1
|
Powell CJ, Jenkins ML, Hill TB, Blank ML, Cabo LF, Thompson LR, Burke JE, Boyle JP, Boulanger MJ. Toxoplasma gondii mitochondrial association factor 1b interactome reveals novel binding partners including Ral GTPase accelerating protein α1. J Biol Chem 2024; 300:105582. [PMID: 38141762 PMCID: PMC10821591 DOI: 10.1016/j.jbc.2023.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.
Collapse
Affiliation(s)
- Cameron J Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Tara B Hill
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew L Blank
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lexie R Thompson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jon P Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
2
|
Ferrel A, Romano J, Panas MW, Coppens I, Boothroyd JC. Host MOSPD2 enrichment at the parasitophorous vacuole membrane varies between Toxoplasma strains and involves complex interactions. mSphere 2023; 8:e0067022. [PMID: 37341482 PMCID: PMC10449529 DOI: 10.1128/msphere.00670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
Toxoplasma gondii is an obligate, intracellular parasite. Infection of a cell produces a unique niche for the parasite named the parasitophorous vacuole (PV) initially composed of host plasma membrane invaginated during invasion. The PV and its membrane (parasitophorous vacuole membrane [PVM]) are subsequently decorated with a variety of parasite proteins allowing the parasite to optimally grow in addition to manipulate host processes. Recently, we reported a proximity-labeling screen at the PVM-host interface and identified host endoplasmic reticulum (ER)-resident motile sperm domain-containing protein 2 (MOSPD2) as being enriched at this location. Here we extend these findings in several important respects. First, we show that the extent and pattern of host MOSPD2 association with the PVM differ dramatically in cells infected with different strains of Toxoplasma. Second, in cells infected with Type I RH strain, the MOSPD2 staining is mutually exclusive with regions of the PVM that associate with mitochondria. Third, immunoprecipitation and liquid chromatography tandem mass spectrometry (LC-MS/MS) with epitope-tagged MOSPD2-expressing host cells reveal strong enrichment of several PVM-localized parasite proteins, although none appear to play an essential role in MOSPD2 association. Fourth, most MOSPD2 associating with the PVM is newly translated after infection of the cell and requires the major functional domains of MOSPD2, identified as the CRAL/TRIO domain and tail anchor, although these domains were not sufficient for PVM association. Lastly, ablation of MOSPD2 results in, at most, a modest impact on Toxoplasma growth in vitro. Collectively, these studies provide new insight into the molecular interactions involving MOSPD2 at the dynamic interface between the PVM and the host cytosol. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that lives within a membranous vacuole inside of its host cell. This vacuole is decorated by a variety of parasite proteins that allow it to defend against host attack, acquire nutrients, and interact with the host cell. Recent work identified and validated host proteins enriched at this host-pathogen interface. Here, we follow up on one candidate named MOSPD2 shown to be enriched at the vacuolar membrane and describe it as having a dynamic interaction at this location depending on a variety of factors. Some of these include the presence of host mitochondria, intrinsic domains of the host protein, and whether translation is active. Importantly, we show that MOSPD2 enrichment at the vacuole membrane differs between strains indicating active involvement of the parasite with this phenotype. Altogether, these results shed light on the mechanism and role of protein associations in the host-pathogen interaction.
Collapse
Affiliation(s)
- Abel Ferrel
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Julia Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael W. Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Dienemann JN, Chen SY, Hitzenberger M, Sievert ML, Hacker SM, Prigge ST, Zacharias M, Groll M, Sieber SA. A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites. Angew Chem Int Ed Engl 2023; 62:e202304533. [PMID: 37249408 PMCID: PMC10896624 DOI: 10.1002/anie.202304533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 μM, making it the most effective LPL inhibitor reported to date.
Collapse
Affiliation(s)
- Jan-Niklas Dienemann
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Shu-Yu Chen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Manuel Hitzenberger
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Montana L Sievert
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, MD 21205, Baltimore, USA
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, E5132, MD 21205, Baltimore, USA
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Michael Groll
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| | - Stephan A Sieber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748, Garching bei München, Germany
| |
Collapse
|
4
|
Tanabe TS, Grosser M, Hahn L, Kümpel C, Hartenfels H, Vtulkin E, Flegler W, Dahl C. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes. PLoS Biol 2023; 21:e3002177. [PMID: 37368881 DOI: 10.1371/journal.pbio.3002177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Lipoic acid is an essential biomolecule found in all domains of life and is involved in central carbon metabolism and dissimilatory sulfur oxidation. The machineries for lipoate assembly in mitochondria and chloroplasts of higher eukaryotes, as well as in the apicoplasts of some protozoa, are all of prokaryotic origin. Here, we provide experimental evidence for a novel lipoate assembly pathway in bacteria based on a sLpl(AB) lipoate:protein ligase, which attaches octanoate or lipoate to apo-proteins, and 2 radical SAM proteins, LipS1 and LipS2, which work together as lipoyl synthase and insert 2 sulfur atoms. Extensive homology searches combined with genomic context analyses allowed us to precisely distinguish between the new and established pathways and map them on the tree of life. This not only revealed a much wider distribution of lipoate biogenesis systems than expected, in particular, the novel sLpl(AB)-LipS1/S2 pathway, and indicated a highly modular nature of the enzymes involved, with unforeseen combinations, but also provided a new framework for the evolution of lipoate assembly. Our results show that dedicated machineries for both de novo lipoate biogenesis and scavenging from the environment were implemented early in evolution and that their distribution in the 2 prokaryotic domains was shaped by a complex network of horizontal gene transfers, acquisition of additional genes, fusions, and losses. Our large-scale phylogenetic analyses identify the bipartite archaeal LplAB ligase as the ancestor of the bacterial sLpl(AB) proteins, which were obtained by horizontal gene transfer. LipS1/S2 have a more complex evolutionary history with multiple of such events but probably also originated in the domain archaea.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lea Hahn
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hanna Hartenfels
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Evelyn Vtulkin
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wanda Flegler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
5
|
Wan W, Dong H, Lai DH, Yang J, He K, Tang X, Liu Q, Hide G, Zhu XQ, Sibley LD, Lun ZR, Long S. The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat Commun 2023; 14:977. [PMID: 36813769 PMCID: PMC9947163 DOI: 10.1038/s41467-023-36571-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Apicomplexan parasite growth and replication relies on nutrient acquisition from host cells, in which intracellular multiplication occurs, yet the mechanisms that underlie the nutrient salvage remain elusive. Numerous ultrastructural studies have documented a plasma membrane invagination with a dense neck, termed the micropore, on the surface of intracellular parasites. However, the function of this structure remains unknown. Here we validate the micropore as an essential organelle for endocytosis of nutrients from the host cell cytosol and Golgi in the model apicomplexan Toxoplasma gondii. Detailed analyses demonstrated that Kelch13 is localized at the dense neck of the organelle and functions as a protein hub at the micropore for endocytic uptake. Intriguingly, maximal activity of the micropore requires the ceramide de novo synthesis pathway in the parasite. Thus, this study provides insights into the machinery underlying acquisition of host cell-derived nutrients by apicomplexan parasites that are otherwise sequestered from host cell compartments.
Collapse
Affiliation(s)
- Wenyan Wan
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Hui Dong
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiong Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Tang
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Qun Liu
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre and Environmental Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110-1093, USA
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
6
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Akuh OA, Elahi R, Prigge ST, Seeber F. The ferredoxin redox system - an essential electron distributing hub in the apicoplast of Apicomplexa. Trends Parasitol 2022; 38:868-881. [PMID: 35999149 PMCID: PMC9481715 DOI: 10.1016/j.pt.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.
Collapse
Affiliation(s)
- Ojo-Ajogu Akuh
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany; Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australia
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Frank Seeber
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany.
| |
Collapse
|
9
|
Rei Yan SL, Wakasuqui F, Du X, Groves MR, Wrenger C. Lipoic Acid Metabolism as a Potential Chemotherapeutic Target Against Plasmodium falciparum and Staphylococcus aureus. Front Chem 2021; 9:742175. [PMID: 34805091 PMCID: PMC8600131 DOI: 10.3389/fchem.2021.742175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Lipoic acid (LA) is an organic compound that plays a key role in cellular metabolism. It participates in a posttranslational modification (PTM) named lipoylation, an event that is highly conserved and that occurs in multimeric metabolic enzymes of very distinct microorganisms such as Plasmodium sp. and Staphylococcus aureus, including pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KDH). In this mini review, we revisit the recent literature regarding LA metabolism in Plasmodium sp. and Staphylococcus aureus, by covering the lipoate ligase proteins in both microorganisms, the role of lipoate ligase proteins and insights for possible inhibitors of lipoate ligases.
Collapse
Affiliation(s)
- Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Xiaochen Du
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Matthew R Groves
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Fukumoto J, Sakura T, Matsubara R, Tahara M, Matsuzaki M, Nagamune K. Rhoptry kinase protein 39 (ROP39) is a novel factor that recruits host mitochondria to the parasitophorous vacuole of Toxoplasma gondii. Biol Open 2021; 10:272331. [PMID: 34590698 PMCID: PMC8496691 DOI: 10.1242/bio.058988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Most intracellular pathogens replicate in a vacuole to avoid the defense system of the host. A few pathogens recruit host mitochondria around those vacuoles, but the molecules responsible for mitochondrial recruitment remain unidentified. It is only in the apicomplexan parasite Toxoplasma gondii, that mitochondrial association factor 1b (MAF1b) has been identified as an association factor for host mitochondria. Here, we show that rhoptry kinase family protein 39 (ROP39) induces host mitochondrial recruitment in T. gondii. We found that the abundance of ROP39 was increased on host mitochondria extracted from human foreskin fibroblasts (HFFs) infected with T. gondii. ROP39 expressed exogenously in HFFs localized on host mitochondria, indicating that it has the potential to bind to host mitochondria without assistance from other parasite factors. Confocal microscopy revealed that ROP39 colocalized with host mitochondria on the membrane of parasitophorous vacuoles, in which the parasites reside. Moreover, we observed about a 10% reduction in the level of mitochondrial association in rop39-knockout parasites compared with a parental strain. Summary: We revealed that ROP39 recruitments host mitochondria, possibly through its kinase activity. Exploiting components involved with recruitment of host mitochondria advances the understanding of how the parasites employ mitochondrial recruitment to survive in host cells.
Collapse
Affiliation(s)
- Junpei Fukumoto
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Takaya Sakura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motomichi Matsuzaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
11
|
Kloehn J, Lacour CE, Soldati-Favre D. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 2021; 63:250-258. [PMID: 34455306 DOI: 10.1016/j.mib.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Clément Em Lacour
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Medeiros TC, Mehra C, Pernas L. Contact and competition between mitochondria and microbes. Curr Opin Microbiol 2021; 63:189-194. [PMID: 34411806 DOI: 10.1016/j.mib.2021.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Invading microbes occupy the host cytosol and take up nutrients on which host organelles are also dependent. Thus, host organelles are poised to interact with intracellular microbes. Despite the essential role of host mitochondria in cellular metabolic homeostasis and in mediating cellular responses to microbial infection, we know little of how these organelles interact with intracellular pathogens, and how such interactions affect disease pathogenesis. Here, we give an overview of the different classes of physical and metabolic interactions reported to occur between mitochondria and eukaryotic pathogens. Investigating the underlying molecular mechanisms and functions of such interactions will reveal novel aspects of infection biology.
Collapse
Affiliation(s)
- Tânia C Medeiros
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Chahat Mehra
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Lena Pernas
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
13
|
Velásquez ZD, López-Osorio S, Mazurek S, Hermosilla C, Taubert A. Eimeria bovis Macromeront Formation Induces Glycolytic Responses and Mitochondrial Changes in Primary Host Endothelial Cells. Front Cell Infect Microbiol 2021; 11:703413. [PMID: 34336724 PMCID: PMC8319763 DOI: 10.3389/fcimb.2021.703413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Eimeria bovis is an intracellular apicomplexan parasite that causes considerable economic losses in the cattle industry worldwide. During the first merogony, E. bovis forms large macromeronts with >140,000 merozoites I in host endothelial cells. Because this is a high-energy demanding process, E. bovis exploits the host cellular metabolism to fulfill its metabolic requirements. We here analyzed the carbohydrate-related energetic metabolism of E. bovis–infected primary bovine umbilical vein endothelial cells during first merogony and showed that during the infection, E. bovis–infected culture presented considerable changes in metabolic signatures, glycolytic, and mitochondrial responses. Thus, an increase in both oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were found in E. bovis–infected host cells indicating a shift from quiescent to energetic cell status. Enhanced levels of glucose and pyruvate consumption in addition to increased lactate production, suggesting an important role of glycolysis in E. bovis–infected culture from 12 days p.i. onward. This was also tested by glycolytic inhibitors (2-DG) treatment, which reduced the macromeront development and diminished merozoite I production. As an interesting finding, we observed that 2-DG treatment boosted sporozoite egress. Referring to mitochondrial activities, intracellular ROS production was increased toward the end of merogony, and mitochondrial potential was enhanced from 12 d p. i. onward in E. bovis–infected culture. Besides, morphological alterations of membrane potential signals also indicated mitochondrial dysfunction in macromeront-carrying host endothelial culture.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.,Research Group CIBAV, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
14
|
Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol 2021; 115:839-848. [PMID: 33118234 PMCID: PMC9364677 DOI: 10.1111/mmi.14634] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The intracellular parasite Toxoplasma gondii infects nucleated cells in virtually all warm-blooded vertebrates, including one-third of the human population. While immunocompetent hosts do not typically show symptoms of acute infection, parasites are retained in latent tissue cysts that can be reactivated upon immune suppression, potentially damaging key organ systems. Toxoplasma has a multistage life cycle that is intimately linked to environmental stresses and host signals. As this protozoan pathogen is transmitted between multiple hosts and tissues, it evaluates these external signals to appropriately differentiate into distinct life cycle stages, such as the transition from its replicative stage (tachyzoite) to the latent stage (bradyzoite) that persists as tissue cysts. Additionally, in the gut of its definitive host, felines, Toxoplasma converts into gametocytes that produce infectious oocysts (sporozoites) that are expelled into the environment. In this review, we highlight recent advances that have illuminated the interfaces between Toxoplasma and host and how these interactions control parasite stage conversion. Mechanisms underlying these stage transitions are important targets for therapeutic intervention aimed at thwarting parasite transmission and pathogenesis.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Ronald C. Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
15
|
Bouvenot T, Dewitte A, Bennaceur N, Pradel E, Pierre F, Bontemps-Gallo S, Sebbane F. Interplay between Yersinia pestis and its flea vector in lipoate metabolism. THE ISME JOURNAL 2021; 15:1136-1149. [PMID: 33479491 PMCID: PMC8182812 DOI: 10.1038/s41396-020-00839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
To thrive, vector-borne pathogens must survive in the vector's gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway's lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium's lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles' heel that is exploited by pathogens.
Collapse
Affiliation(s)
- Typhanie Bouvenot
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Amélie Dewitte
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadia Bennaceur
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Elizabeth Pradel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Pierre
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Bontemps-Gallo
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
16
|
Biddau M, Santha Kumar TR, Henrich P, Laine LM, Blackburn GJ, Chokkathukalam A, Li T, Lee Sim K, King L, Hoffman SL, Barrett MP, Coombs GH, McFadden GI, Fidock DA, Müller S, Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int J Parasitol 2021; 51:441-453. [PMID: 33713652 PMCID: PMC8126644 DOI: 10.1016/j.ijpara.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Apicoplast LipB deletion leads to changed antioxidant expression that precedes and coincides with accelerated differentiation. 3D7 Plasmodium exhibits changes in glycolysis and tricarboxylic acid cycle activity after deletion of apicoplast LipB. When LipB is deleted from NF54 Plasmodium, the resulting parasites cannot complete their development in mosquitoes.
Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Philipp Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Larissa M Laine
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Tao Li
- Sanaria Inc., Rockville, MD 20850, USA
| | | | - Lewis King
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sylke Müller
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
17
|
Zhang Y, Wang C, Jia H. Biogenesis and maintenance of the apicoplast in model apicomplexan parasites. Parasitol Int 2020; 81:102270. [PMID: 33321224 DOI: 10.1016/j.parint.2020.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
The apicoplast is a non-photosynthetic relict plastid of Apicomplexa that evolved from a secondary symbiotic system. During its evolution, most of the genes derived from its alga ancestor were lost. Only genes involved in several valuable metabolic pathways, such as the synthesis of isoprenoid precursors, heme, and fatty acids, have been transferred to the host genome and retained to help these parasites adapt to a complex life cycle and various living environments. The biological function of an apicoplast is essential for most apicomplexan parasites. Considering their potential as drug targets, the metabolic functions of this symbiotic organelle have been intensively investigated through computational and biological means. Moreover, we know that not only organellar metabolic functions are linked with other organelles, but also their biogenesis processes have developed and evolved to tailor their biological functions and proper inheritance. Several distinct features have been found in the biogenesis process of apicoplasts. For example, the apicoplast borrows a dynamin-related protein (DrpA) from its host to implement organelle division. The autophagy system has also been repurposed for linking the apicoplast and centrosome during replication and the division process. However, many vital questions remain to be answered about how these parasites maintain and properly inherit this symbiotic organelle. Here we review our current knowledge about its biogenesis process and discuss several critical questions remaining to be answered in this field.
Collapse
Affiliation(s)
- Ying Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China
| | - Chunren Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China.
| |
Collapse
|
18
|
Hunter ES, Paight C, Lane CE. Metabolic Contributions of an Alphaproteobacterial Endosymbiont in the Apicomplexan Cardiosporidium cionae. Front Microbiol 2020; 11:580719. [PMID: 33335517 PMCID: PMC7737231 DOI: 10.3389/fmicb.2020.580719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Apicomplexa is a diverse protistan phylum composed almost exclusively of metazoan-infecting parasites, including the causative agents of malaria, cryptosporidiosis, and toxoplasmosis. A single apicomplexan genus, Nephromyces, was described in 2010 as a mutualist partner to its tunicate host. Here we present genomic and transcriptomic data from the parasitic sister species to this mutualist, Cardiosporidium cionae, and its associated bacterial endosymbiont. Cardiosporidium cionae and Nephromyces both infect tunicate hosts, localize to similar organs within these hosts, and maintain bacterial endosymbionts. Though many other protists are known to harbor bacterial endosymbionts, these associations are completely unknown in Apicomplexa outside of the Nephromycidae clade. Our data indicate that a vertically transmitted α-proteobacteria has been retained in each lineage since Nephromyces and Cardiosporidium diverged. This α-proteobacterial endosymbiont has highly reduced metabolic capabilities, but contributes the essential amino acid lysine, and essential cofactor lipoic acid to C. cionae. This partnership likely reduces resource competition with the tunicate host. However, our data indicate that the contribution of the single α-proteobacterial endosymbiont in C. cionae is minimal compared to the three taxa of endosymbionts present in the Nephromyces system, and is a potential explanation for the virulence disparity between these lineages.
Collapse
Affiliation(s)
- Elizabeth Sage Hunter
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Christopher Paight
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Christopher E. Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
19
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
20
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
21
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Pyruvate Homeostasis as a Determinant of Parasite Growth and Metabolic Plasticity in Toxoplasma gondii. mBio 2019; 10:mBio.00898-19. [PMID: 31186321 PMCID: PMC6561023 DOI: 10.1128/mbio.00898-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a widespread intracellular pathogen infecting humans and a variety of animals. Previous studies have shown that Toxoplasma uses glucose and glutamine as the main carbon sources to support asexual reproduction, but neither nutrient is essential. Such metabolic flexibility may allow it to survive within diverse host cell types. Here, by focusing on the glycolytic enzyme pyruvate kinase (PYK) that converts phosphoenolpyruvate (PEP) into pyruvate, we found that Toxoplasma can also utilize lactate and alanine. We show that catabolism of all indicated carbon sources converges at pyruvate, and maintaining a constant pyruvate supply is critical to parasite growth. Toxoplasma expresses two PYKs: PYK1 in the cytosol and PYK2 in the apicoplast (a chloroplast relict). Genetic deletion of PYK2 did not noticeably affect parasite growth and virulence, which contrasts with the current model of carbon metabolism in the apicoplast. On the other hand, PYK1 was refractory to disruption. Conditional depletion of PYK1 resulted in global alteration of carbon metabolism, amylopectin accumulation, and reduced cellular ATP, leading to severe growth impairment. Notably, the attenuated growth of the PYK1-depleted mutant was partially rescued by lactate or alanine supplementation, and rescue by lactate required lactate dehydrogenase activity to convert it to pyruvate. Moreover, depletion of PYK1 in conjunction with PYK2 ablation led to accentuated loss of apicoplasts and complete growth arrest. Together, our results underline a critical role of pyruvate homeostasis in determining the metabolic flexibility and apicoplast maintenance, and they significantly extend our current understanding of carbon metabolism in T. gondii IMPORTANCE Toxoplasma gondii infects almost all warm-blooded animals, and metabolic flexibility is deemed critical for its successful parasitism in diverse hosts. Glucose and glutamine are the major carbon sources to support parasite growth. In this study, we found that Toxoplasma is also competent in utilizing lactate and alanine and, thus, exhibits exceptional metabolic versatility. Notably, all these nutrients need to be converted to pyruvate to fuel the lytic cycle, and achieving a continued pyruvate supply is vital to parasite survival and metabolic flexibility. Although pyruvate can be generated by two distinct pyruvate kinases, located in cytosol and apicoplast, respectively, the cytosolic enzyme is the main source of subcellular pyruvate, and cooperative usage of pyruvate among multiple organelles is critical for parasite growth and virulence. These findings expand our current understanding of carbon metabolism in Toxoplasma gondii and related parasites while providing a basis for designing novel antiparasitic interventions.
Collapse
|
23
|
Martin LB, Addison B, Bean AGD, Buchanan KL, Crino OL, Eastwood JR, Flies AS, Hamede R, Hill GE, Klaassen M, Koch RE, Martens JM, Napolitano C, Narayan EJ, Peacock L, Peel AJ, Peters A, Raven N, Risely A, Roast MJ, Rollins LA, Ruiz-Aravena M, Selechnik D, Stokes HS, Ujvari B, Grogan LF. Extreme Competence: Keystone Hosts of Infections. Trends Ecol Evol 2019; 34:303-314. [PMID: 30704782 PMCID: PMC7114649 DOI: 10.1016/j.tree.2018.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022]
Abstract
Individual hosts differ extensively in their competence for parasites, but traditional research has discounted this variation, partly because modeling such heterogeneity is difficult. This discounting has diminished as tools have improved and recognition has grown that some hosts, the extremely competent, can have exceptional impacts on disease dynamics. Most prominent among these hosts are the superspreaders, but other forms of extreme competence (EC) exist and others await discovery; each with potentially strong but distinct implications for disease emergence and spread. Here, we propose a framework for the study and discovery of EC, suitable for different host-parasite systems, which we hope enhances our understanding of how parasites circulate and evolve in host communities.
Collapse
Affiliation(s)
- Lynn B Martin
- Global and Planetary Health, University of South Florida, Tampa, Florida 33620, USA.
| | - BriAnne Addison
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Andrew G D Bean
- CSIRO Health & Biosecurity at the Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Justin R Eastwood
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7008, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Rebecca E Koch
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Johanne M Martens
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | | | - Edward J Narayan
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Lee Peacock
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Alice Risely
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Michael J Roast
- School of Biological Sciences, Monash University, VIC 3800, Australia
| | - Lee A Rollins
- School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Dan Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW 2006, Australia
| | - Helena S Stokes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds, VIC 3216, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
24
|
Host Cell Metabolism Contributes to Delayed-Death Kinetics of Apicoplast Inhibitors in Toxoplasma gondii. Antimicrob Agents Chemother 2019; 63:AAC.01646-18. [PMID: 30455243 PMCID: PMC6355570 DOI: 10.1128/aac.01646-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023] Open
Abstract
Toxoplasma gondii and related human parasites contain an essential plastid organelle called the apicoplast. Clinically used antibiotics and other inhibitors that disrupt apicoplast biogenesis cause a mysterious “delayed-death” phenotype in which parasite growth is unaffected during the first lytic cycle of inhibitor treatment but is severely inhibited in the second lytic cycle even after drug removal. Toxoplasma gondii and related human parasites contain an essential plastid organelle called the apicoplast. Clinically used antibiotics and other inhibitors that disrupt apicoplast biogenesis cause a mysterious “delayed-death” phenotype in which parasite growth is unaffected during the first lytic cycle of inhibitor treatment but is severely inhibited in the second lytic cycle even after drug removal. Critical to understanding the complex downstream cellular effects of these drug classes are the timing of apicoplast loss during inhibitor treatment and how it relates to this peculiar growth phenotype. Here we show that, upon treatment with diverse classes of apicoplast inhibitors, newly replicated T. gondii parasites in the first lytic cycle initially form apicoplasts with defects in protein import or genome replication and eventually fail to inherit the apicoplast altogether. Despite the accumulation of parasites with defective or missing apicoplasts, growth is unaffected during the first lytic cycle, as previously observed. Strikingly, concomitant inhibition of host cell isoprenoid biosynthesis results in growth inhibition in the first lytic cycle and unmasks the apicoplast defects. These results suggest that defects in and even the complete loss of the apicoplast in T. gondii are partially rescued by scavenging of host cell metabolites, leading to death that is delayed. Our findings uncover host cell interactions that can alleviate apicoplast inhibition and highlight key differences in delayed-death inhibitors between T. gondii and Plasmodium falciparum.
Collapse
|
25
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
26
|
Shukla A, Olszewski KL, Llinás M, Rommereim LM, Fox BA, Bzik DJ, Xia D, Wastling J, Beiting D, Roos DS, Shanmugam D. Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii. Int J Parasitol 2018; 48:955-968. [PMID: 30176233 DOI: 10.1016/j.ijpara.2018.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii can grow and replicate using either glucose or glutamine as the major carbon source. Here, we have studied the essentiality of glycolysis in the tachyzoite and bradyzoite stages of T. gondii, using transgenic parasites that lack a functional hexokinase gene (Δhk) in RH (Type-1) and Prugniaud (Type-II) strain parasites. Tachyzoite stage Δhk parasites exhibit a fitness defect similar to that reported previously for the major glucose transporter mutant, and remain virulent in mice. However, although Prugniaud strain Δhk tachyzoites were capable of transforming into bradyzoites in vitro, they were severely compromised in their ability to make mature bradyzoite cysts in the brain tissue of mice. Isotopic labelling studies reveal that glucose-deprived tacyzoites utilise glutamine to replenish glycolytic and pentose phosphate pathway intermediates via gluconeogenesis. Interestingly, while glutamine-deprived intracellular Δhk tachyzoites continued to replicate, extracellular parasites were unable to efficiently invade host cells. Further, studies on mutant tachyzoites lacking a functional phosphoenolpyruvate carboxykinase (Δpepck1) revealed that glutaminolysis is the sole source of gluconeogenic flux in glucose-deprived parasites. In addition, glutaminolysis is essential for sustaining oxidative phosphorylation in Δhk parasites, while wild type (wt) and Δpepck1 parasites can obtain ATP from either glycolysis or oxidative phosphorylation. This study provides insights into the role of nutrient metabolism during asexual propagation and development of T. gondii, and validates the versatile nature of central carbon and energy metabolism in this parasite.
Collapse
Affiliation(s)
- Anurag Shukla
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, W126 Millennium Science Complex, University Park, PA, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Dong Xia
- The Royal Veterinary College, London NW1 0TU, UK
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Daniel Beiting
- School of Veterinary Medicine, Dept. of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Roos
- Department of Biology and Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
27
|
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (IC); (JDR)
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (IC); (JDR)
| |
Collapse
|
28
|
Vacchina P, Lambruschi DA, Uttaro AD. Lipoic acid metabolism in Trypanosoma cruzi as putative target for chemotherapy. Exp Parasitol 2018; 186:17-23. [PMID: 29409741 DOI: 10.1016/j.exppara.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
Lipoic acid (LA) is a cofactor of relevant enzymatic complexes including the glycine cleave system and 2-ketoacid dehydrogenases. Intervention on LA de novo synthesis or salvage could have pleiotropic deleterious effect in cells, making both pathways attractive for chemotherapy. We show that Trypanosoma cruzi was susceptible to treatment with LA analogues. 8-Bromo-octanic acid (BrO) inhibited the growth of epimastigote forms of both Dm28c and CL Brener strains, although only at high (chemotherapeutically irrelevant) concentrations. The methyl ester derivative MBrO, was much more effective, with EC50 values one order of magnitude lower (62-66 μM). LA did not bypass the toxic effect of its analogues. Small monocarboxylic acids appear to be poorly internalized by T. cruzi: [14C]-octanoic acid was taken up 12 fold less efficiently than [14C]-palmitic acid. Western blot analysis of lipoylated proteins allowed the detection of the E2 subunits of pyruvate dehydrogenase (PDH), branched chain 2-ketoacid dehydrogenase and 2-ketoglutarate dehydrogenase complexes. Growth of parasites in medium with 10 fold lower glucose content, notably increased PDH activity and the level of its lipoylated E2 subunit. Treatment with BrO (1 mM) and MBrO (0.1 mM) completely inhibited E2 lipoylation and all three dehydrogenases activities. These observations indicate the lack of specific transporters for octanoic acid and most probably also for BrO and LA, which is in agreement with the lack of a LA salvage pathway, as previously suggested for T. brucei. They also indicate that the LA synthesis/protein lipoylation pathway could be a valid target for drug intervention. Moreover, the free LA available in the host would not interfere with such chemotherapeutic treatments.
Collapse
Affiliation(s)
- Paola Vacchina
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel A Lambruschi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
29
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Nyboer B, Heiss K, Mueller AK, Ingmundson A. The Plasmodium liver-stage parasitophorous vacuole: A front-line of communication between parasite and host. Int J Med Microbiol 2017; 308:107-117. [PMID: 28964681 DOI: 10.1016/j.ijmm.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/19/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The intracellular development and differentiation of the Plasmodium parasite in the host liver is a prerequisite for the actual onset of malaria disease pathology. Since liver-stage infection is clinically silent and can be completely eliminated by sterilizing immune responses, it is a promising target for urgently needed innovative antimalarial drugs and/or vaccines. Discovered more than 65 years ago, these stages remain poorly understood regarding their molecular repertoire and interaction with their host cells in comparison to the pathogenic erythrocytic stages. The differentiating and replicative intrahepatic parasite resides in a membranous compartment called the parasitophorous vacuole, separating it from the host-cell cytoplasm. Here we outline seminal work that contributed to our present understanding of the fundamental dynamic cellular processes of the intrahepatic malarial parasite with both specific host-cell factors and compartments.
Collapse
Affiliation(s)
- Britta Nyboer
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Centre for Infection Research (DZIF), D 69120 Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Centre for Infection Research (DZIF), D 69120 Heidelberg, Germany,.
| | - Alyssa Ingmundson
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
31
|
Toxoplasma gondii plaque assays revisited: Improvements for ultrastructural and quantitative evaluation of lytic parasite growth. Exp Parasitol 2017; 180:19-26. [DOI: 10.1016/j.exppara.2016.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/03/2016] [Accepted: 12/18/2016] [Indexed: 11/23/2022]
|
32
|
Song C, Murata K, Suzaki T. Intracellular symbiosis of algae with possible involvement of mitochondrial dynamics. Sci Rep 2017; 7:1221. [PMID: 28450706 PMCID: PMC5430747 DOI: 10.1038/s41598-017-01331-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 11/26/2022] Open
Abstract
Algal endosymbiosis is widely present among eukaryotes including many protists and metazoans. However, the mechanisms involved in their interactions between host and symbiont remain unclear. Here, we used electron microscopy and three-dimensional reconstruction analyses to examine the ultrastructural interactions between the symbiotic zoochlorella and the organelles in the host Paramecium bursaria, which is a model system of endosymbiosis. Although in chemically fixed samples the symbiotic algae show no direct structural interactions with the host organelles and the perialgal vacuole membrane (PVM), in cryofixed P. bursaria samples the intimate connections were identified between the host mitochondria and the symbiotic algae via the PVM. The PVM was closely apposed to the cell wall of the symbiotic algae and in some places it showed direct contacts to the host mitochondrial membrane and the cell wall of the symbiotic algae. Further, the PVM-associated mitochondria formed a mitochondrial network and were also connected to host ER. Our observations propose a new endosymbiotic systems between the host eukaryotes and the symbionts where the benefiting symbiosis is performed through intimate interactions and an active structural modification in the host organelles.
Collapse
Affiliation(s)
- Chihong Song
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Toshinobu Suzaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
33
|
The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier. Trends Parasitol 2017; 33:473-488. [PMID: 28330745 DOI: 10.1016/j.pt.2017.02.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023]
Abstract
The parasitophorous vacuole is a unique replicative niche for apicomplexan parasites, including Toxoplasma gondii. Derived from host plasma membrane, the vacuole is rendered nonfusogenic with the host endolysosomal system. Toxoplasma secretes numerous proteins to modify the forming vacuole, enable nutrient uptake, and set up mechanisms of host subversion. Here we describe the pathways of host-parasite interaction at the parasitophorous vacuole employed by Toxoplasma and host, leading to the intricate balance of host defence versus parasite survival.
Collapse
|
34
|
Martins-Duarte ÉS, Carias M, Vommaro R, Surolia N, de Souza W. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii. J Cell Sci 2016; 129:3320-31. [PMID: 27457282 DOI: 10.1242/jcs.185223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division.
Collapse
Affiliation(s)
- Érica S Martins-Duarte
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Maira Carias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Rossiane Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India, 560064
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| |
Collapse
|
35
|
Tahara M, Andrabi SBA, Matsubara R, Aonuma H, Nagamune K. A host cell membrane microdomain is a critical factor for organelle discharge by Toxoplasma gondii. Parasitol Int 2016; 65:378-88. [PMID: 27217289 DOI: 10.1016/j.parint.2016.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022]
Abstract
Host cell microdomains are involved in the attachment, entry, and replication of intracellular microbial pathogens. Entry into the host cell of Toxoplasma gondii and the subsequent survival of this protozoan parasite are tightly coupled with the proteins secreted from organelle called rhoptry. The rhoptry proteins are rapidly discharged into clusters of vesicles, called evacuoles, which are then delivered to parasitophorous vacuoles (PVs) or nucleus. In this study, we examined the roles of two host cell microdomain components, cholesterol and glycosylphosphatidylinositol (GPI), in evacuole formation. The acute depletion of cholesterol from the host cell plasma membrane blocked evacuole formation but not invasion. Whereas the lack of host cell GPI also altered evacuole formation but not invasion, instead inducing excess evacuole formation. The latter effect was not influenced by the evacuole-inhibiting effects of host cell cholesterol depletion, indicating the independent roles of host GPI and cholesterol in evacuole formation. In addition, the excess formation of evacuoles resulted in the enhanced recruitment of host mitochondria and endoplasmic reticulum to PVs, which in turn stimulated the growth of the parasite.
Collapse
Affiliation(s)
- Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Syed Bilal Ahmad Andrabi
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Department of Biochemistry, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hiroka Aonuma
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Department of Tropical Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
36
|
Liu S, Wang L, Zheng H, Xu Z, Roellig DM, Li N, Frace MA, Tang K, Arrowood MJ, Moss DM, Zhang L, Feng Y, Xiao L. Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics 2016; 17:316. [PMID: 27129308 PMCID: PMC4851813 DOI: 10.1186/s12864-016-2632-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/20/2016] [Indexed: 01/24/2023] Open
Abstract
Background Cyclospora cayetanensis is an apicomplexan that causes diarrhea in humans. The investigation of foodborne outbreaks of cyclosporiasis has been hampered by a lack of genetic data and poor understanding of pathogen biology. In this study we sequenced the genome of C. cayetanensis and inferred its metabolism and invasion components based on comparative genomic analysis. Results The genome organization, metabolic capabilities and potential invasion mechanism of C. cayetanensis are very similar to those of Eimeria tenella. Propanoyl-CoA degradation, GPI anchor biosynthesis, and N-glycosylation are some apparent metabolic differences between C. cayetanensis and E. tenella. Unlike Eimeria spp., there are no active LTR-retrotransposons identified in C. cayetanensis. The similar repertoire of host cell invasion-related proteins possessed by all coccidia suggests that C. cayetanensis has an invasion process similar to the one in T. gondii and E. tenella. However, the significant reduction in the number of identifiable rhoptry protein kinases, phosphatases and serine protease inhibitors indicates that monoxenous coccidia, especially C. cayetanensis, have limited capabilities or use a different system to regulate host cell nuclear activities. C. cayetanensis does not possess any cluster of genes encoding the TA4-type SAG surface antigens seen in E. tenella, and may use a different family of surface antigens in initial host cell interactions. Conclusions Our findings indicate that C. cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. Amino acid metabolism and post-translation modifications of proteins are some major differences between C. cayetanensis and other apicomplexans. The whole genome sequence data of C. cayetanensis improve our understanding of the biology and evolution of this major foodborne pathogen and facilitate the development of intervention measures and advanced diagnostic tools. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2632-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyou Liu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Lin Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huajun Zheng
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bibo Road, Shanghai, 201203, China
| | - Zhixiao Xu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Michael A Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Delynn M Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| |
Collapse
|
37
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
38
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
39
|
Comparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites. BIOMED RESEARCH INTERNATIONAL 2015; 2015:452958. [PMID: 26114107 PMCID: PMC4465681 DOI: 10.1155/2015/452958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
In general, the mechanism of protein translocation through the apicoplast membrane requires a specific extension of a functionally important region of the apicoplast-targeted proteins. The corresponding signal peptides were detected in many apicomplexans but not in the majority of apicoplast-targeted proteins in Toxoplasma gondii. In T. gondii signal peptides are either much diverged or their extension region is processed, which in either case makes the situation different from other studied apicomplexans. We propose a statistic method to compare extensions of the functionally important regions of apicoplast-targeted proteins. More specifically, we provide a comparison of extension lengths of orthologous apicoplast-targeted proteins in apicomplexan parasites. We focus on results obtained for the model species T. gondii, Neospora caninum, and Plasmodium falciparum. With our method, cross species comparisons demonstrate that, in average, apicoplast-targeted protein extensions in T. gondii are 1.5-fold longer than in N. caninum and 2-fold longer than in P. falciparum. Extensions in P. falciparum less than 87 residues in size are longer than the corresponding extensions in N. caninum and, reversely, are shorter if they exceed 88 residues.
Collapse
|
40
|
Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. EUKARYOTIC CELL 2015; 14:454-73. [PMID: 25750213 DOI: 10.1128/ec.00262-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.
Collapse
|
41
|
Toxoplasma gondii nucleus coding apicoplast protein ACP synthesis and trafficking in delayed death. Parasitol Res 2015; 114:1099-105. [PMID: 25563610 DOI: 10.1007/s00436-014-4281-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023]
Abstract
This study aimed to explore Toxoplasma gondii nucleus coding apicoplast protein acyl carrier protein (ACP) synthesis and trafficking in delayed death. The recombinant T. gondii ACP was expressed by prokaryotic expression method, and anti-ACP polyclonal antibody was obtained from rabbit immune. T. gondii "delayed death" was induced by clindamycin (CLDM), and ACP transcription was determined by real-time PCR assay. The expression of ACP with transit type (t-ACP) and mature type (m-ACP) was determined by Western blotting with anti-ACP polyclonal antibody. The mutant-expressed ACP fused with green fluorescent protein (GFP) tag was constructed by pHX-ACP-GFP. The distribution of ACP in "delayed death" was observed by ACP-GFP fusion protein with a confocal microscope. T. gondii ACP transcription and t-ACP expression had no significant decrease in the early 4 h of "delayed death," but there has been a significant decrease in 6 h. The expression of m-ACP had a significant decrease in 4 h which occurred earlier than the t-ACP expression. The number of brightly dot green fluorescence in ACP-GFP mutant decreased with prolonged time. There was very little brightly dot green fluorescence in ACP-GFP mutant when treated with CLDM for 6 h. CLDM could suppress apicoplast proliferation and induce T. gondii "delayed death"; however, it could not directly suppress nucleus coding ACP transcription and expression. T. gondii lacking of apicoplast had a barrier of transit peptide cleavage and t-ACP could not be transformed into m-ACP. The reason for the decrease in ACP expression could be due to excessive t-ACP synthesis in tachyzoites resulting in a negative feedback for the ACP coding gene transcription.
Collapse
|
42
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
43
|
Frohnecke N, Klein S, Seeber F. Protein-protein interaction studies provide evidence for electron transfer from ferredoxin to lipoic acid synthase in Toxoplasma gondii. FEBS Lett 2014; 589:31-6. [PMID: 25433292 DOI: 10.1016/j.febslet.2014.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023]
Abstract
The only known redox system in the apicoplast, a plastid-like organelle of apicomplexan parasites, is ferredoxin and ferredoxin-associated reductase. Ferredoxin donates electrons to different enzymes, presumably including lipoate synthase (LipA), which is essential for fatty acid biosynthesis. We recombinantly expressed and characterized LipA from the protozoan parasite Toxoplasma gondii, generated LipA-specific antibodies and confirmed the apicoplast localization of LipA. Electron transfer from ferredoxin to LipA would require direct protein-protein interaction. Such a robust interaction between the two proteins was demonstrated in both yeast and bacterial two-hybrid systems. Taken together, our results provide strong evidence for a role of ferredoxin as an electron donor to LipA.
Collapse
Affiliation(s)
- Nora Frohnecke
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany
| | - Sandra Klein
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany
| | - Frank Seeber
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany.
| |
Collapse
|
44
|
Oppenheim RD, Creek DJ, Macrae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathog 2014; 10:e1004263. [PMID: 25032958 PMCID: PMC4102578 DOI: 10.1371/journal.ppat.1004263] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/06/2014] [Indexed: 12/27/2022] Open
Abstract
While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens. The mitochondrial tricarboxylic acid (TCA) cycle is one of the core metabolic pathways of eukaryotic cells, which contributes to cellular energy generation and provision of essential intermediates for macromolecule synthesis. Apicomplexan parasites possess the complete sets of genes coding for the TCA cycle. However, they lack a key mitochondrial enzyme complex that is normally required for production of acetyl-CoA from pyruvate, allowing further oxidation of glycolytic intermediates in the TCA cycle. This study unequivocally resolves how acetyl-CoA is generated in the mitochondrion using a combination of genetic, biochemical and metabolomic approaches. Specifically, we show that T. gondii and P. bergei utilize a second mitochondrial dehydrogenase complex, BCKDH, that is normally involved in branched amino acid catabolism, to convert pyruvate to acetyl-CoA and further catabolize glucose in the TCA cycle. In T. gondii, loss of BCKDH leads to global defects in glucose metabolism, increased gluconeogenesis and a marked attenuation of growth in host cells and virulence in animals. In P. bergei, loss of BCKDH leads to a defect in parasite proliferation in mature red blood cells, although the mutant retains the capacity to proliferate within 'immature' reticulocytes, highlighting the role of host metabolism/physiology on the development of Plasmodium asexual stages.
Collapse
Affiliation(s)
- Rebecca D. Oppenheim
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Darren J. Creek
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Wellcome Trust Centre for Molecular Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James I. Macrae
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- The National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Limenitakis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valerie Polonais
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Seeber
- FG16 - Mycotic and parasitic agents and mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol 2014; 12:e1001845. [PMID: 24781109 PMCID: PMC4004538 DOI: 10.1371/journal.pbio.1001845] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/21/2014] [Indexed: 11/23/2022] Open
Abstract
The intracellular human protozoan parasite Toxoplasma gondii uses a novel secreted protein to recruit host mitochondria and alter the host's response to infection. Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA−) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA− strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. Recent discoveries have revealed the remarkable functional diversity of mitochondria in roles other than energy production, including an integral role for mitochondria and their dynamics in the regulation of the innate immune response. Interestingly, host mitochondria are recruited to the membranes that surround certain intracellular bacteria and parasites during infection. To date, how and why this phenomenon occurs has been a mystery, although it has been proposed to provide a metabolic benefit to the microbes. Here we identify mitochondrial association factor 1 (MAF1) as the parasite protein that mediates the association between the protozoan pathogen Toxoplasma and host mitochondria during infection. We show that MAF1 is needed to recruit host mitochondria to the Toxoplasma-containing vacuole and that this process is associated with changes in the immune response in infected cells and animals. These findings show that recruitment and association with host mitochondria is an important means by which intracellular pathogens interface with their host. We also find that the cost–benefit outcome of altering mitochondrial function might differ between strains depending on the precise niche in which they evolved; for infectious agents, these differences likely reflect different host organisms.
Collapse
|
46
|
Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 2014; 44:109-20. [DOI: 10.1016/j.ijpara.2013.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/22/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
|
47
|
Metabolic reconstruction identifies strain‐specific regulation of virulence in
Toxoplasma gondii. Mol Syst Biol 2013; 9:708. [PMID: 24247825 PMCID: PMC4039375 DOI: 10.1038/msb.2013.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/10/2013] [Indexed: 12/27/2022] Open
|
48
|
Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol 2013; 16:452-8. [PMID: 23927894 DOI: 10.1016/j.mib.2013.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
The apicoplast and the mitochondrion of Apicomplexa cooperate in providing essential metabolites. Their co-evolution during the ancestral acquisition of a plastid and subsequent loss of photosynthesis resulted in divergent metabolic pathways compared with mammals and plants. This is most evident in their chimerical haem synthesis pathway. Toxoplasma and Plasmodium mitochondria operate canonical tricarboxylic acid (TCA) cycles and electron transport chains, although the roles differ between Toxoplasma tachyzoites and Plasmodium erythrocytic stages. Glutamine catabolism provides TCA intermediates in both parasites. Isoprenoid precursor synthesis is the only essential role of the apicoplast in Plasmodium erythrocytic stages. An apicoplast-located fatty acid synthesis is dispensable in these stages, which instead predominantly salvage fatty acids, while in Plasmodium liver stages and in Toxoplasma tachyzoites fatty acid synthesis is an essential role of the plastid.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| | | | | |
Collapse
|
49
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|
50
|
An apicoplast localized ubiquitylation system is required for the import of nuclear-encoded plastid proteins. PLoS Pathog 2013; 9:e1003426. [PMID: 23785288 PMCID: PMC3681736 DOI: 10.1371/journal.ppat.1003426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/01/2013] [Indexed: 01/08/2023] Open
Abstract
Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway. The apicoplast is an essential parasite organelle derived from an algal endosymbiont. Most apicoplast proteins are nuclear encoded and post-translationally imported. Part of this journey utilizes the endoplasmic reticulum associated degradation or ERAD system of the algal endosymbiont. Typically, the ERAD system is ubiquitylation-dependent and acts in the retrotranslocation across the ER membrane and proteasomal destruction of misfolded secretory proteins. In the apicoplast, this system has been retooled into a protein importer. The apicoplast ERAD system is broadly conserved between most apicomplexans and surprisingly retains the ubiquitylation machine typically associated with destruction. This study brings together biochemical studies in Plasmodium and genetic studies in Toxoplasma. Together they provide significant mechanistic insight into the process of protein import into the apicoplast. We provide evidence that ubiquitylation may be a mechanistic requirement for import and demonstrate it to be essential to the parasite, thus providing new opportunities for drug development.
Collapse
|