1
|
Zhou Y, Rernglit W, Fukamizo T, Sucharitakul J, Suginta W. A three-step "ping-pong" mechanism of a GH20 β-N-acetylglucosaminidase from Vibrio campbellii belonging to a major Clade A-I of the phylogenetic tree of the enzyme superfamily. Biochem Biophys Res Commun 2024; 729:150357. [PMID: 39002194 DOI: 10.1016/j.bbrc.2024.150357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree. Pre-steady-state and steady-state kinetic analysis of the reaction catalysed by VhGlcNAcase with the fluorogenic substrate 4-methylumbelliferyl N-acetyl-β-D-glucosaminide suggested the following mechanism: (1) the Michaelis-Menten complex is formed in a rapid enzyme-substrate equilibrium with a Kd of 99.1 ± 1 μM. (2) The glycosidic bond is cleaved by the action of the catalytic residue Glu438, followed by the rapid release of the aglycone product with a rate constant (k2) of 53.3 ± 1 s-1. (3) After the formation of an oxazolinium ion intermediate with the assistance of Asp437, the anomeric carbon of the transition state is attacked by a catalytic water, followed by release of the glycone product with a rate constant (k3) of 14.6 s-1, which is rate-limiting. The result clearly indicated a three-step "ping-pong" mechanism for VhGlcNAcase.
Collapse
Affiliation(s)
- Yong Zhou
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Waraporn Rernglit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| |
Collapse
|
2
|
Hu CW, Wang A, Fan D, Worth M, Chen Z, Huang J, Xie J, Macdonald J, Li L, Jiang J. OGA mutant aberrantly hydrolyzes O-GlcNAc modification from PDLIM7 to modulate p53 and cytoskeleton in promoting cancer cell malignancy. Proc Natl Acad Sci U S A 2024; 121:e2320867121. [PMID: 38838015 PMCID: PMC11181094 DOI: 10.1073/pnas.2320867121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Ao Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Matthew Worth
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Junfeng Huang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Jinshan Xie
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - John Macdonald
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Lingjun Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
3
|
Li C, Cao Z, Jiang H, Secundo F, Mao X. Characterization of a GH20 β- N-Acetylhexosaminidase from Flavobacterium algicola Suitable to Synthesize Lacto- N-triose II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4849-4857. [PMID: 38386626 DOI: 10.1021/acs.jafc.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
β-N-Acetylhexosaminidases have attracted much attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as a backbone precursor of human milk oligosaccharides (HMOs). In this study, a novel glycoside hydrolase (GH) 20 family β-N-acetylhexosaminidase, FlaNag2353, from Flavobacterium algicola was biochemically characterized and applied to synthesize LNT2. FlaNag2353 displayed optimal activity to p-nitrophenyl N-acetyl-β-d-glucosaminide (pNP-GlcNAc) at 40 °C and pH 8.0. In addition to its excellent hydrolysis activity toward pNP-GlcNAc and chitooligosaccharides, FlaNag2353 showed trans-glycosylation activity. Under conditions of pH 9.0 and 55 °C for 2 h and utilizing 200 mM lactose and 10 mM pNP-GlcNAc, FlaNag2353 synthesized LNT2 with a conversion ratio of 4.15% calculated from pNP-GlcNAc. Moreover, when applied to LNT2 synthesis with 10 mM pNP-GlcNAc and 9.7% (w/v) industrial waste whey powder, FlaNag2353 achieved a conversion ratio of 2.39%. This study has significant implications for broadening the applications of GH20 β-N-acetylhexosaminidases and promoting the high-value utilization of whey powder.
Collapse
Affiliation(s)
- Chengqiang Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Zhuoning Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
4
|
Mitchell CW, Galan Bartual S, Ferenbach AT, Scavenius C, van Aalten DMF. Exploiting O-GlcNAc transferase promiscuity to dissect site-specific O-GlcNAcylation. Glycobiology 2023; 33:1172-1181. [PMID: 37856504 DOI: 10.1093/glycob/cwad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
Protein O-GlcNAcylation is an evolutionary conserved post-translational modification catalysed by the nucleocytoplasmic O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). How site-specific O-GlcNAcylation modulates a diverse range of cellular processes is largely unknown. A limiting factor in studying this is the lack of accessible techniques capable of producing homogeneously O-GlcNAcylated proteins, in high yield, for in vitro studies. Here, we exploit the tolerance of OGT for cysteine instead of serine, combined with a co-expressed OGA to achieve site-specific, highly homogeneous mono-glycosylation. Applying this to DDX3X, TAB1, and CK2α, we demonstrate that near-homogeneous mono-S-GlcNAcylation of these proteins promotes DDX3X and CK2α solubility and enables production of mono-S-GlcNAcylated TAB1 crystals, albeit with limited diffraction. Taken together, this work provides a new approach for functional dissection of protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Conor W Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Sergio Galan Bartual
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Daan M F van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
5
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
6
|
Zhang Y, Yu H, Wang D, Lei X, Meng Y, Zhang N, Chen F, Lv L, Pan Q, Qin H, Zhang Z, van Aalten DMF, Yuan K. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis. J Genet Genomics 2023; 50:948-959. [PMID: 37286164 DOI: 10.1016/j.jgg.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.
Collapse
Affiliation(s)
- Yaowen Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haibin Yu
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dandan Wang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lei
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yang Meng
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Lv
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhuohua Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daan M F van Aalten
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Jiang X, Yang Q. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2023; 142:106870. [PMID: 39492366 DOI: 10.1016/j.bioorg.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Glycoside hydrolase family 20 (GH20) β-N-acetyl-d-hexosaminidase (Hex) catalyzes the cleavage of glycosidic linkages in glycans, glycolipids and glycoproteins, and is involved in glycoprotein modification, metabolism of glycoconjugate and the degradation of chitin in fungal cell walls and arthropod exoskeletons. GH84 O-β-N-acetyl-d-glucosaminidase (OGA), which is mechanistically similar related to GH20, participates in the O-GlcNAcylation modification, hydrolyzing the O-GlcNAc moiety from protein acceptors. Hex and OGA are of interest due to their potential for the treatment of disorder diseases and plant protection. Hex inhibitors act as molecular chaperones to treat lysosomal storage disease and as growth regulators to arrest insect molting. Inhibition of OGA is a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease. However, since Hex and OGA exhibit similar active sites, there are challenges in designing highly selective inhibitors. The elucidation of the structural basis of the catalytic mechanism and substrate binding mode of Hex and OGA has provided core information for virtual screening and rational design of inhibitors. A large number of high-potency and selective inhibitors have been developed in the last five years. In this review, we focus on the recent advances in the structural modification, inhibitory activity, binding mechanisms and biological evaluation of Hex and OGA inhibitors, which will facilitate the development of new drugs and agrochemicals.
Collapse
Affiliation(s)
- Xi Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Kołaczkowski BM, Moroz OV, Blagova E, Davies GJ, Møller MS, Meyer AS, Westh P, Jensen K, Wilson KS, Krogh KBRM. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr D Struct Biol 2023; 79:387-400. [PMID: 37071393 PMCID: PMC10167667 DOI: 10.1107/s2059798323001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
Collapse
Affiliation(s)
- Bartłomiej M. Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, 4000 Roskilde, Denmark
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
9
|
Hu CW, Wang A, Fan D, Worth M, Chen Z, Huang J, Xie J, Macdonald J, Li L, Jiang J. Cancer-derived mutation in the OGA stalk domain promotes cell malignancy through dysregulating PDLIM7 and p53. RESEARCH SQUARE 2023:rs.3.rs-2709128. [PMID: 36993758 PMCID: PMC10055641 DOI: 10.21203/rs.3.rs-2709128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
O-GlcNAcase (OGA) is the sole enzyme that hydrolyzes O-GlcNAcylation from thousands of proteins and is dysregulated in many diseases including cancer. However, the substrate recognition and pathogenic mechanisms of OGA remain largely unknown. Here we report the first discovery of a cancer-derived point mutation on the OGA's non-catalytic stalk domain that aberrantly regulated a small set of OGA-protein interactions and O-GlcNAc hydrolysis in critical cellular processes. We uncovered a novel cancer-promoting mechanism in which the OGA mutant preferentially hydrolyzed the O-GlcNAcylation from modified PDLIM7 and promoted cell malignancy by down-regulating p53 tumor suppressor in different types of cells through transcription inhibition and MDM2-mediated ubiquitination. Our study revealed the OGA deglycosylated PDLIM7 as a novel regulator of p53-MDM2 pathway, offered the first set of direct evidence on OGA substrate recognition beyond its catalytic site, and illuminated new directions to interrogate OGA's precise role without perturbing global O-GlcNAc homeostasis for biomedical applications.
Collapse
Affiliation(s)
| | - Ao Wang
- University of Wisconsin-Madison
| | | | | | | | | | | | | | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison
| |
Collapse
|
10
|
Zhu Y, Hart GW. Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin. Cell 2023; 186:428-445.e27. [PMID: 36626902 PMCID: PMC9868088 DOI: 10.1016/j.cell.2022.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/β-catenin dual-specificity aptamers, we found that O-GlcNAcylation of β-catenin stabilizes the protein by inhibiting its interaction with β-TrCP. O-GlcNAc also increases β-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Hu CW, Xie J, Jiang J. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Cancers (Basel) 2022; 14:5135. [PMID: 36291918 PMCID: PMC9600386 DOI: 10.3390/cancers14205135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 09/11/2023] Open
Abstract
The dynamic O-GlcNAc modification of intracellular proteins is an important nutrient sensor for integrating metabolic signals into vast networks of highly coordinated cellular activities. Dysregulation of the sole enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), and the associated cellular O-GlcNAc profile is a common feature across nearly every cancer type. Many studies have investigated the effects of aberrant OGT/OGA expression on global O-GlcNAcylation activity in cancer cells. However, recent studies have begun to elucidate the roles of protein-protein interactions (PPIs), potentially through regions outside of the immediate catalytic site of OGT/OGA, that regulate greater protein networks to facilitate substrate-specific modification, protein translocalization, and the assembly of larger biomolecular complexes. Perturbation of OGT/OGA PPI networks makes profound changes in the cell and may directly contribute to cancer malignancies. Herein, we highlight recent studies on the structural features of OGT and OGA, as well as the emerging roles and molecular mechanisms of their aberrant PPIs in rewiring cancer networks. By integrating complementary approaches, the research in this area will aid in the identification of key protein contacts and functional modules derived from OGT/OGA that drive oncogenesis and will illuminate new directions for anti-cancer drug development.
Collapse
Affiliation(s)
| | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, Lauzier B. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol 2022; 151:106289. [PMID: 36031106 DOI: 10.1016/j.biocel.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is a post-translational modification which affects approximately 5000 human proteins. Its involvement has been shown in many if not all biological processes. Variations in O-GlcNAcylation levels can be associated with the development of diseases. Deciphering the role of O-GlcNAcylation is an important issue to (i) understand its involvement in pathophysiological development and (ii) develop new therapeutic strategies to modulate O-GlcNAc levels. Over the past 30 years, despite the development of several approaches, knowledge of its role and regulation have remained limited. This review proposes an overview of the currently available tools to study O-GlcNAcylation and identify O-GlcNAcylated proteins. Briefly, we discuss pharmacological modulators, methods to study O-GlcNAcylation levels and approaches for O-GlcNAcylomic profiling. This review aims to contribute to a better understanding of the methods used to study O-GlcNAcylation and to promote efforts in the development of new strategies to explore this promising modification.
Collapse
Affiliation(s)
- Thomas Dupas
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
| | - Charlotte Betus
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Thomas Pelé
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Persello
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
14
|
Dynamic changes in O-GlcNAcylation regulate osteoclast differentiation and bone loss via nucleoporin 153. Bone Res 2022; 10:51. [PMID: 35879285 PMCID: PMC9314416 DOI: 10.1038/s41413-022-00218-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Bone mass is maintained by the balance between osteoclast-induced bone resorption and osteoblast-triggered bone formation. In inflammatory arthritis such as rheumatoid arthritis (RA), however, increased osteoclast differentiation and activity skew this balance resulting in progressive bone loss. O-GlcNAcylation is a posttranslational modification with attachment of a single O-linked β-D-N-acetylglucosamine (O-GlcNAc) residue to serine or threonine residues of target proteins. Although O-GlcNAcylation is one of the most common protein modifications, its role in bone homeostasis has not been systematically investigated. We demonstrate that dynamic changes in O-GlcNAcylation are required for osteoclastogenesis. Increased O-GlcNAcylation promotes osteoclast differentiation during the early stages, whereas its downregulation is required for osteoclast maturation. At the molecular level, O-GlcNAcylation affects several pathways including oxidative phosphorylation and cell-cell fusion. TNFα fosters the dynamic regulation of O-GlcNAcylation to promote osteoclastogenesis in inflammatory arthritis. Targeted pharmaceutical or genetic inhibition of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) arrests osteoclast differentiation during early stages of differentiation and during later maturation, respectively, and ameliorates bone loss in experimental arthritis. Knockdown of NUP153, an O-GlcNAcylation target, has similar effects as OGT inhibition and inhibits osteoclastogenesis. These findings highlight an important role of O-GlcNAcylation in osteoclastogenesis and may offer the potential to therapeutically interfere with pathologic bone resorption.
Collapse
|
15
|
Li X, Han J, Bujaranipalli S, He J, Kim EY, Kim H, Im JH, Cho WJ. Structure-based discovery and development of novel O-GlcNAcase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 238:114444. [PMID: 35588599 DOI: 10.1016/j.ejmech.2022.114444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The neurofibrillary tangles (NFTs) formed from hyperphosphorylation of tau protein are closely associated with Alzheimer's disease (AD). O-GlcNAcylation of tau can negatively regulate hyperphosphorylation and the O-GlcNAcase (OGA) catalyzes the removal of O-linked β-N-acetylglucosamine (O-GlcNAc) from tau protein. Therefore, preventing tau hyperphosphorylation by increasing the levels of tau O-GlcNAcylation via OGA inhibitors could be a promising approach. Based on Thiamet-G, a potent OGA inhibitor, and its binding mode to OGA, a novel OGA inhibitor scaffold bearing three parts was designed and hit compound 7j was successfully identified via extensive exploring. Further chemical optimization and diversification of the 7j structure resulted in compound 39 which possesses excellent OGA inhibition, no cytotoxicity, and has good pharmacokinetic properties. In acute AD model mice, 39 was more effective than Thiamet-G in inhibiting OGA activity attributable to its better blood-brain barrier permeability. In addition, 39 restored the cognitive function in mice and reduced amyloid-β (Aβ) concentrations to a greater extent than Thiamet-G. Molecular docking studies demonstrated that 39 was well associated with OGA through H-bonds and hydrophobic interaction. Together, these findings suggest that 39 was promising as a potent OGA inhibitor in the treatment of AD.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinhe Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sheshurao Bujaranipalli
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jie He
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hee Kim
- Medifron DBT, Seoul, 08502, Republic of Korea
| | - Jae Hong Im
- Medifron DBT, Seoul, 08502, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
17
|
Zhao Y, Yue S, Zhou X, Guo J, Ma S, Chen Q. O-GlcNAc transferase promotes the nuclear localization of the focal adhesion-associated protein Zyxin to regulate UV-induced cell death. J Biol Chem 2022; 298:101776. [PMID: 35227760 PMCID: PMC8988012 DOI: 10.1016/j.jbc.2022.101776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.
Collapse
|
18
|
Writing and erasing O-GlcNAc from target proteins in cells. Biochem Soc Trans 2021; 49:2891-2901. [PMID: 34783346 DOI: 10.1042/bst20210865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a widespread reversible modification on nucleocytoplasmic proteins that plays an important role in many biochemical processes and is highly relevant to numerous human diseases. The O-GlcNAc modification has diverse functional impacts on individual proteins and glycosites, and methods for editing this modification on substrates are essential to decipher these functions. Herein, we review recent progress in developing methods for O-GlcNAc regulation, with a focus on methods for editing O-GlcNAc with protein- and site-selectivity in cells. The applications, advantages, and limitations of currently available strategies for writing and erasing O-GlcNAc and future directions are also discussed. These emerging approaches to manipulate O-GlcNAc on a target protein in cells will greatly accelerate the development of functional studies and enable therapeutic interventions in the O-GlcNAc field.
Collapse
|
19
|
Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers (Basel) 2021; 13:cancers13215365. [PMID: 34771527 PMCID: PMC8582477 DOI: 10.3390/cancers13215365] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Despite the rapid advancement in immunotherapy and targeted agents, many patients diagnosed with cancer have poor prognosis with dismal overall survival. One of the key hallmarks of cancer is the ability of cancer cells to reprogram their energy metabolism. O-GlcNAcylation is an emerging potential mechanism for cancer cells to induce proliferation and progression of tumor cells and resistance to chemotherapy. This review summarizes the mechanism behind O-GlcNAcylation and discusses the role of O-GlcNAcylation, including its function with receptor tyrosine kinase and chemo-resistance in cancer, and immune response to cancer and as a prognostic factor. Further pre-clinical studies on O-GlcNAcylation are warranted to assess the clinical efficacy of agents targeting O-GlcNAcylation. Abstract Cancer cells are able to reprogram their glucose metabolism and retain energy via glycolysis even under aerobic conditions. They activate the hexosamine biosynthetic pathway (HBP), and the complex interplay of O-linked N-acetylglucosaminylation (O-GlcNAcylation) via deprivation of nutrients or increase in cellular stress results in the proliferation, progression, and metastasis of cancer cells. Notably, cancer is one of the emerging diseases associated with O-GlcNAcylation. In this review, we summarize studies that delineate the role of O-GlcNAcylation in cancer, including its modulation in metastasis, function with receptor tyrosine kinases, and resistance to chemotherapeutic agents, such as cisplatin. In addition, we discuss the function of O-GlcNAcylation in eliciting immune responses associated with immune surveillance in the tumor microenvironment. O-GlcNAcylation is increasingly accepted as one of the key players involved in the activation and differentiation of T cells and macrophages. Finally, we discuss the prognostic role of O-GlcNAcylation and potential therapeutic agents such as O-linked β-N-acetylglucosamine-transferase inhibitors, which may help overcome the resistance mechanism associated with the reprogramming of glucose metabolism.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Kyoung-Ho Pyo
- Department of Medical Science, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (K.-H.P.); (H.R.K.); Tel.: +82-2228-0869 (K.-H.P.); +82-2228-8125 (H.R.K.)
| |
Collapse
|
20
|
Bartolomé-Nebreda JM, Trabanco AA, Velter AI, Buijnsters P. O-GlcNAcase inhibitors as potential therapeutics for the treatment of Alzheimer's disease and related tauopathies: analysis of the patent literature. Expert Opin Ther Pat 2021; 31:1117-1154. [PMID: 34176417 DOI: 10.1080/13543776.2021.1947242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: O-GlcNAcylation is a highly abundant post-translational modification of multiple proteins, including the microtubule-binding protein tau, governed by just two enzymes' concerted action O-GlcNAc transferase OGT and the hydrolase OGA. It is an approach to reduce abnormal tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) and related tauopathies based on the ability of O-GlcNAcylation competing with tau phosphorylation, thus minimizing aggregation. The preclinical validation confirmed OGA inhibitors' efficacy in different transgenic tau mice models. Only three other OGA inhibitors have advanced into clinical trials thus far.Areas covered: 2008-2020 patent literature on OGA inhibitors.Expert opinion: Neurodegenerative disorders and AD specifically represent an enormous challenge since no effective treatments are available. Promising preclinical data has prompted considerable interest in searching for OGA inhibitors as a potential treatment for neurodegenerative disorders. Efforts from different companies have yielded a diverse set of chemotypes. OGA is a highly ubiquitous enzyme with many client proteins, generated data confirms a promising benign profile for OGA inhibition in healthy volunteers. Additionally, OGA PET tracers' existence will be critical for proper dose selection for future PoC Phase II studies, which will proof the true potential of OGA inhibition for the treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Jose M Bartolomé-Nebreda
- A Division of Janssen-Cilag SA, Discovery Chemistry Department, Discovery, Product Development & Supply, Janssen Research and Development, Toledo, Spain
| | - Andrés A Trabanco
- A Division of Janssen-Cilag SA, Discovery Chemistry Department, Discovery, Product Development & Supply, Janssen Research and Development, Toledo, Spain
| | - Adriana Ingrid Velter
- A Division of Janssen Pharmaceutica NV, Discovery Chemistry Department, Discovery, Product Development & Supply, Janssen Research and Development, Beerse, Belgium
| | - Peter Buijnsters
- A Division of Janssen Pharmaceutica NV, Discovery Chemistry Department, Discovery, Product Development & Supply, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
21
|
Song J, Liu C, Wang X, Xu B, Liu X, Li Y, Xia J, Li Y, Zhang C, Li D, Sun H. O-GlcNAcylation Quantification of Certain Protein by the Proximity Ligation Assay and Clostridium perfringen OGA D298N(CpOGA D298N). ACS Chem Biol 2021; 16:1040-1049. [PMID: 34105348 DOI: 10.1021/acschembio.1c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-GlcNAcylation is an O-linked β-N-acetyl-glucosamine (O-GlcNAc)-monosaccharide modification of serine or threonine in proteins that plays a vital role in many critical cellular processes. Owing to its low molecular weight, uncharged property, and difficulty in distinguishing from β-N-acetyl-galactosamine (GalNAc), the lack of high specificity and avidity tools and sophisticated quantification methods have always been the bottleneck in analyzing O-GlcNAc functions. Here, we compared glycan array data of the mutant of Clostridium perfringen OGA (CpOGAD298N), O-GlcNAc antibody CTD110.6, and several lectins. We found that CpOGAD298N can effectively distinguish GlcNAc from GalNAc. Glycan array analysis and isothermal titration calorimetry (ITC) show that CpOGAD298N has a GlcNAc specific binding characteristic. CpOGAD298N could be used in far-western, flow cytometry analysis, and confocal imaging to demonstrate the existence of O-GlcNAc proteins. Using the CpOGAD298N affinity column, we identified 84 highly confident O-GlcNAc modified peptides from 82 proteins in the MCF-7 cell line and 33 highly confident peptides in 33 proteins from mouse liver tissue; most of them are novel O-GlcNAc proteins and could not bind with wheat germ agglutinin (WGA). Besides being used as a facile enrichment tool, a combination of CpOGAD298N with the proximity ligation assay (PLA) is successfully used to quantify O-GlcNAc modified histone H2B, which is as low as femtomoles in MCF-7 cell lysate. These results suggest that CpOGAD298N is a specific tool for detection (far-western, flow cytometry analysis, and confocal imaging) and enrichment of O-GlcNAcylated proteins and peptides, and the CpOGAD298N-PLA method is useful for quantifying certain O-GlcNAc protein.
Collapse
Affiliation(s)
- Jiaqi Song
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Bo Xu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Jing Xia
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Yan Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| |
Collapse
|
22
|
Li J, Gao K, Secundo F, Mao X. Biochemical characterization of two β-N-acetylglucosaminidases from Streptomyces violascens for efficient production of N-acetyl-d-glucosamine. Food Chem 2021; 364:130393. [PMID: 34167004 DOI: 10.1016/j.foodchem.2021.130393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Chitin, one of the most abundant renewable biopolymers on Earth, is commercially available from crustacean wastes. One critical step in converting chitin to high-value products is its degradation by chitinolytic enzymes to N-acetyl-d-glucosamine (GlcNAc), which plays a significant role in functional food and pharmaceutical industries. Here, we cloned and biochemically characterized two novel β-N-acetylglucosaminidases named SvNag2557 (family-84) and SvNag4755 (family-3) from Streptomyces violascens ATCC 27968. Both SvNag2557 and SvNag4755 exhibited strict substrate specificity toward N-acetyl chitooligosaccharides with GlcNAc as the sole product. Thus, a one-pot production for pure GlcNAc from chitin by an enzyme cocktail reaction was further developed. Under the co-action of an endo-type chitinase SaChiA4 and SvNag2557 (mass ratio 1:2), the final conversion rates of colloidal chitin and ionic liquid pretreated chitin to GlcNAc were 80.2% and 73.8% with GlcNAc purities of 99.7% and 96.8%, respectively.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kunpeng Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
23
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
24
|
Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Mol Cell Proteomics 2021; 20:100069. [PMID: 33716169 PMCID: PMC8079276 DOI: 10.1016/j.mcpro.2021.100069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Collapse
Affiliation(s)
- Marissa Martinez
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Foghorn Therapeutics, Cambridge, Massachusetts, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Simion Kreimer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Currently at the Advanced Clinical Biosystems Institute, Smidt Heart institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Natov
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Ginkgo Bioworks, Massachusetts, United States
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| |
Collapse
|
25
|
Muha V, Authier F, Szoke-Kovacs Z, Johnson S, Gallagher J, McNeilly A, McCrimmon RJ, Teboul L, van Aalten DMF. Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. J Biol Chem 2021; 296:100439. [PMID: 33610549 PMCID: PMC7988489 DOI: 10.1016/j.jbc.2021.100439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification that has been implicated in neurodevelopmental and neurodegenerative disorders. O-GlcNAcase (OGA), the sole enzyme catalyzing the removal of O-GlcNAc from proteins, has emerged as a potential drug target. OGA consists of an N-terminal OGA catalytic domain and a C-terminal pseudo histone acetyltransferase (HAT) domain with unknown function. To investigate phenotypes specific to loss of OGA catalytic activity and dissect the role of the HAT domain, we generated a constitutive knock-in mouse line, carrying a mutation of a catalytic aspartic acid to alanine. These mice showed perinatal lethality and abnormal embryonic growth with skewed Mendelian ratios after day E18.5. We observed tissue-specific changes in O-GlcNAc homeostasis regulation to compensate for loss of OGA activity. Using X-ray microcomputed tomography on late gestation embryos, we identified defects in the kidney, brain, liver, and stomach. Taken together, our data suggest that developmental defects during gestation may arise upon prolonged OGA inhibition specifically because of loss of OGA catalytic activity and independent of the function of the HAT domain.
Collapse
Affiliation(s)
- Villő Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Florence Authier
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Sara Johnson
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Jennifer Gallagher
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Alison McNeilly
- System Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Rory J McCrimmon
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
26
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
27
|
Blériot Y. Contributing to the Study of Enzymatic and Chemical Glycosyl Transfer Through the Observation and Mimicry of Glycosyl Cations. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThis account describes our efforts dedicated to: 1) the design of glycomimetics aimed at targeting therapeutically relevant carbohydrate processing enzymes, and 2) the observation, characterization, and exploitation of glycosyl cations as a tool for studying the glycosylation reaction. These findings have brought important data regarding this key ionic species as well as innovative strategies to access iminosugars of interest.1 Introduction2 The Glycosyl Cation, A Central Species in Glycosciences2.1 A Selection of the Strategies Developed so far to Gain Insights into Glycosyl Cations Structure2.2 When Superacids Meet Carbohydrates3 Chemical Probes to Gain Insights into the Pseudorotational Itinerary of Glycosides During Glycosidic Bond Hydrolysis3.1 Conformationally Locked Glycosides3.1.1 The Xylopyranose Case3.1.2 The Mannopyranose Case3.2 Conformationally Flexible Iminosugars3.2.1 Nojirimycin Ring Homologues3.2.2 Noeuromycin Ring Homologues3.2.3 Seven-Membered Iminosugar C-Glycosides4 N-Acetyl-d-glucosamine Mimics5 Ring Contraction: A Useful Tool to Increase Iminosugar’s Structural Diversity6 Regioselective Deprotection of Iminosugar C-Glycosides to Introduce Diversity at C2 Position7 Conclusion
Collapse
|
28
|
Martínez-Viturro CM, Trabanco AA, Royes J, Fernández E, Tresadern G, Vega JA, del Cerro A, Delgado F, García Molina A, Tovar F, Shaffer P, Ebneth A, Bretteville A, Mertens L, Somers M, Alonso JM, Bartolomé-Nebreda JM. Diazaspirononane Nonsaccharide Inhibitors of O-GlcNAcase (OGA) for the Treatment of Neurodegenerative Disorders. J Med Chem 2020; 63:14017-14044. [DOI: 10.1021/acs.jmedchem.0c01479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos M. Martínez-Viturro
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Andrés A. Trabanco
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Jordi Royes
- Department Química Física i Inorgànica, University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Elena Fernández
- Department Química Física i Inorgànica, University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Juan A. Vega
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Alcira del Cerro
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Francisca Delgado
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Aránzazu García Molina
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Fulgencio Tovar
- Villapharma Research S.L., Parque Tecnológico de Fuente Álamo, Ctra. El Estrecho-Lobosillo, Km. 2.5—Av. Azul, 30320 Fuente Álamo de Murcia, Spain
| | - Paul Shaffer
- X-Ray Crystallography, Janssen Pharmaceutical Research & Development, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Andreas Ebneth
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Alexis Bretteville
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Liesbeth Mertens
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Marijke Somers
- Discovery DMPK, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2440 Beerse, Belgium
| | - Jose M. Alonso
- Analytical Sciences, Janssen Research & Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - José M. Bartolomé-Nebreda
- Discovery Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| |
Collapse
|
29
|
Abstract
O-GlcNAcylation is an abundant and dynamic protein posttranslational modification (PTM), with crucial roles in metazoans. Studies of this modification are hampered by the lack of convenient methods for detecting native O-GlcNAcylation. Here, we describe a novel gel-based approach, Separation of O-GlcNAcylated Proteins by Polyacrylamide Gel Electrophoresis (SOPAGE), which enables detection of O-GlcNAc levels and dynamics.
Collapse
Affiliation(s)
- Chuan Fu
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| | | |
Collapse
|
30
|
Xiong J, Xu D. Mechanistic Insights into the Hydrolysis of O-GlcNAcylation Catalyzed by Human O-GlcNAcase. J Phys Chem B 2020; 124:9310-9322. [PMID: 32970432 DOI: 10.1021/acs.jpcb.0c05755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O-GlcNAc glycosylation occurs on specific serine/threonine residues of intracellular proteins, which is widely related to various diseases, including type II diabetes, cancer, and Alzheimer's disease. Human O-GlcNAcase (hOGA) is responsible for the removal of O-GlcNAc modification and thus serves as the main target for inhibitor design. In this work, we systematically investigated the mechanism catalyzed by hOGA using the quantum mechanical/molecular mechanical method. Based on calculated free energy profiles, two essential steps named cyclization (Cyc) step and ring opening step are required to generate the final hemiacetal product. The Cyc of the 2-acetamido group, the rate-limiting step, leads to the generation of the intermediate of a bicyclic oxazolinium ion (EI1). Next, the oxazoline ring could be broken via the nucleophilic attack of a water molecule at the C1 position, which generates the final product. Along with this, our simulations clearly suggest the existence of an oxazoline intermediate (EI2), which is produced via proton transfer (PT) from the 2-acetamido group (EI1) to D174. This PT step features a reversible process with a low energy barrier, which could be attributed to a low barrier hydrogen bond between the donor and acceptor. The stabilizing effect of the low barrier hydrogen bond on EI1 is proposed to be very important for accelerating the overall reaction. In fact, the site-directed mutagenesis simulations of D174A and D175A strongly indicate that the catalytic residues mainly affect the observed reaction rate by affecting the stability of the intermediate.
Collapse
Affiliation(s)
- Jing Xiong
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
31
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
32
|
Structural insights of the enzymes from the chitin utilization locus of Flavobacterium johnsoniae. Sci Rep 2020; 10:13775. [PMID: 32792608 PMCID: PMC7426924 DOI: 10.1038/s41598-020-70749-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Chitin is one of the most abundant renewable organic materials found on earth. The chitin utilization locus in Flavobacterium johnsoniae, which encodes necessary proteins for complete enzymatic depolymerization of crystalline chitin, has recently been characterized but no detailed structural information on the enzymes was provided. Here we present protein structures of the F. johnsoniae chitobiase (FjGH20) and chitinase B (FjChiB). FjGH20 is a multi-domain enzyme with a helical domain not before observed in other chitobiases and a domain organization reminiscent of GH84 (β-N-acetylglucosaminidase) family members. The structure of FjChiB reveals that the protein lacks loops and regions associated with exo-acting activity in other chitinases and instead has a more solvent accessible substrate binding cleft, which is consistent with its endo-chitinase activity. Additionally, small angle X-ray scattering data were collected for the internal 70 kDa region that connects the N- and C-terminal chitinase domains of the unique 158 kDa multi-domain chitinase A (FjChiA). The resulting model of the molecular envelope supports bioinformatic predictions of the region comprising six domains, each with similarities to either Fn3-like or Ig-like domains. Taken together, the results provide insights into chitin utilization by F. johnsoniae and reveal structural diversity in bacterial chitin metabolism.
Collapse
|
33
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
34
|
Elbatrawy AA, Kim EJ, Nam G. O‐GlcNAcase: Emerging Mechanism, Substrate Recognition and Small‐Molecule Inhibitors. ChemMedChem 2020; 15:1244-1257. [DOI: 10.1002/cmdc.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed A. Elbatrawy
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| | - Eun Ju Kim
- Daegu University Department of Science Education-Chemistry Gyeongsan-si, Gyeongsangbuk-do Gyeongbuk 38453 (Republic of Korea
| | - Ghilsoo Nam
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| |
Collapse
|
35
|
Low KE, Smith SP, Abbott DW, Boraston AB. The glycoconjugate-degrading enzymes of Clostridium perfringens: Tailored catalysts for breaching the intestinal mucus barrier. Glycobiology 2020; 31:681-690. [PMID: 32472136 DOI: 10.1093/glycob/cwaa050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
The gastrointestinal (GI) tract of humans and animals is lined with mucus that serves as a barrier between the gut microbiota and the epithelial layer of the intestine. As the proteins present in mucus are typically heavily glycosylated, such as the mucins, several enteric commensal and pathogenic bacterial species are well-adapted to this rich carbon source and their genomes are replete with carbohydrate-active enzymes targeted toward dismantling the glycans and proteins present in mucus. One such species is Clostridium perfringens, a Gram-positive opportunistic pathogen indigenous to the gut of humans and animals. The genome of C. perfringens encodes numerous carbohydrate-active enzymes that are predicted or known to target glycosidic linkages within or on the termini of mucus glycans. Through this enzymatic activity, the degradation of the mucosal layer by C. perfringens has been implicated in a number of GI diseases, the most severe of which is necrotic enteritis. In this review, we describe the wide array of extracellular glycoside hydrolases, and their accessory modules, that is possessed by C. perfringens, and examine the unique multimodularity of these proteins in the context of degrading the glycoconjugates in mucus as a potential component of disease.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S, Lethbridge T1J 4B1, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Ave, Kingston K7L 3N6, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S, Lethbridge T1J 4B1, Canada
| | - Alisdair B Boraston
- Faculty of Biochemistry and Microbiology, University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
36
|
Pluvinage B, Massel PM, Burak K, Boraston AB. Structural and functional analysis of four family 84 glycoside hydrolases from the opportunistic pathogen Clostridium perfringens. Glycobiology 2020; 30:49-57. [PMID: 31701135 DOI: 10.1093/glycob/cwz069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Clostridium perfringens possesses the ability to colonize the protective mucin layer in the gastrointestinal tract. To assist this, the C. perfringens genome contains a battery of genes encoding glycoside hydrolases (GHs) that are likely active on mucin glycans, including four genes encoding family 84 GHs: CpGH84A (NagH), CpGH84B (NagI), CpGH84C (NagJ) and CpGH84D (NagK). To probe the potential advantage gained by the expansion of GH84 enzymes in C. perfringens, we undertook the structural and functional characterization of the CpGH84 catalytic modules. Here, we show that these four CpGH84 catalytic modules act as β-N-acetyl-D-glucosaminidases able to hydrolyze N- and O-glycan motifs. CpGH84A and CpGH84D displayed a substrate specificity restricted to terminal β-1,2- and β-1,6-linked N-acetyl-D-glucosamine (GlcNAc). CpGH84B and CpGH84C appear more promiscuous with activity on terminal β-1,2-, β-1,3- and β-1,6-linked GlcNAc; both possess some activity toward β-1,4-linked GlcNAc, but this is dependent upon which monosaccharide it is linked to. Furthermore, all the CpGH84s have different optimum pHs ranging from 5.2 to 7.0. Consistent with their β-N-acetyl-D-glucosaminidase activities, the structures of the four catalytic modules revealed similar folds with a catalytic site including a conserved -1 subsite that binds GlcNAc. However, nonconserved residues in the vicinity of the +1 subsite suggest different accommodation of the sugar preceding the terminal GlcNAc, resulting in subtly different substrate specificities. This structure-function comparison of the four GH84 catalytic modules from C. perfringens reveals their different biochemical properties, which may relate to how they are deployed in the bacterium's niche in the host.
Collapse
Affiliation(s)
- Benjamin Pluvinage
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Patricia M Massel
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Kristyn Burak
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Alisdair B Boraston
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
37
|
Muha V, Fenckova M, Ferenbach AT, Catinozzi M, Eidhof I, Storkebaum E, Schenck A, van Aalten DMF. O-GlcNAcase contributes to cognitive function in Drosophila. J Biol Chem 2020; 295:8636-8646. [PMID: 32094227 PMCID: PMC7324509 DOI: 10.1074/jbc.ra119.010312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
O-GlcNAcylation is an abundant post-translational modification in neurons. In mice, an increase in O-GlcNAcylation leads to defects in hippocampal synaptic plasticity and learning. O-GlcNAcylation is established by two opposing enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). To investigate the role of OGA in elementary learning, we generated catalytically inactive and precise knockout Oga alleles (OgaD133N and OgaKO , respectively) in Drosophila melanogaster Adult OgaD133N and OgaKO flies lacking O-GlcNAcase activity showed locomotor phenotypes. Importantly, both Oga lines exhibited deficits in habituation, an evolutionarily conserved form of learning, highlighting that the requirement for O-GlcNAcase activity for cognitive function is preserved across species. Loss of O-GlcNAcase affected a number of synaptic boutons at the axon terminals of larval neuromuscular junction. Taken together, we report behavioral and neurodevelopmental phenotypes associated with Oga alleles and show that Oga contributes to cognition and synaptic morphology in Drosophila.
Collapse
Affiliation(s)
- Villo Muha
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Michaela Fenckova
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Andrew T Ferenbach
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Daan M F van Aalten
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom.
| |
Collapse
|
38
|
Meekrathok P, Thongsom S, Aunkham A, Kaewmaneewat A, Kitaoku Y, Choowongkomon K, Suginta W. Novel GH-20 β-N-acetylglucosaminidase inhibitors: Virtual screening, molecular docking, binding affinity, and anti-tumor activity. Int J Biol Macromol 2020; 142:503-512. [DOI: 10.1016/j.ijbiomac.2019.09.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
|
39
|
Muha V, Williamson R, Hills R, McNeilly AD, McWilliams TG, Alonso J, Schimpl M, Leney AC, Heck AJR, Sutherland C, Read KD, McCrimmon RJ, Brooks SP, van Aalten DMF. Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Open Biol 2019; 9:190192. [PMID: 31771416 PMCID: PMC6893399 DOI: 10.1098/rsob.190192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
O-GlcNAcylation is an abundant post-translational modification in the nervous system, linked to both neurodevelopmental and neurodegenerative disease. However, the mechanistic links between these phenotypes and site-specific O-GlcNAcylation remain largely unexplored. Here, we show that Ser517 O-GlcNAcylation of the microtubule-binding protein Collapsin Response Mediator Protein-2 (CRMP2) increases with age. By generating and characterizing a Crmp2S517A knock-in mouse model, we demonstrate that loss of O-GlcNAcylation leads to a small decrease in body weight and mild memory impairment, suggesting that Ser517 O-GlcNAcylation has a small but detectable impact on mouse physiology and cognitive function.
Collapse
Affiliation(s)
- Villo Muha
- Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Ritchie Williamson
- Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Rachel Hills
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Thomas G. McWilliams
- Stem Cells and Metabolism, Research Programs Unit, Faculty of Medicine, University of Helsinki, PL 63 Haartmaninkatu 8, Helsinki 00014, Finland
| | - Jana Alonso
- Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Marianne Schimpl
- Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - Aneika C. Leney
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Calum Sutherland
- Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Simon P. Brooks
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | | |
Collapse
|
40
|
Gorelik A, Bartual SG, Borodkin VS, Varghese J, Ferenbach AT, van Aalten DMF. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nat Struct Mol Biol 2019; 26:1071-1077. [PMID: 31695185 PMCID: PMC6858883 DOI: 10.1038/s41594-019-0325-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Modification of specific Ser and Thr residues of nucleocytoplasmic proteins with O-GlcNAc, catalyzed by O-GlcNAc transferase (OGT), is an abundant posttranslational event essential for proper animal development and is dysregulated in various diseases. Due to the rapid concurrent removal by the single O-GlcNAcase (OGA), precise functional dissection of site-specific O-GlcNAc modification in vivo is currently not possible without affecting the entire O-GlcNAc proteome. Exploiting the fortuitous promiscuity of OGT, we show that S-GlcNAc is a hydrolytically stable and accurate structural mimic of O-GlcNAc that can be encoded in mammalian systems with CRISPR-Cas9 in an otherwise unperturbed O-GlcNAcome. Using this approach, we target an elusive Ser 405 O-GlcNAc site on OGA, showing that this site-specific modification affects OGA stability.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sergio Galan Bartual
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
41
|
Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, Marcus J, Klein DJ, Wang X, Pearson M, Savage MJ, Kaul R, Li TS, Vocadlo DJ, Zhou Y, Zhu Y, Mu C, Wang Y, Wei Z, Bai C, Duffy JL, McEachern EJ. Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J Med Chem 2019; 62:10062-10097. [DOI: 10.1021/acs.jmedchem.9b01090] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harold G. Selnick
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - J. Fred Hess
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Cuyue Tang
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kun Liu
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Joel B. Schachter
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jeanine E. Ballard
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jacob Marcus
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Daniel J. Klein
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaohai Wang
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michelle Pearson
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mary J. Savage
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ramesh Kaul
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Tong-Shuang Li
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - David J. Vocadlo
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Yuanxi Zhou
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Yongbao Zhu
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Changwei Mu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yaode Wang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Zhongyong Wei
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Chang Bai
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Joseph L. Duffy
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ernest J. McEachern
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| |
Collapse
|
42
|
Gu YX, Liang XX, Yin NY, Yang Y, Wan B, Guo LH, Faiola F. New insights into mechanism of bisphenol analogue neurotoxicity: implications of inhibition of O-GlcNAcase activity in PC12 cells. Arch Toxicol 2019; 93:2661-2671. [DOI: 10.1007/s00204-019-02525-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023]
|
43
|
Dong L, Shen S, Xu Y, Wang L, Feng R, Zhang J, Lu H. Computational Studies on the Potency and Selectivity of PUGNAc Derivatives Against GH3, GH20, and GH84 β-N-acetyl-D-hexosaminidases. Front Chem 2019; 7:235. [PMID: 31111026 PMCID: PMC6499197 DOI: 10.3389/fchem.2019.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
β-N-acetyl-D-hexosaminidases have attracted significant attention due to their crucial role in diverse physiological functions including antibacterial synergists, pathogen defense, virus infection, lysosomal storage, and protein glycosylation. In particular, the GH3 β-N-acetyl-D-hexosaminidase of V. cholerae (VcNagZ), human GH20 β-N-acetyl-D-hexosaminidase B (HsHexB), and human GH84 β-N-acetyl-D-hexosaminidase (hOGA) are three important representative glycosidases. These have been found to be implicated in β-lactam resistance (VcNagZ), lysosomal storage disorders (HsHexB) and Alzheimer's disease (hOGA). Considering the profound effects of these three enzymes, many small molecule inhibitors with good potency and selectivity have been reported to regulate the corresponding physiological functions. In this paper, the best-known inhibitors PUGNAc and two of its derivatives (N-valeryl-PUGNAc and EtBuPUG) were selected as model compounds and docked into the active pockets of VcNagZ, HsHexB, and hOGA, respectively. Subsequently, molecular dynamics simulations of the nine systems were performed to systematically compare their binding modes from active pocket architecture and individual interactions. Furthermore, the binding free energy and free energy decomposition are calculated using the MM/GBSA methods to predict the binding affinities of enzyme-inhibitor systems and to quantitatively analyze the contribution of each residue. The results show that PUGNAc is deeply-buried in the active pockets of all three enzymes, which indicates its potency (but not selectivity) against VcNagZ, HsHexB, and hOGA. However, EtBuPUG, bearing branched 2-isobutamido, adopted strained conformations and was only located in the active pocket of VcNagZ. It has completely moved out of the pocket of HsHexB and lacks interactions with HsHexB. This indicates why the selectivity of EtBuPUG to VcNagZ/HsHexB is the largest, reaching 968-fold. In addition, the contributions of the catalytic residue Asp253 (VcNagZ), Asp254 (VcNagZ), Asp175 (hOGA), and Asp354 (HsHexB) are important to distinguish the activity and selectivity of these inhibitors. The results of this study provide a helpful structural guideline to promote the development of novel and selective inhibitors against specific β-N-acetyl-D-hexosaminidases.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yefei Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ruirui Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Shi J, Ruijtenbeek R, Pieters RJ. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2019; 28:814-824. [PMID: 29635275 DOI: 10.1093/glycob/cwy031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands.,PamGene International BV, HH's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| |
Collapse
|
45
|
Kosciow K, Deppenmeier U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen 2019; 8:e00796. [PMID: 30729732 PMCID: PMC6692548 DOI: 10.1002/mbo3.796] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
The gut microbe Akkermansia muciniphila is important for the human health as the occurrence of the organism is inversely correlated with different metabolic disorders. The metabolism of the organism includes the degradation of intestinal mucins. Thus, the gut health‐promoting properties are not immediately obvious and mechanisms of bacteria‐host interactions are mostly unclear. In this study, we characterized a novel extracellular β‐galactosidase (Amuc_1686) with a preference for linkages from the type Galβ1–3GalNAc. Additionally, Amuc_1686 possesses a discoidin‐like domain, which enables the interaction with anionic phospholipids. We detected a strong inhibition by phosphatidylserine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidic acid while phosphatidylcholine and phosphatidylethanolamine had no influence. Amuc_1686 is the first example of a prokaryotic hydrolase that is strongly inhibited by certain phospholipids. These inhibiting phospholipids have important signal functions in immune response and cell clearance processes. Hence, Amuc_1686 might be regulated based on the health status of the large intestine and could therefore contribute to the mutualistic relationship between the microbe and the host on a molecular level. In this sense, Amuc_1686 could act as an altruistic enzyme that does not attack the mucin layer of apoptotic epithelial cells to ensure tissue regeneration, for example, in areas with inflammatory damages.
Collapse
Affiliation(s)
- Konrad Kosciow
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
46
|
Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms. Curr Opin Struct Biol 2019; 56:97-106. [PMID: 30708324 DOI: 10.1016/j.sbi.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Dysregulation of nuclear and cytoplasmic O-linked β-N-acetylglucosamine (O-GlcNAc) cycling is implicated in a range of diseases including diabetes and cancer. This modification maintains cellular homeostasis by regulating several biological processes, such as cell signaling. This highly regulated cycle is governed by two sole essential enzymes, O-GlcNAc transferase and O-GlcNAcase that add O-GlcNAc and remove it from over a thousand substrates, respectively. Until recently, due to lack of structural information, the mechanism of substrate recognition has eluted researchers. Here, we review recent successes in structural characterization of these enzymes and how this information has illuminated key features essential for catalysis and substrate recognition. Additionally, we highlight recent studies which have used this information to expand our understanding of substrate specificity by each enzyme.
Collapse
|
47
|
Males A, Davies GJ. Structural studies of a surface-entropy reduction mutant of O-GlcNAcase. Acta Crystallogr D Struct Biol 2019; 75:70-78. [PMID: 30644846 PMCID: PMC6333286 DOI: 10.1107/s2059798318016595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
The enzyme O-GlcNAcase catalyses the removal of the O-GlcNAc co/post-translational modification in multicellular eukaryotes. The enzyme has become of acute interest given the intimate role of O-GlcNAcylation in tau modification and stability; small-molecular inhibitors of human O-GlcNAcase are under clinical assessment for the treatment of tauopathies. Given the importance of structure-based and mechanism-based inhibitor design for O-GlcNAcase, it was sought to test whether different crystal forms of the human enzyme could be achieved by surface mutagenesis. Guided by surface-entropy reduction, a Glu602Ala/Glu605Ala variant [on the Gly11-Gln396/Lys535-Tyr715 construct; Roth et al. (2017), Nature Chem. Biol. 13, 610-612] was obtained which led to a new crystal form of the human enzyme. An increase in crystal contacts stabilized disordered regions of the protein, enabling 88% of the structure to be modelled; only 83% was possible for the wild-type construct. Although the binding of the C-terminus was consistent with the wild type, Lys713 in monomer A was bound in the -1 subsite of the symmetry-related monomer A and the active sites of the B monomers were vacant. The new crystal form presents an opportunity for enhanced soaking experiments that are essential to understanding the binding mechanism and substrate specificity of O-GlcNAcase.
Collapse
Affiliation(s)
- Alexandra Males
- Department of Chemistry, University of York, York YO10 5DD, England
| | - Gideon J. Davies
- Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
48
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V, van Aalten DMF. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biol 2018; 7:rsob.170078. [PMID: 28659383 PMCID: PMC5493779 DOI: 10.1098/rsob.170078] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification found on hundreds of nucleocytoplasmic proteins in metazoa. Although a single enzyme, O-GlcNAc transferase (OGT), generates the entire cytosolic O-GlcNAc proteome, it is not understood how it recognizes its protein substrates, targeting only a fraction of serines/threonines in the metazoan proteome for glycosylation. We describe a trapped complex of human OGT with the C-terminal domain of TAB1, a key innate immunity-signalling O-GlcNAc protein, revealing extensive interactions with the tetratricopeptide repeats of OGT. Confirmed by mutagenesis, this interaction suggests that glycosylation substrate specificity is achieved by recognition of a degenerate sequon in the active site combined with an extended conformation C-terminal of the O-GlcNAc target site.
Collapse
Affiliation(s)
- Karim Rafie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Olawale Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne 1015, Switzerland
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Meekrathok P, Stubbs KA, Suginta W. Potent inhibition of a GH20 exo-β-N-acetylglucosaminidase from marine Vibrio bacteria by reaction intermediate analogues. Int J Biol Macromol 2018; 115:1165-1173. [DOI: 10.1016/j.ijbiomac.2018.04.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
|