1
|
Windisch R, Kreissig S, Wichmann C. Defined Human Leukemic CD34+ Liquid Cultures to Study HDAC/Transcriptional Repressor Complexes. Methods Mol Biol 2023; 2589:27-49. [PMID: 36255616 DOI: 10.1007/978-1-0716-2788-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defined human primary cell model systems with growth dependence on oncogenes are highly requested to investigate tumor pathogenesis and to validate pharmacological inhibitors that specifically target oncoproteins and their executing protein complex partners. In acute myeloid leukemia (AML), transcription factors such as RUNX1 and MLL1, which are important for normal blood cell development, frequently harbor mutations including chromosomal translocations with other coding genes, resulting in tumor-promoting gain-of-function fusion proteins. These oncoproteins completely modify transcriptional programs, thereby inducing malignant cell phenotypes. A common theme of the chimeric gene products is their physical interaction with a variety of chromatin-modifying effector molecules, including histone acetyltransferases (HATs) and histone deacetylases (HDACs). These aberrant multiprotein machineries disturb gene expression and promote malignant cell growth. In this chapter, we briefly summarize the current understanding regarding AML-associated oncogene-driven human CD34+ blood progenitor cell expansion in ex vivo liquid cultures. We provide a step-by-step protocol to establish oncogene-induced human CD34+ blood progenitor cell cultures suitable to analyze the impact of transcriptional repressor/HDAC activity in these human AML cell models.
Collapse
Affiliation(s)
- Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Kreissig
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, Luo XQ, Wang WT. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis 2020; 11:566. [PMID: 32703936 PMCID: PMC7378249 DOI: 10.1038/s41419-020-02795-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
3
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
4
|
The nuclear receptor corepressor NCoR1 regulates hematopoiesis and leukemogenesis in vivo. Blood Adv 2020; 3:644-657. [PMID: 30804018 DOI: 10.1182/bloodadvances.2018022756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
Enhanced understanding of normal and malignant hematopoiesis pathways should facilitate the development of effective clinical treatment strategies for hematopoietic malignancies. Nuclear receptor corepressor 1 (NCoR1) has been implicated in transcriptional repression and embryonic organ development, but its role in hematopoiesis is yet to be fully elucidated. Here, we showed that hematopoietic-specific loss of NCoR1 leads to expansion of the hematopoietic stem cell (HSC) pool due to aberrant cell cycle entry of long-term HSCs under steady-state conditions. Moreover, NCoR1-deficient HSCs exhibited normal self-renewal capacity but severely impaired lymphoid-differentiation potential in competitive hematopoietic-reconstitution assays. Transcriptome analysis further revealed that several hematopoiesis-associated genes are regulated by NCoR1. In addition, NCoR1 deficiency in hematopoietic cells delayed the course of leukemia and promoted leukemia cell differentiation in an MLL-AF9-induced mouse model. NCoR1 and its partner, histone deacetylase 3, can modulate histone acetylation and gene transcription through binding the promoter regions of myeloid-differentiation genes. Our collective results support the critical involvement of NCoR1 in normal and malignant hematopoiesis in vivo.
Collapse
|
5
|
PML is required for telomere stability in non-neoplastic human cells. Oncogene 2015; 35:1811-21. [PMID: 26119943 PMCID: PMC4830905 DOI: 10.1038/onc.2015.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis.
Collapse
|
6
|
Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 2014; 111:2039-45. [PMID: 25412233 PMCID: PMC4260020 DOI: 10.1038/bjc.2014.412] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
All-trans-retinoic acid (ATRA) is a physiologically active metabolite of vitamin A. Its antitumour activities have been extensively studied in a variety of model systems and clinical trials; however, to date the only malignancy responsive to ATRA treatment is acute promyelocytic leukaemia (APL) where it induces complete remission in the majority of cases when administered in combination with light chemotherapy and/or arsenic trioxide. After decades of studies, the efficacy of ATRA to treat other acute myeloid leukaemia (AML) subtypes and solid tumours remains poor. Recent studies directed to improve ATRA responsiveness in non-APL AML seem to indicate that the lack of effective ATRA response in these tumours may be primarily due to aberrant epigenetics, which negatively affect ATRA-regulated gene expression and its antileukaemic activity. Epigenetic reprogramming could potentially restore therapeutic effects of ATRA in all AML subtypes. This review discusses the current progresses in the understanding how ATRA can be utilised in the therapy of non-APL AML and other cancers.
Collapse
|
7
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
8
|
Interference with RUNX1/ETO leukemogenic function by cell-penetrating peptides targeting the NHR2 oligomerization domain. BIOMED RESEARCH INTERNATIONAL 2013; 2013:297692. [PMID: 23865046 PMCID: PMC3707205 DOI: 10.1155/2013/297692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
The leukemia-associated fusion protein RUNX1/ETO is generated by the chromosomal translocation t(8;21) which appears in about 12% of all de novo acute myeloid leukemias (AMLs). Essential for the oncogenic potential of RUNX1/ETO is the oligomerization of the chimeric fusion protein through the nervy homology region 2 (NHR2) within ETO. In previous studies, we have shown that the intracellular expression of peptides containing the NHR2 domain inhibits RUNX1/ETO oligomerization, thereby preventing cell proliferation and inducing differentiation of RUNX1/ETO transformed cells. Here, we show that introduction of a recombinant TAT-NHR2 fusion polypeptide into the RUNX1/ETO growth-dependent myeloid cell line Kasumi-1 results in decreased cell proliferation and increased numbers of apoptotic cells. This effect was highly specific and mediated by binding the TAT-NHR2 peptide to ETO sequences, as TAT-polypeptides containing the oligomerization domain of BCR did not affect cell proliferation or apoptosis in Kasumi-1 cells. Thus, the selective interference with NHR2-mediated oligomerization by peptides represents a challenging but promising strategy for the inhibition of the leukemogenic potential of RUNX1/ETO in t(8;21)-positive leukemia.
Collapse
|
9
|
Gianfelici V, Lahortiga I, Cools J. Chromosomal aberrations and fusion genes in myeloid malignancies. Expert Rev Hematol 2013; 5:381-93. [PMID: 22992233 DOI: 10.1586/ehm.12.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of the BCR-ABL1 fusion gene in chronic myeloid leukemia, many more fusion genes resulting from chromosomal rearrangements have been identified and characterized. The study of these fusion genes has been extremely important for our understanding of the role of chromosomal rearrangements in leukemogenesis and in oncology in general. In chronic myeloid leukemia, or related myeloproliferative malignancies caused by the expression of oncogenic fusion kinases, tyrosine kinase inhibitors are now successfully used to treat these diseases. In acute myeloid leukemias, the presence of chromosomal rearrangements, oncogenic fusion genes and point mutations in key oncogenic drivers has important prognostic value and determines the choice of therapy. In this review, the authors provide an overview of the important fusion genes present in various myeloid malignancies and their importance for clinical practice.
Collapse
|
10
|
Targeting the acute promyelocytic leukemia-associated fusion proteins PML/RARα and PLZF/RARα with interfering peptides. PLoS One 2012; 7:e48636. [PMID: 23152790 PMCID: PMC3494703 DOI: 10.1371/journal.pone.0048636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
In acute promyelocytic leukemia (APL), hematopoietic differentiation is blocked and immature blasts accumulate in the bone marrow and blood. APL is associated with chromosomal aberrations, including t(15;17) and t(11;17). For these two translocations, the retinoic acid receptor alpha (RARα) is fused to the promyelocytic leukemia (PML) gene or the promyelocytic zinc finger (PLZF) gene, respectively. Both fusion proteins lead to the formation of a high-molecular-weight complex. High-molecular-weight complexes are caused by the "coiled-coil" domain of PML or the BTB/POZ domain of PLZF. PML/RARα without the "coiled-coil" fails to block differentiation and mediates an all-trans retinoic acid-response. Similarly, mutations in the BTB/POZ domain disrupt the high-molecular-weight complex, abolishing the leukemic potential of PLZF/RARα. Specific interfering polypeptides were used to target the oligomerization domain of PML/RARα or PLZF/RARα. PML/RARα and PLZF/RARα were analyzed for the ability to form high-molecular-weight complexes, the protein stability and the potential to induce a leukemic phenotype in the presence of the interfering peptides. Expression of these interfering peptides resulted in a reduced replating efficiency and overcame the differentiation block induced by PML/RARα and PLZF/RARα in murine hematopoietic stem cells. This expression also destabilized the PLZF/RARα-induced high-molecular-weight complex formation and caused the degradation of the fusion protein. Targeting fusion proteins through interfering peptides is a promising approach to further elucidate the biology of leukemia.
Collapse
|
11
|
Transducible form of p47phox and p67phox compensate for defective NADPH oxidase activity in neutrophils of patients with chronic granulomatous disease. Biochem Biophys Res Commun 2011; 417:162-8. [PMID: 22138397 DOI: 10.1016/j.bbrc.2011.11.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/27/2022]
Abstract
Protein delivery to primary cells by protein transduction domain (PTD) serves as a novel measure for manipulation of the cells for biological study and for the treatment of various human conditions. Although the method has been employed to modulate cellular function in vitro, only limited reports are available on its application in the replacement of deficient signaling molecules into primary cells. We examined the potential of recombinant proteins to compensate for defective cytosolic components of the NADPH oxidase complex in chronic granulomatous disease (CGD) neutrophils in both p47(phox) and p67(phox) deficiency. The p47(phox) or p67(phox) protein linked to Hph-1 PTD was effectively expressed in soluble form and transduced into human neutrophils efficiently without eliciting unwanted signal transduction or apoptosis. The delivered protein was stable for more than 24h, expressed in the cytoplasm, translocated to the membrane fraction upon activation, and, most importantly able to restored reactive oxygen species (ROS) production. Although research on human primary neutrophils using the protein delivery system is still limited, our data show that the protein transduction approach for neutrophils may be applicable to the control of local infections in CGD patients by direct delivery of the protein product.
Collapse
|
12
|
Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Rev Mol Med 2010; 12:e6. [PMID: 20152067 DOI: 10.1017/s1462399410001377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that epigenetic phenomena and aberrant gene regulation play a major role in carcinogenesis. These include aberrant gene silencing by imposing inactive histone marks on promoters, aberrant methylation of DNA at CpG islands, and the active repression of promoters by oncoproteins. In addition, many malignant cells also show aberrant gene activation due to constitutively active signalling. The next frontier in cancer research will be to examine how, at the molecular level, small mutations that alter the regulatory phenotype of a cell give rise after a number of cell divisions to the vast deregulation phenomena seen in malignant cells. This review outlines recent insights into how normal cell differentiation in the haematopoietic system is subverted in leukaemia and it introduces the molecular players involved in this process. It also summarises the results of recent clinical trials trying to reverse aberrant epigenetic regulation by employing agents influencing global epigenetic regulators.
Collapse
|
13
|
Hughes PJ, Marcinkowska E, Gocek E, Studzinski GP, Brown G. Vitamin D3-driven signals for myeloid cell differentiation--implications for differentiation therapy. Leuk Res 2009; 34:553-65. [PMID: 19811822 DOI: 10.1016/j.leukres.2009.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/05/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and, therefore, 1,25(OH)(2)D(3) may be useful in differentiation therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided important insights into the mechanism of 1,25(OH)(2)D(3)-stimulated differentiation. For myeloid progenitors to complete monocytic differentiation a complex network of intracellular signals has to be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)(2)D(3) achieves this change to the 'signaling landscape' by (i) direct genomic modulation of the level of expression of key regulators of cell signaling and differentiation pathways, and (ii) activation of intracellular signaling pathways. An improved understanding of the mode of action of 1,25(OH)(2)D(3) is facilitating the development of new therapeutic regimens.
Collapse
Affiliation(s)
- Philip J Hughes
- School of Immunity and Infection, College of Medical and Dental Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Since the 1970s, the concept of differentiation therapy has been viewed as a promising and revolutionary approach for the treatment of acute myeloid leukemia (AML) and other cancers. However, the successful clinical application of differentiation therapy has only been realized since the late 1980s and only in one subtype of AML, acute promyelocytic leukemia (APL). The use of all-trans-retinoic acid (ATRA) and arsenic trioxide, both of which induce degradation of the progressive multifocal leukoencephalopathy/retinoic acid receptor alpha oncoprotein, in combination with chemotherapy is currently the accepted treatment of APL, presenting a potential paradigm for differentiation therapy in clinical oncology. RECENT FINDINGS We have begun to understand why ATRA fails to induce differentiation in AML. The underlying reasons identified thus far are associated with an inability to target the removal of leukemogenic fusion proteins, aberrant epigenetic regulation of genes involved in the ATRA signaling pathway and the presence of factors that interfere with proper retinoic acid receptor alpha function. SUMMARY Here, we examine the reasons why the exquisite sensitivity of APL to ATRA-based differentiation therapy has not been extended to other of AML subtypes. Current differentiation-based combinatorial approaches to target AML will also be analyzed. Finally, we will evaluate the potential of novel strategies, high-throughput screening, and functional genomics to uncover new differentiation-based therapies for AML.
Collapse
|
15
|
Botrugno OA, Santoro F, Minucci S. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer. Cancer Lett 2009; 280:134-44. [PMID: 19345000 DOI: 10.1016/j.canlet.2009.02.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
Absent or altered differentiation is one of the major features of cancer cells. Histone deacetylases (HDACs) play a central role in the epigenetic regulation of gene expression. Aberrant activity of HDACs has been documented in several types of cancers, leading to the development of HDAC inhibitors (HDACi) as anti-tumor drugs. In vitro and in vivo experimental evidences show that HDACi are able to resume the process of maturation in undifferentiated cancer cells, justifying their introduction as differentiating agents in several clinical trials. Modulation of cell fate by HDACi is observed at several levels, including the stem cell compartment: HDACi can act both on cancer stem cells, and with the rest of the tumor cell mass, leading to complex biological outputs. As a note of caution, when used as single agent, HDACi show only a moderate and limited biological response, which is augmented in combinatorial therapies with drugs designed against other epigenetic targets. The optimal employment of these molecules may be therefore in combination with other epigenetic drugs acting against the set of enzymes responsible for the set-up and maintenance of epigenetic information.
Collapse
|
16
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Balkhi MY, Christopeit M, Chen Y, Geletu M, Behre G. AML1/ETO–induced survivin expression inhibits transcriptional regulation of myeloid differentiation. Exp Hematol 2008; 36:1449-60. [DOI: 10.1016/j.exphem.2008.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/05/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
|
18
|
Cimino G, Lo-Coco F, Fenu S, Travaglini L, Finolezzi E, Mancini M, Nanni M, Careddu A, Fazi F, Padula F, Fiorini R, Spiriti MAA, Petti MC, Venditti A, Amadori S, Mandelli F, Pelicci PG, Nervi C. Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res 2007; 66:8903-11. [PMID: 16951208 DOI: 10.1158/0008-5472.can-05-2726] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic alterations of chromatin due to aberrant histone deacetylase (HDAC) activity and transcriptional silencing of all-trans retinoic acid (ATRA) pathway are events linked to the pathogenesis of acute myeloid leukemia (AML) that can be targeted by specific treatments. A pilot study was carried out in eight refractory or high-risk AML patients not eligible for intensive therapy to assess the biological and therapeutic activities of the HDAC inhibitor valproic acid (VPA) used to remodel chromatin, followed by the addition of ATRA, to activate gene transcription and differentiation in leukemic cells. Hyperacetylation of histones H3 and H4 was detectable at therapeutic VPA serum levels (>or=50 microg/mL) in blood mononuclear cells from seven of eight patients. This correlated with myelomonocytic differentiation of leukemic cells as revealed by morphologic, cytochemical, immunophenotypic, and gene expression analyses. Differentiation of the leukemic clone was proven by fluorescence in situ hybridization analysis showing the cytogenetic lesion +8 or 7q- in differentiating cells. Hematologic improvement, according to established criteria for myelodysplastic syndromes, was observed in two cases. Stable disease and disease progression were observed in five and one cases, respectively. In conclusion, VPA-ATRA treatment is well tolerated and induces phenotypic changes of AML blasts through chromatin remodeling. Further studies are needed to evaluate whether VPA-ATRA treatment by reprogramming differentiation of the leukemic clone might improve the response to chemotherapy in leukemia patients.
Collapse
Affiliation(s)
- Giuseppe Cimino
- Department of Cellular Biotechnology and Hematology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheng YC, Lin H, Huang MJ, Chow JM, Lin S, Liu HE. Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res 2007; 31:1403-11. [PMID: 17445886 DOI: 10.1016/j.leukres.2007.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 01/19/2023]
Abstract
Valproic acid (VPA), an agent used for neurological disorders, has been shown to be a novel class of histone deacetylase inhibitor (HDACI), able to induce apoptosis and myeloid differentiation of acute myeloid leukemia (AML). In this study, we examined the underlying mechanisms in VPA-mediated activities in AML cells. VPA not only inhibited the growth of HL-60, U937 and NB4 cells by causing cell-cycle arrest at G(0)/G(1) phase and apoptosis, but also induced morphologic and phenotypic changes. VPA markedly increased p21WAF1, and downregulated c-Myc expression at transcriptional levels. Ectopic expression of wildtype c-Myc and T58A mutant significantly inhibited VPA-mediated growth inhibition. As with results from cell line studies, VPA also downregulated c-Myc levels, and induced apoptosis and myeloid differentiation of primary AML cells, leading to decreased colony-forming ability. Given the role of c-Myc in leukemogenesis, our study suggests that VPA might be a potential therapeutic agent for AML.
Collapse
Affiliation(s)
- Yun-Chih Cheng
- Department of Internal Medicine, Wanfang Hospital-Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Known histone deacetylases (HDACs) are divided into different classes, and HDAC3 belongs to Class I. Through forming multiprotein complexes with the corepressors SMRT and N-CoR, HDAC3 regulates the transcription of a plethora of genes. A growing list of nonhistone substrates extends the role of HDAC3 beyond transcriptional repression. Here, we review data on the composition, regulation and mechanism of action of the SMRT/N-CoR-HDAC3 complexes and provide several examples of nontranscriptional functions, to illustrate the wide variety of physiological processes affected by this deacetylase. Furthermore, we discuss the implication of HDAC3 in cancer, focusing on leukemia. We conclude with some thoughts about the potential therapeutic efficacies of HDAC3 activity modulation.
Collapse
Affiliation(s)
- P Karagianni
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Santini V. A selective activity of DNMTi decitabine on AML1ETO positive cells? Leuk Res 2007; 31:741-2. [PMID: 17240447 DOI: 10.1016/j.leukres.2006.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 12/10/2006] [Accepted: 12/10/2006] [Indexed: 11/28/2022]
|
22
|
Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zörnig M, Ottmann OG, Grez M. Targeting the Oligomerization Domain of ETO Interferes with RUNX1/ETO Oncogenic Activity in t(8;21)-Positive Leukemic Cells. Cancer Res 2007; 67:2280-9. [PMID: 17332359 DOI: 10.1158/0008-5472.can-06-3360] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
About 12% of all de novo acute myeloid leukemias are characterized by the translocation t(8;21), which generates the oncogenic fusion protein RUNX1/ETO. RUNX1/ETO has a modular structure and contains several docking sites for heterologous proteins, including transcriptional co-repressors like N-CoR, SMART, and mSIN3A. RUNX1/ETO is found in high molecular weight complexes, which are crucial for the block in myeloid differentiation observed in RUNX1/ETO-transformed cells. Essential for high molecular weight complex formation is the nervy homology region 2 (NHR2) within ETO, which serves as interacting surface for oligomerization as well as association with members of the ETO protein family. Here, we show that the expression of a fusion peptide consisting of 128 amino acids (NC128), including the entire NHR2 domain of ETO, disrupts the stability of the RUNX1/ETO high molecular weight complexes, restores transcription of RUNX1/ETO target genes, and reverts the differentiation block induced by RUNX1/ETO in myeloid cells. In the presence of NC128, RUNX1/ETO-transformed cells lose their progenitor cell characteristics, are arrested in cell cycle progression, and undergo cell death. Our results indicate that selective interference with the oligomerization domain of ETO could provide a promising strategy to inhibit the oncogenic properties of the leukemia-associated fusion protein RUNX1/ETO.
Collapse
Affiliation(s)
- Christian Wichmann
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt/M, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In recent years the study of chemical modifications to chromatin and their effects on cellular processes has become increasingly important in the field of cancer research. Disruptions to the normal epigenetic pattern of the cell can serve as biomarkers and are important determinants of cancer progression. Accordingly, drugs that inhibit the enzymes responsible for modulating these epigenetic markers, in particular histone deacetylases, are the focus of intense research and development. In this chapter we provide an overview of class I and II histone deacetylases as well as a guide to the diverse types of histone deacetylase inhibitors and their activities in the context of APL. We also discuss the rationale for the use of histone deacetylase inhibitors in combination therapy for the treatment of cancer and the current status of clinical trials.
Collapse
Affiliation(s)
- K Petrie
- Section of Haemato-Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
24
|
Fazi F, Zardo G, Gelmetti V, Travaglini L, Ciolfi A, Di Croce L, Rosa A, Bozzoni I, Grignani F, Lo-Coco F, Pelicci PG, Nervi C. Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood 2007; 109:4432-40. [PMID: 17244680 DOI: 10.1182/blood-2006-09-045781] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alteration of lineage-specific transcriptional programs for hematopoiesis causes differentiation block and promotes leukemia development. Here, we show that AML1/ETO, the most common translocation fusion product in acute myeloid leukemia (AML), counteracts the activity of retinoic acid (RA), a transcriptional regulator of myelopoiesis. AML1/ETO participates in a protein complex with the RA receptor alpha (RARalpha) at RA regulatory regions on RARbeta2, which is a key RA target gene mediating RA activity/resistance in cells. At these sites, AML1/ETO recruits histone deacetylase, DNA methyltransferase, and DNA-methyl-CpG binding activities that promote a repressed chromatin conformation. The link among AML1/ETO, heterochromatic RARbeta2 repression, RA resistance, and myeloid differentiation block is indicated by the ability of either siRNA-AML1/ETO or the DNA methylation inhibitor 5-azacytidine to revert these epigenetic alterations and to restore RA differentiation response in AML1/ETO blasts. Finally, RARbeta2 is commonly silenced by hypermethylation in primary AML blasts but not in normal hematopoietic precursors, thus suggesting a role for the epigenetic repression of the RA signaling pathway in myeloid leukemogenesis.
Collapse
MESH Headings
- Acute Disease
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cells, Cultured
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/physiology
- Gene Expression Regulation, Leukemic/drug effects
- Gene Silencing
- Heterochromatin/physiology
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Protein Binding
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Response Elements
- Retinoid X Receptors/metabolism
- Signal Transduction/genetics
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
- U937 Cells
Collapse
|
25
|
Melnick A. Targeting APL fusion proteins by peptide interference. Curr Top Microbiol Immunol 2007; 313:221-43. [PMID: 17217046 DOI: 10.1007/978-3-540-34594-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A significant barrier to experimental therapeutics is the ability to identify and specifically target oncogenic proteins involved in the molecular pathogenesis of disease. In acute promyelocytic leukemia (APL), aberrant transcription factors and their associated machinery play a central role in mediating the malignant phenotype. The mechanism of action of APL chimeric fusion proteins involves their ability to either self-associate or interact with different partner proteins. Thus, targeting protein-protein interactions could have a significant impact in blocking the activity of APL oncoproteins. As therapeutic targets, the interface between interacting proteins may not always be amenable to highly specific small molecule blockade. In contrast, peptides are well-suited to this purpose and can be reliably delivered when fused to cell-permeable peptide domains. Therapeutic peptides can be designed to directly target APL fusion proteins, their downstream effectors, or other potentially synergistic oncogenic mechanisms of importance in APL blasts. In addition to serving as potential therapeutic agents, such reagents could serve as powerful reagents to dissect the molecular pathogenesis of APL.
Collapse
Affiliation(s)
- A Melnick
- Department of Developmental and Molecular Biology and Medical Oncology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Atsumi A, Tomita A, Kiyoi H, Naoe T. Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML-RARα as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochem Biophys Res Commun 2006; 345:1471-80. [PMID: 16730330 DOI: 10.1016/j.bbrc.2006.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
PML-RARalpha is a chimeric transcription factor tightly associated with acute promyelocytic leukemia. PML-RARalpha plays an important role in the aberrant transcription repression on the target genes of wild-type retinoic acid receptors. Here, we demonstrated that HDAC3, one component of the N-CoR transcription repressor complex, is a key regulator of the transcription repression by PML-RARalphain vivo. Using immunoprecipitation, we demonstrated that PML-RARalpha interacts with N-CoR/HDAC3 in vivo without ligand. Next, using chromatin immunoprecipitation (ChIP) assay, this N-CoR/HDAC3 co-repressor complex was recruited to the endogenous target promoters (RARbeta and CYP26) through PML-RARalpha. The neighboring histones were de-acetylated and gene expression was repressed. When HDAC3 protein was knocked down by RNA interference in PML-RARalpha-expressing cells, the endogenous target genes were significantly activated, which was also confirmed by promoter-luciferase reporter assay. These results provide evidence to show that the N-CoR/HDAC3 co-repressor complex is involved in the aberrant transcription regulation in PML-RARalpha-expressing cells.
Collapse
Affiliation(s)
- Akihide Atsumi
- Department of Hematology, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| | | | | | | |
Collapse
|
27
|
Privé GG, Melnick A. Specific peptides for the therapeutic targeting of oncogenes. Curr Opin Genet Dev 2006; 16:71-7. [PMID: 16377176 DOI: 10.1016/j.gde.2005.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/07/2005] [Indexed: 02/03/2023]
Abstract
Tumors are dependent on oncogenic proteins for their maintenance and survival. The ideal cancer therapy would include drugs that specifically target these proteins. Many such proteins function through interfaces that can be difficult to target effectively with small molecules. However, recent advances in cell-permeable peptide technology, improving cellular penetration and stability, raise the possibility that specific peptide interference of oncogenic proteins could be successfully translated to the clinic. Several active anti-tumor peptides were recently described. For example, a stable peptide inhibitor of the Hsp90 ATP-binding pocket killed a wide range of tumors in vitro and in vivo, and a peptide inhibitor of the BCL6 oncoprotein was active in B-cell lymphomas; both peptides functioned without toxicity to normal tissues.
Collapse
Affiliation(s)
- Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | | |
Collapse
|
28
|
Abstract
Molecular lesions of genes encoding for transcriptional regulatory proteins are common oncogenic events in hematologic malignancies. Transcriptional activation and repression both occur by virtue of the choreographed recruitment of multisubunit cofactor complexes to target gene loci. As a consequence, the three-dimensional structure of the target gene is altered and its potential to support transcription is increased or decreased. The complexity of the transcriptional process offers a rich substrate for designing therapeutic agents. The objective of such 'transcription therapy' is to regain control over cohorts of target genes and restore the normal genetic and epigenetic programming of the cancer cell. The success of all-trans retinoic acid in the treatment of acute promyelocytic leukemia indicates that transcription therapy can be highly effective and safe. A classification scheme of these therapeutic strategies is proposed herein, which allows predictions to be made regarding specificity, efficacy, disease spectrum and side effects. This framework could help facilitate discussion of the mechanisms of action of transcription therapy drugs as well as the design of preclinical and clinical trials in the future.
Collapse
Affiliation(s)
- A Melnick
- Department of Developmental and Molecular Biology and Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|