|
Chen J, Yang Y, Lin B, Xu Z, Yang X, Ye S, Xie Z, Li Y, Hong J, Huang Z, Huang W. Hollow mesoporous organosilica nanotheranostics incorporating formimidoyltransferase cyclodeaminase (FTCD) plasmids for magnetic resonance imaging and tetrahydrofolate metabolism fission on hepatocellular carcinoma. Int J Pharm 2021; 612:121281. [PMID: 34774692 DOI: 10.1016/j.ijpharm.2021.121281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
The formimidoyltransferase cyclodeaminase (FTCD) gene encodes an enzyme required for the catabolism of histidine and tetrahydrofolate (THF). Previous studies showed that FTCD plays a role as a tumour suppressor gene in hepatocellular carcinoma (HCC). It is unknown whether the restoration of functional FTCD may exhibit an anti-tumour effect on HCC. This study constructed a delivery system based on hollow mesoporous organosilica nanotheranostics (HMON) capable of efficiently loading Mn ions and FTCD plasmids. This study showed that the Mn-doped and FTCD-loaded nanoparticles (HMON@Mn-PEI@FTCD) could efficiently induce the expression of FTCD and achieve enhanced magnetic resonance imaging. In vitro results demonstrated that the upregulation of FTCD induced by HMON@Mn-PEI@FTCD nanoparticles dramatically reduced intracellular THF levels, inhibited of NADPH/NADP+ and GSH/GSSG ratios, and induced reactive oxygen species generation and mitochondrial oxidative stress. As a result, cytochrome c release increased with the opening of the mitochondrial permeability transition pore, which finally activated the caspase-dependent cell apoptosis pathway. Therefore, our designed HMON@Mn-PEI@FTCD could induce apoptosis by activating the mitochondria-mediated apoptosis signalling pathway, and finally significantly suppressed the proliferation of HCC both in vitro and in vivo, which provides an effective strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China; National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China; Guangdong Doctoral Workstation, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zexian Xu
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Xi Yang
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Shaoguang Ye
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Zhaoxiong Xie
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China.
| | - Jianwen Hong
- Department of General Surgery, Affiliated Chaozhou Central Hospital of Southern Medical University, Chaozhou 521000 China; Guangdong Doctoral Workstation, Chaozhou Central Hospital, Chaozhou 521000, China.
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China; The third Affiliated Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
8
|
Yang B, Sylvius N, Luo J, Yang C, Da Z, Crotty C, Nicholson ML. Identifying Biomarkers from Transcriptomic Signatures in Renal Allograft Biopsies Using Deceased and Living Donors. Front Immunol 2021; 12:657860. [PMID: 34276651 PMCID: PMC8282197 DOI: 10.3389/fimmu.2021.657860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
The survival of transplant kidneys using deceased donors (DD) is inferior to living donors (LD). In this study, we conducted a whole-transcriptome expression analysis of 24 human kidney biopsies paired at 30 minutes and 3 months post-transplantation using DD and LD. The transcriptome profile was found significantly different between two time points regardless of donor types. There were 446 differentially expressed genes (DEGs) between DD and LD at 30 minutes and 146 DEGs at 3 months, with 25 genes common to both time points. These DEGs reflected donor injury and acute immune responses associated with inflammation and cell death as early as at 30 minutes, which could be a precious window of potential intervention. DEGs at 3 months mainly represented the changes of adaptive immunity, immunosuppressive treatment, remodeling or fibrosis via different networks and signaling pathways. The expression levels of 20 highly DEGs involved in kidney diseases and 10 genes dysregulated at 30 minutes were found correlated with renal function and histology at 12 months, suggesting they could be potential biomarkers. These genes were further validated by quantitative polymerase chain reaction (qPCR) in 24 samples analysed by microarray, as well as in a validation cohort of 33 time point unpaired allograft biopsies. This analysis revealed that SERPINA3, SLPI and CBF were up-regulated at 30 minutes in DD compared to LD, while FTCD and TASPN7 were up-regulated at both time points. At 3 months, SERPINA3 was up-regulated in LD, but down-regulated in DD, with increased VCAN and TIMP1, and decreased FOS, in both donors. Taken together, divergent transcriptomic signatures between DD and LD, and changed by the time post-transplantation, might contribute to different allograft survival of two type kidney donors. Some DEGs including FTCD and TASPN7 could be novel biomarkers not only for timely diagnosis, but also for early precise genetic intervention at donor preservation, implantation and post-transplantation, in particular to effectively improve the quality and survival of DD.
Collapse
Affiliation(s)
- Bin Yang
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Nicolas Sylvius
- Genomics Core Facility, University of Leicester, Leicester, United Kingdom
| | - Jinli Luo
- Bioinformatics and Biostatistics Support Hub Leicester, University of Leicester, Leicester, United Kingdom
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhanyun Da
- Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Charlottelrm Crotty
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom
| | - Michael L Nicholson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom.,Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Kaneko Y, Shimoda K, Ayala R, Goto Y, Panico S, Zhang X, Kondo H. p97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly. EMBO J 2021; 40:e105853. [PMID: 33555040 DOI: 10.15252/embj.2020105853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
p97ATPase-mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47-mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47-binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47-mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD-p97/p47-FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD-p97/p47-FTCD complex in p97/p47-mediated Golgi membrane fusion.
Collapse
Affiliation(s)
- Yayoi Kaneko
- Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyohei Shimoda
- Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rafael Ayala
- Section of Structural Biology, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yukina Goto
- Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Silvia Panico
- Section of Structural Biology, Department of Infectious Diseases, Imperial College London, London, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Imperial College London, London, UK
| | - Hisao Kondo
- Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Chu H, Jiang L, Gao B, Gautam N, Alamoudi JA, Lang S, Wang Y, Duan Y, Alnouti Y, Cable EE, Schnabl B. The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice. Transl Res 2021; 227:1-14. [PMID: 32553670 PMCID: PMC7719076 DOI: 10.1016/j.trsl.2020.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Alcohol-associated liver disease is accompanied by dysregulation of bile acid metabolism and gut barrier dysfunction. Peroxisome proliferator-activated receptor-delta (PPARδ) agonists are key metabolic regulators and have anti-inflammatory properties. Here, we evaluated the effect of the selective PPAR-delta agonist seladelpar (MBX-8025) on gut barrier function and bile acid metabolism in a mouse model of ethanol-induced liver disease. Wild type C57BL/6 mice were fed LieberDeCarli diet containing 0%-36% ethanol (caloric) for 8 weeks followed by a single binge of ethanol (5 g/kg). Pair fed mice received an isocaloric liquid diet as control. MBX-8025 (10 mg/kg/d) or vehicle were added to the liquid diet during the entire feeding period (prevention), or during the last 4 weeks of Lieber DeCarli diet feeding (intervention). In both prevention and intervention trials, MBX-8025 protected mice from ethanol-induced liver disease, characterized by lower serum alanine aminotransferase (ALT) levels, hepatic triglycerides, and inflammation. Chronic ethanol intake disrupted bile acid metabolism by increasing the total bile acid pool and serum bile acids. MBX-8025 reduced serum total and secondary bile acids, and the total bile acid pool as compared with vehicle treatment in both prevention and intervention trials. MBX-8025 restored ethanol-induced gut dysbiosis and gut barrier dysfunction. Data from this study demonstrates that seladelpar prevents and treats ethanol-induced liver damage in mice by direct PPARδ agonism in both the liver and the intestine.
Collapse
Affiliation(s)
- Huikuan Chu
- Department of Medicine, University of California San Diego, La Jolla, California; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jawaher A Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
11
|
Petrova B, Kanarek N. Potential Benefits and Pitfalls of Histidine Supplementation for Cancer Therapy Enhancement. J Nutr 2020; 150:2580S-2587S. [PMID: 33000153 DOI: 10.1093/jn/nxaa132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary supplementation of the amino acid histidine has demonstrable benefits in various clinical conditions. Recent work in a pediatric leukemia mouse model exposed a surprising potential application of histidine supplementation for cancer therapy enhancement. These findings demand a deeper reassessment of the physiological effects and potential drawbacks of histidine supplementation. As pertinent to this question, we discuss the safety of high doses of histidine and its relevant metabolic fates in the human body. We refrain from recommendations or final conclusions because comprehensive preclinical evidence for safety and efficacy of histidine supplementation is still lacking. However, we emphasize the incentive to study the safety of histidine supplementation and its potential to improve the clinical outcome of pediatric blood cancers through a simple dietary supplementation. The need for comprehensive preclinical testing of histidine supplementation in healthy and tumor-bearing mice is fundamental, and we hope that this review will facilitate such studies.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
12
|
Zhang X, Morikawa K, Mori Y, Zong C, Zhang L, Garner E, Huang C, Wu W, Chang J, Nagashima D, Sakurai T, Ichihara S, Oikawa S, Ichihara G. Proteomic analysis of liver proteins of mice exposed to 1,2-dichloropropane. Arch Toxicol 2020; 94:2691-2705. [PMID: 32435916 DOI: 10.1007/s00204-020-02785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice co-treated with 1-ABT. 1-ABT mitigated the differential expression of these proteins. The gene ontology enrichment analysis showed overrepresentation of proteins functionally related to nickel cation binding, carboxylic ester hydrolase activity, and catalytic activity. The results demonstrated that exposure to 1,2-DCP altered the expression of proteins related with catalytic and carboxylic ester hydrolase activities, and that such effect was mediated by P450 enzymatic activity.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.,Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, People's Republic of China
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yurie Mori
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Edwin Garner
- Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Chinyen Huang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Wenting Wu
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jie Chang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daichi Nagashima
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Shinji Oikawa
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
13
|
Steele H, Gomez‐Duran A, Pyle A, Hopton S, Newman J, Stefanetti RJ, Charman SJ, Parikh JD, He L, Viscomi C, Jakovljevic DG, Hollingsworth KG, Robinson AJ, Taylor RW, Bottolo L, Horvath R, Chinnery PF. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol Med 2020; 12:e11589. [PMID: 32107855 PMCID: PMC7059007 DOI: 10.15252/emmm.201911589] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.
Collapse
Affiliation(s)
- Hannah Steele
- Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Aurora Gomez‐Duran
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Angela Pyle
- Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and ChildrenNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Jane Newman
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUK
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | | | - Sarah J Charman
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Jehill D Parikh
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Langping He
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and ChildrenNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Carlo Viscomi
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | | | | | - Alan J Robinson
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial ResearchNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and ChildrenNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Leonardo Bottolo
- Department of Medical GeneticsUniversity of CambridgeCambridgeUK
- The Alan Turing InstituteLondonUK
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
| | - Patrick F Chinnery
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
14
|
Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2019; 15:e1007984. [PMID: 30893314 PMCID: PMC6443193 DOI: 10.1371/journal.pgen.1007984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/01/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.
Collapse
Affiliation(s)
- Brandon L. Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Samantha Dean
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md. Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Vincent J. Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
15
|
Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 2018; 559:632-636. [PMID: 29995852 PMCID: PMC6082631 DOI: 10.1038/s41586-018-0316-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 06/06/2018] [Indexed: 02/02/2023]
Abstract
The chemotherapeutic drug methotrexate inhibits the enzyme DHFR (dihydrofolate reductase)1, which generates tetrahydrofolate (THF), an essential cofactor in nucleotide synthesis2. Depletion of THF causes cell death by suppressing DNA and RNA production3. While methotrexate is widely used as an anti-cancer agent and the subject of over a thousand ongoing clinical trials4, its high toxicity often leads to the premature termination of its use, diminishing its potential efficacy5. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR/Cas9-based screen6,7. This screen yielded FTCD, which encodes an enzyme (formimidoyltransferase cyclodeaminase) needed for the catabolism of the amino acid histidine8, a process not previously linked to methotrexate sensitivity. In cultured cancer cells, depletion of multiple genes in the histidine catabolism pathway dramatically decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of THF, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukemia xenografts to methotrexate. Thus, the histidine degradation pathway significantly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.
Collapse
|
16
|
KCNC3(R420H), a K(+) channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking. Neurobiol Dis 2014; 71:270-9. [PMID: 25152487 DOI: 10.1016/j.nbd.2014.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 12/23/2022] Open
Abstract
Spinocerebellar ataxia 13 (SCA13) is an autosomal dominant disease resulting from mutations in KCNC3 (Kv3.3), a voltage-gated potassium channel. The KCNC3(R420H) mutation was first identified as causative for SCA13 in a four-generation Filipino kindred with over 20 affected individuals. Electrophysiological analyses in oocytes previously showed that this mutation did not lead to a functional channel and displayed a dominant negative phenotype. In an effort to identify the molecular basis of this allelic form of SCA13, we first determined that human KCNC3(WT) and KCNC3(R420H) display disparate post-translational modifications, and the mutant protein has reduced complex glycan adducts. Immunohistochemical analyses demonstrated that KCNC3(R420H) was not properly trafficking to the plasma membrane and surface biotinylation demonstrated that KCNC3(R420H) exhibited only 24% as much surface expression as KCNC3(WT). KCNC3(R420H) trafficked through the ER but was retained in the Golgi. KCNC3(R420H) expression results in altered Golgi and cellular morphology. Electron microscopy of KCNC3(R420H) localization further supports retention in the Golgi. These results are specific to the KCNC3(R420H) allele and provide new insight into the molecular basis of disease manifestation in SCA13.
Collapse
|
17
|
Bruder J, Siewert K, Obermeier B, Malotka J, Scheinert P, Kellermann J, Ueda T, Hohlfeld R, Dornmair K. Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. J Biol Chem 2012; 287:20986-95. [PMID: 22549773 DOI: 10.1074/jbc.m112.356709] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In polymyositis and inclusion body myositis, muscle fibers are surrounded and invaded by CD8-positive cytotoxic T cells expressing the αβ-T cell receptor (αβ-TCR) for antigen. In a rare variant of myositis, muscle fibers are similarly attacked by CD8-negative T cells expressing the γδ-TCR (γδ-T cell-mediated myositis). We investigated the antigen specificity of a human γδ-TCR previously identified in an autoimmune tissue lesion of γδ-T cell-mediated myositis. We show that this Vγ1.3Vδ2-TCR, termed M88, recognizes various proteins from different species. Several of these proteins belong to the translational apparatus, including some bacterial and human aminoacyl-tRNA synthetases (AA-RS). Specifically, M88 recognizes histidyl-tRNA synthetase, an antigen known to be also targeted by autoantibodies called anti-Jo-1. The M88 target epitope is strictly conformational, independent of post-translational modification, and exposed on the surface of the respective antigenic protein. Extensive mutagenesis of the translation initiation factor-1 from Escherichia coli (EcIF1), which served as a paradigm antigen with known structure, showed that a short α-helical loop around amino acids 39 to 42 of EcIF1 is a major part of the M88 epitope. Mutagenesis of M88 showed that the complementarity determining regions 3 of both γδ-TCR chains contribute to antigen recognition. M88 is the only known example of a molecularly characterized γδ-TCR expressed by autoaggressive T cells in tissue. The observation that AA-RS are targeted by a γδ-T cell and by autoantibodies reveals an unexpected link between T cell and antibody responses in autoimmune myositis.
Collapse
Affiliation(s)
- Jessica Bruder
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Strickland KC, Holmes RS, Oleinik NV, Krupenko NI, Krupenko SA. Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes. Chem Biol Interact 2011; 191:122-8. [PMID: 21215736 DOI: 10.1016/j.cbi.2010.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.
Collapse
Affiliation(s)
- Kyle C Strickland
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
19
|
Karbassi F, Quiros V, Pancholi V, Kornblatt MJ. Dissociation of the octameric enolase from S. pyogenes--one interface stabilizes another. PLoS One 2010; 5:e8810. [PMID: 20098674 PMCID: PMC2809091 DOI: 10.1371/journal.pone.0008810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/20/2009] [Indexed: 11/18/2022] Open
Abstract
Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.
Collapse
Affiliation(s)
- Farhad Karbassi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Veronica Quiros
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Vijay Pancholi
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Mary J. Kornblatt
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Marsh MP, Chang JT, Booth CR, Liang NL, Schmid MF, Chiu W. Modular software platform for low-dose electron microscopy and tomography. J Microsc 2007; 228:384-9. [PMID: 18045333 PMCID: PMC4384816 DOI: 10.1111/j.1365-2818.2007.01856.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transmission electron microscopy imaging protocols required by structural scientists vary widely and can be laborious without tailor-made applications. We present here the jeol automated microscopy expert system (james) api integrator, a programming library for computer control of transmission electron microscopy operations and equipment. james has been implemented on JEOL microscopes with Gatan CCDs but is designed to be modular so it can be adapted to run on different microscopes and detectors. We have used the james api integrator to develop two applications for low-dose digital imaging: james imaging application and the mr t tomographic imaging application. Both applications have been widely used within our NCRR-supported Center for routine data collection and are now made available for public download.
Collapse
Affiliation(s)
- Michael P Marsh
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, and National Center for Macromolecular Imaging, #Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Poon BK, Chen X, Lu M, Vyas NK, Quiocho FA, Wang Q, Ma J. Normal mode refinement of anisotropic thermal parameters for a supramolecular complex at 3.42-A crystallographic resolution. Proc Natl Acad Sci U S A 2007; 104:7869-74. [PMID: 17470791 PMCID: PMC1876539 DOI: 10.1073/pnas.0701204104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/18/2022] Open
Abstract
Here we report a normal-mode-based protocol for modeling anisotropic thermal motions of proteins in x-ray crystallographic refinement. The foundation for this protocol is a recently developed elastic normal mode analysis that produces much more accurate eigenvectors without the tip effect. The effectiveness of the procedure is demonstrated on the refinement of a 3.42-A structure of formiminotransferase cyclodeaminase, a 0.5-MDa homooctameric enzyme. Using an order of magnitude fewer adjustable thermal parameters than the conventional isotropic refinement, this protocol resulted in a decrease of the values of R(cryst) and R(free) and improvements of the density map. Several poorly resolved regions in the original isotropically refined structure became clearer so that missing side chains were fitted easily and mistraced backbone was corrected. Moreover, the distribution of anisotropic thermal ellipsoids revealed functionally important structure flexibility. This normal-mode-based refinement is an effective way of describing anisotropic thermal motions in x-ray structures and is particularly attractive for the refinement of very large and flexible supramolecular complexes at moderate resolutions.
Collapse
Affiliation(s)
- Billy K. Poon
- Department of Bioengineering, Rice University, Houston, TX 77005
| | - Xiaorui Chen
- Graduate Program of Structural and Computational Biology and Molecular Biophysics and
| | - Mingyang Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030
| | - Nand K. Vyas
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030
| | - Florante A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030
| | - Jianpeng Ma
- Department of Bioengineering, Rice University, Houston, TX 77005
- Graduate Program of Structural and Computational Biology and Molecular Biophysics and
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030
| |
Collapse
|
22
|
Topf M, Baker ML, John B, Chiu W, Sali A. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J Struct Biol 2005; 149:191-203. [PMID: 15681235 DOI: 10.1016/j.jsb.2004.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/05/2004] [Indexed: 02/01/2023]
Abstract
We explore structural characterization of protein assemblies by a combination of electron cryo-microscopy (cryoEM) and comparative protein structure modeling. Specifically, our method finds an optimal atomic model of a given assembly subunit and its position within an assembly by fitting alternative comparative models into a cryoEM map. The alternative models are calculated by MODELLER [J. Mol. Biol. 234 (1993) 313] from different sequence alignments between the modeled protein and its template structures. The fitting of these models into a cryoEM density map is performed either by FOLDHUNTER [J. Mol. Biol. 308 (2001) 1033] or by a new density fitting module of MODELLER (Mod-EM). Identification of the most accurate model is based on the correlation between the model accuracy and the quality of fit into the cryoEM density map. To quantify this correlation, we created a benchmark consisting of eight proteins of different structural folds with corresponding density maps simulated at five resolutions from 5 to 15 angstroms, with three noise levels each. Each of the proteins in the set was modeled based on 300 different alignments to their remotely related templates (12-32% sequence identity), spanning the range from entirely inaccurate to essentially accurate alignments. The benchmark revealed that one of the most accurate models can usually be identified by the quality of its fit into the cryoEM density map, even for noisy maps at 15 angstroms resolution. Therefore, a cryoEM density map can be helpful in improving the accuracy of a comparative model. Moreover, a pseudo-atomic model of a component in an assembly may be built better with comparative models of the native subunit sequences than with experimentally determined structures of their homologs.
Collapse
Affiliation(s)
- Maya Topf
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, Mission Bay Genentech Hall, 600 16th Street, Suite N472D, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|