1
|
Seipp RP, Hoeffel G, Moise AR, Lok S, Ripoche AC, Marañón C, Hosmalin A, Jefferies WA. A secreted Tapasin isoform impairs cytotoxic T lymphocyte recognition by disrupting exogenous MHC class I antigen presentation. Front Immunol 2025; 15:1525136. [PMID: 40171019 PMCID: PMC11959276 DOI: 10.3389/fimmu.2024.1525136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
Endogenous and exogenous antigen processing and presentation through the MHC class I peptide-loading complex (PLC) are essential for initiating cytotoxic T lymphocyte responses against pathogens and tumors. Tapasin, a key component of the PLC, is produced in multiple isoforms through alternative splicing, each isoform influencing the assembly and stability of MHC class I molecules differently. While the canonical Tapasin isoform plays a critical role in stabilizing MHC class I by facilitating optimal peptide loading in the endoplasmic reticulum (ER), the other isoforms function in distinct ways that impact immune regulation. This study aimed to investigate the role of Tapasin isoforms, particularly soluble isoform 3, in modulating antigen presentation and immune responses, focusing on their effects on MHC class I peptide loading and surface expression. Our findings show that isoforms 1 and 2 stabilize TAP and facilitate efficient peptide loading onto MHC class I in the ER, promoting optimal antigen presentation. In contrast, isoform 3, which lacks both the ER retention signal and the transmembrane domain, is secreted and acts as a negative regulator. Isoform 3 inhibits the loading of exogenous peptides onto MHC class I molecules at the cell surface, thereby playing a critical role in the spatial and temporal regulation of MHC class I antigen presentation. The secreted Tapasin isoform 3 likely regulates immune responses by preventing inappropriate T cell activation and cytotoxicity, which could otherwise lead to immune-mediated tissue damage and contribute to autoimmune disorders. Understanding the distinct functions of Tapasin isoforms provides insights into immune regulation and highlights the importance of fine-tuning peptide-loading processes to ensure proper immune responses and prevent immune-related pathologies.
Collapse
Affiliation(s)
- Robyn P. Seipp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Alexander R. Moise
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Siri Lok
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Anne Hosmalin
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Wilfred A. Jefferies
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, Danon JN, Dasteh Goli K, Moiseenkova-Bell VY, Sgourakis NG. CryoEM structure of an MHC-I/TAPBPR peptide-bound intermediate reveals the mechanism of antigen proofreading. Proc Natl Acad Sci U S A 2025; 122:e2416992122. [PMID: 39786927 PMCID: PMC11745410 DOI: 10.1073/pnas.2416992122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive. Here, we leverage a high-fidelity TAPBPR variant and conformationally stabilized MHC-I, to determine the solution structure of the human antigen editing complex bound to a peptide decoy by cryogenic electron microscopy (cryo-EM) at an average resolution of 3.0 Å. Antigen proofreading is mediated by transient interactions formed between the nascent peptide binding groove with the P2/P3 peptide anchors, where conserved MHC-I residues stabilize incoming peptides through backbone-focused contacts. Finally, using our high-fidelity chaperone, we demonstrate robust peptide exchange on the cell surface across multiple clinically relevant human MHC-I allomorphs. Our work has important ramifications for understanding the selection of immunogenic epitopes for T cell screening and vaccine design applications.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ruth A. Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Leena Mallik
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Apala Chaudhuri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chloe Wang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Immunology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Daniel Hwang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Julia N. Danon
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kimia Dasteh Goli
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Vera Y. Moiseenkova-Bell
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nikolaos G. Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
4
|
Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, Danon JN, Goli KD, Moiseenkova-Bell V, Sgourakis NG. CryoEM structure of an MHC-I/TAPBPR peptide bound intermediate reveals the mechanism of antigen proofreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606663. [PMID: 39211162 PMCID: PMC11361172 DOI: 10.1101/2024.08.05.606663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive. Here, we leverage a high-fidelity TAPBPR variant and conformationally stabilized MHC-I, to determine the solution structure of the human antigen editing complex bound to a peptide decoy by cryogenic electron microscopy (cryo-EM) at an average resolution of 3.0 Å. Antigen proofreading is mediated by transient interactions formed between the nascent peptide binding groove with the P2/P3 peptide anchors, where conserved MHC-I residues stabilize incoming peptides through backbone-focused contacts. Finally, using our high-fidelity chaperone, we demonstrate robust peptide exchange on the cell surface across multiple clinically relevant human MHC-I allomorphs. Our work has important ramifications for understanding the selection of immunogenic epitopes for T cell screening and vaccine design applications.
Collapse
|
5
|
Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P, Tampé R. Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci U S A 2024; 121:e2321600121. [PMID: 38771881 PMCID: PMC11145271 DOI: 10.1073/pnas.2321600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Collapse
Affiliation(s)
- Jamina Brunnberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Martina Barends
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Claire Battin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Ben de Wet
- Immunocore Ltd., AbingdonOX14 4RY, United Kingdom
| | | | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
6
|
Jiang J, Natarajan K, Margulies DH. Chaperone-mediated MHC-I peptide exchange in antigen presentation. IUCRJ 2024; 11:287-298. [PMID: 38656309 PMCID: PMC11067752 DOI: 10.1107/s2052252524002768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Altenburg AF, Morley JL, Bauer J, Walz JS, Boyle LH. Reanalysis of Immunopeptidomics Datasets Provides Mechanistic Insight into TAPBPR-Mediated Peptide Editing on HLA-A, -B and -C Molecules. Wellcome Open Res 2024; 9:113. [PMID: 38800518 PMCID: PMC11126903 DOI: 10.12688/wellcomeopenres.20738.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/29/2024] Open
Abstract
Background Major histocompatibility class I (MHC-I, human leukocyte antigen [HLA]-I in humans) molecules present small fragments of the proteome on the cell surface for immunosurveillance, which is pivotal to control infected and malignant cells. Immunogenic peptides are generated and selected in the MHC-I antigen processing and presentation pathway. In this pathway, two homologous molecules, tapasin and TAPBPR, optimise the MHC-I peptide repertoire that is ultimately presented at the plasma membrane. Peptide exchange on HLA-I by human TAPBPR involves the flexible loop region K22-D35, with the leucine at position 30 (L30) involved in mediating peptide dissociation. However, our understanding of the exact molecular mechanisms governing TAPBPR-mediated peptide exchange on HLA-I allotypes remains incomplete. Methods Here, in-depth re-analyses of published immunopeptidomics datasets was used to further examine TAPBPR peptide editing activity and mechanism of action on HLA-I. The role of the TAPBPR editing loop in opening the HLA-I peptide binding groove was assessed using a molecular dynamics simulation. Results We show that TAPBPR shapes the peptide repertoire on HLA-A, -B and -C allotypes. The TAPBPR editing loop was not essential to allow HLA-I to adopt an open state. L30 in the TAPBPR editing loop was typically sufficient to mediate peptide repertoire restriction on the three HLA-I allotypes expressed by HeLa cells. TAPBPR was also able to load peptides onto HLA-I in a loop-dependent manner. Conclusions These results unify the previously hypothesised scoop loop and peptide trap mechanisms of TAPBPR-mediated peptide exchange, with the former involved in peptide filtering and the latter in peptide loading.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Pathology, University of Cambridge, Cambridge, England, CB2 1QP, UK
| | - Jack L Morley
- Department of Pathology, University of Cambridge, Cambridge, England, CB2 1QP, UK
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, England, CB2 1QP, UK
| |
Collapse
|
8
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Kaur A, Surnilla A, Zaitouna AJ, Mumphrey MB, Basrur V, Grigorova I, Cieslik M, Carrington M, Nesvizhskii AI, Raghavan M. Mass Spectrometric Profiling of HLA-B44 Peptidomes Provides Evidence for Tapasin-Mediated Tryptophan Editing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1298-1307. [PMID: 37737643 PMCID: PMC10592002 DOI: 10.4049/jimmunol.2300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
The extreme polymorphisms of HLA class I proteins result in structural variations in their peptide binding sites to achieve diversity in Ag presentation. External factors could independently constrict or alter HLA class I peptide repertoires. Such effects of the assembly factor tapasin were assessed for HLA-B*44:05 (Y116) and a close variant, HLA-B*44:02 (D116), which have low and high tapasin dependence, respectively, for their cell surface expression. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with C-terminal tryptophans and higher predicted affinities are preferentially selected by tapasin, coincident with reduced frequencies of peptides with other C-terminal amino acids, including leucine. Comparisons of the HLA-B*44:05 and HLA-B*44:02 peptidomes indicate the expected structure-based alterations near the peptide C termini, but also C-terminal amino acid frequency and predicted affinity changes among the unique and shared peptide groups for B*44:02 and B*44:05. Overall, these findings indicate that the presence of tapasin and the tapasin dependence of assembly alter HLA class I peptide-binding preferences at the peptide C terminus. The particular C-terminal amino acid preferences that are altered by tapasin are expected to be determined by the intrinsic peptide-binding specificities of HLA class I allotypes. Additionally, the findings suggest that tapasin deficiency and reduced tapasin dependence expand the permissive affinities of HLA class I-bound peptides, consistent with prior findings that HLA class I allotypes with low tapasin dependence have increased breadth of CD8+ T cell epitope presentation and are more protective in HIV infections.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Avrokin Surnilla
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anita J. Zaitouna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael B. Mumphrey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexey I. Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA-B∗37:01 molecules independent of other peptide-loading components. J Biol Chem 2023; 299:105136. [PMID: 37543367 PMCID: PMC10534222 DOI: 10.1016/j.jbc.2023.105136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023] Open
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
Affiliation(s)
- Georgia F Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire H Woodward
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trenton J Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Olson E, Raghavan M. Major histocompatibility complex class I assembly within endolysosomal pathways. Curr Opin Immunol 2023; 84:102356. [PMID: 37379719 PMCID: PMC11759227 DOI: 10.1016/j.coi.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Major histocompatibility complex class I (MHC class I) molecules facilitate subcellular immune surveillance by presenting peptides on the cell surface. MHC class I assembly with peptides generally happens in the endoplasmic reticulum (ER). Peptides are processed in the cytosol, transported into the ER, and assembled with MHC class I heavy and light chains. However, as many pathogens reside within multiple subcellular organelles, peptide sampling across non-cytosolic compartments is also important. MHC class I molecules internalize from the cell surface into endosomes and constitutively traffic between endosomes and the cell surface. Within endosomes, MHC class I molecules assemble with both exogenous and endogenous antigens processed within these compartments. Human MHC classI polymorphisms, well known to affect ER assembly modes, also influence endosomal assembly outcomes, an area of current interest to the field.
Collapse
Affiliation(s)
- Eli Olson
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Graduate Program In Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Li L, Peng X, Batliwala M, Bouvier M. Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing. Nat Commun 2023; 14:5020. [PMID: 37596268 PMCID: PMC10439229 DOI: 10.1038/s41467-023-40736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between numerous conformational states and these motions support peptide sampling. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. Here, we present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show pronounced distortions at the N-terminus of the groove. Long stretches of N-terminal amino acid residues are missing in the electron density maps creating an open-ended groove. Our structures also reveal highly unusual features in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations indicate that the complexes have varying degrees of conformational flexibility in a manner consistent with the structures. We suggest that our structures have captured the remarkable molecular dynamics of MHC I-peptide interaction. The visualization of peptide-dependent conformational motions in MHC I is a major step forward in our conceptual understanding of dynamics in high-affinity peptide selection.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Xubiao Peng
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
van Hateren A, Elliott T. Visualising tapasin- and TAPBPR-assisted editing of major histocompatibility complex class-I immunopeptidomes. Curr Opin Immunol 2023; 83:102340. [PMID: 37245412 PMCID: PMC11913765 DOI: 10.1016/j.coi.2023.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023]
Abstract
Which peptides are selected for presentation by major histocompatibility complex class-I (MHC-I) molecules is a key determinant of successful immune responses. Peptide selection is co-ordinated by the tapasin and TAP Binding PRotein (TAPBPR) proteins, which ensure MHC-I molecules preferentially acquire high-affinity-binding peptides. New structural analyses have offered insight into how tapasin achieves this function within the peptide-loading complex (PLC) (comprising the Transporter associated with Antigen Presentation (TAP) peptide transporter, tapasin-ERp57, MHC-I and calreticulin), and how TAPBPR performs a peptide editing function independently of other molecules. The new structures reveal nuances in how tapasin and TAPBPR interact with MHC-I, and how calreticulin and ERp57 complement tapasin to exploit the plasticity of MHC-I molecules to achieve peptide editing.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Building 85, Southampton SO17 1BJ, UK
| | - Tim Elliott
- Centre for Immuno-oncology and CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
14
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA molecules independently of other peptide-loading components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546255. [PMID: 37425753 PMCID: PMC10326978 DOI: 10.1101/2023.06.23.546255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC) and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro , limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in stable form, independently of co-chaperones. chTapasin can bind the human HLA-B * 37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β 2 m epitope on HLA-B * 37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B * 37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for future protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
|
15
|
Margulies DH, Jiang J, Ahmad J, Boyd LF, Natarajan K. Chaperone function in antigen presentation by MHC class I molecules-tapasin in the PLC and TAPBPR beyond. Front Immunol 2023; 14:1179846. [PMID: 37398669 PMCID: PMC10308438 DOI: 10.3389/fimmu.2023.1179846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Peptide loading of MHC-I molecules plays a critical role in the T cell response to infections and tumors as well as to interactions with inhibitory receptors on natural killer (NK) cells. To facilitate and optimize peptide acquisition, vertebrates have evolved specialized chaperones to stabilize MHC-I molecules during their biosynthesis and to catalyze peptide exchange favoring high affinity or optimal peptides to permit transport to the cell surface where stable peptide/MHC-I (pMHC-I) complexes are displayed and are available for interaction with T cell receptors and any of a host of inhibitory and activating receptors. Although components of the endoplasmic reticulum (ER) resident peptide loading complex (PLC) were identified some 30 years ago, the detailed biophysical parameters that govern peptide selection, binding, and surface display have recently been understood better with advances in structural methods including X-ray crystallography, cryogenic electron microscopy (cryo-EM), and computational modeling. These approaches have provided refined mechanistic illustration of the molecular events involved in the folding of the MHC-I heavy chain, its coordinate glycosylation, assembly with its light chain, β2-microglobulin (β2m), its association with the PLC, and its binding of peptides. Our current view of this important cellular process as it relates to antigen presentation to CD8+ T cells is based on many different approaches: biochemical, genetic, structural, computational, cell biological, and immunological. In this review, taking advantage of recent X-ray and cryo-EM structural evidence and molecular dynamics simulations, examined in the context of past experiments, we attempt a dispassionate evaluation of the details of peptide loading in the MHC-I pathway. By critical evaluation of several decades of investigation, we outline aspects of the peptide loading process that are well-understood and indicate those that demand further detailed investigation. Further studies should contribute not only to basic understanding, but also to applications for immunization and therapy of tumors and infections.
Collapse
|
16
|
Satti R, Morley JL, Boyle LH. Get into the groove! The influence of TAPBPR on cargo selection. Curr Opin Immunol 2023; 83:102346. [PMID: 37295041 DOI: 10.1016/j.coi.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023]
Abstract
Since the discovery of Transporter associated with antigen processing-binding protein-related (TAPBPR) over two decades ago, extensive studies have explored its function in the context of the major histocompatibility complex class-I (MHC-I) antigen processing and presentation pathway. As a chaperone and peptide editor, TAPBPR was recently revealed to have overlapping structural features when resolved with peptide-receptive MHC-I molecules compared with the two newly solved tapasin:MHC-I structures. Despite this, the two chaperones seem to have a unique criteria for loading high-affinity peptides on MHC-I molecules. Yet, the mechanism of action of how TAPBPR creates its distinct filter in cargo selection for peptide-receptive MHC-I molecules continues to be a subject of debate.
Collapse
Affiliation(s)
- Reem Satti
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP , UK
| | - Jack L Morley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP , UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP , UK.
| |
Collapse
|
17
|
Kaur A, Surnilla A, Zaitouna AJ, Basrur V, Mumphrey MB, Grigorova I, Cieslik M, Carrington M, Nesvizhskii AI, Raghavan M. Mass spectrometric profiling of HLA-B44 peptidomes provides evidence for tapasin-mediated tryptophan editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530125. [PMID: 36909546 PMCID: PMC10002704 DOI: 10.1101/2023.02.26.530125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Activation of CD8 + T cells against pathogens and cancers involves the recognition of antigenic peptides bound to human leukocyte antigen (HLA) class-I proteins. Peptide binding to HLA class I proteins is coordinated by a multi-protein complex called the peptide loading complex (PLC). Tapasin, a key PLC component, facilitates the binding and optimization of HLA class I peptides. However, different HLA class I allotypes have variable requirements for tapasin for their assembly and surface expression. HLA-B*44:02 and HLA-B*44:05, which differ only at residue 116 of their heavy chain sequences, fall at opposite ends of the tapasin-dependency spectrum. HLA-B*44:02 (D116) is highly tapasin-dependent, whereas HLA-B*44:05 (Y116) is highly tapasinindependent. Mass spectrometric comparisons of HLA-B*4405 and HLA-B*44:02 peptidomes were undertaken to better understand the influences of tapasin upon HLA-B44 peptidome compositions. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with the C-terminal tryptophan residues and those with higher predicted binding affinities are selected in the presence of tapasin. Additionally, when tapasin is present, C-terminal tryptophans are also more highly represented among peptides unique to B*44:02 and those shared between B*44:02 and B*44:05, compared with peptides unique to B*44:05. Overall, our findings demonstrate that tapasin influences the C-terminal composition of HLA class I-bound peptides and favors the binding of higher affinity peptides. For the HLA-B44 family, the presence of tapasin or high tapasin-dependence of an allotype results in better binding of peptides with C-terminal tryptophans, consistent with a role for tapasin in stabilizing an open conformation to accommodate bulky C-terminal residues.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Avrokin Surnilla
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anita J. Zaitouna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael B. Mumphrey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Sun Y, Papadaki GF, Devlin CA, Danon JN, Young MC, Winters TJ, Burslem GM, Procko E, Sgourakis NG. Xeno interactions between MHC-I proteins and molecular chaperones enable ligand exchange on a broad repertoire of HLA allotypes. SCIENCE ADVANCES 2023; 9:eade7151. [PMID: 36827371 PMCID: PMC9956121 DOI: 10.1126/sciadv.ade7151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
Immunological chaperones tapasin and TAP binding protein, related (TAPBPR) play key roles in antigenic peptide optimization and quality control of nascent class I major histocompatibility complex (MHC-I) molecules. The polymorphic nature of MHC-I proteins leads to a range of allelic dependencies on chaperones for assembly and cell-surface expression, limiting chaperone-mediated peptide exchange to a restricted set of human leukocyte antigen (HLA) allotypes. Here, we demonstrate and characterize xeno interactions between a chicken TAPBPR ortholog and a complementary repertoire of HLA allotypes, relative to its human counterpart. We find that TAPBPR orthologs recognize empty MHC-I with broader allele specificity and facilitate peptide exchange by maintaining a reservoir of receptive molecules. Deep mutational scanning of human TAPBPR further identifies gain-of-function mutants, resembling the chicken sequence, which can enhance HLA-A*01:01 expression in situ and promote peptide exchange in vitro. These results highlight that polymorphic sites on MHC-I and chaperone surfaces can be engineered to manipulate their interactions, enabling chaperone-mediated peptide exchange on disease-relevant HLA alleles.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Georgia F. Papadaki
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Christine A. Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Julia N. Danon
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Michael C. Young
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Trenton J. Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Nikolaos G. Sgourakis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Lan BH, Becker M, Freund C. The mode of action of tapasin on major histocompatibility class I (MHC-I) molecules. J Biol Chem 2023; 299:102987. [PMID: 36758805 PMCID: PMC10040737 DOI: 10.1016/j.jbc.2023.102987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Tapasin (Tsn) plays a critical role in antigen processing and presentation by major histocompatibility complex class I (MHC-I) molecules. The mechanism of Tsn-mediated peptide loading and exchange hinges on the conformational dynamics governing the interaction of Tsn and MHC-I with recent structural and functional studies pinpointing the critical sites of direct or allosteric regulation. In this review, we highlight these recent findings and relate them to the extensive molecular and cellular data that are available for these evolutionary interdependent proteins. Furthermore, allotypic differences of MHC-I with regard to the editing and chaperoning function of Tsn are reviewed and related to the mechanistic observations. Finally, evolutionary aspects of the mode of action of Tsn will be discussed, a short comparison with the Tsn-related molecule TAPBPR (Tsn-related protein) will be given, and the impact of Tsn on noncanonical MHC-I molecules will be described.
Collapse
Affiliation(s)
- By Huan Lan
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Moritz Becker
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Olson E, Ceccarelli T, Raghavan M. Endo-lysosomal assembly variations among human leukocyte antigen class I (HLA class I) allotypes. eLife 2023; 12:e79144. [PMID: 36722462 PMCID: PMC9917446 DOI: 10.7554/elife.79144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
The extreme polymorphisms of human leukocyte antigen class I (HLA class I) proteins enable the presentation of diverse peptides to cytotoxic T lymphocytes. The canonical endoplasmic reticulum (ER) HLA class I assembly pathway enables presentation of cytosolic peptides, but effective intracellular surveillance requires multi-compartmental antigen sampling. Endo-lysosomes are generally sites of HLA class II assembly, but human monocytes and monocyte-derived dendritic cells (moDCs) also contain significant reserves of endo-lysosomal HLA class I molecules. We hypothesized variable influences of HLA class I polymorphisms upon outcomes of endo-lysosomal trafficking, as the stabilities and peptide occupancies of cell surface HLA class I molecules are variable. Consistent with this model, when the endo-lysosomal pH of moDCs is disrupted, HLA-B allotypes display varying propensities for reductions in surface expression, with HLA-B*08:01 or HLA-B*35:01 being among the most resistant or sensitive, respectively, among eight tested HLA-B allotypes. Perturbations of moDC endo-lysosomal pH result in accumulation of HLA-B*35:01 in LAMP1+ compartments and increase HLA-B*35:01 peptide receptivity. These findings reveal the intersection of the vacuolar cross-presentation pathway with a constitutive assembly pathway for some HLA-B allotypes. Notably, cross-presentation of epitopes derived from two soluble antigens was also more efficient for B*35:01 compared to B*08:01, even when matched for T cell response sensitivity, and more affected by cathepsin inhibition. Thus, HLA class I polymorphisms dictate the degree of endo-lysosomal assembly, which can supplement ER assembly for constitutive HLA class I expression and increase the efficiency of cross-presentation.
Collapse
Affiliation(s)
- Eli Olson
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
- Graduate Program in Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| | - Theadora Ceccarelli
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
- Graduate Program in Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
21
|
Li L, Peng X, Batliwala M, Bouvier M. Unusual crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing in antigen presentation. RESEARCH SQUARE 2023:rs.3.rs-2500847. [PMID: 36747752 PMCID: PMC9901037 DOI: 10.21203/rs.3.rs-2500847/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between conformational states as they sample peptides for potential ligands. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. We present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show significant conformational heterogeneity at the N-terminus of the groove. Long stretches of N-terminal residues were missing in the electron density maps creating an unstructured and widely open-ended groove. Our structures also revealed highly unusual features in MHC I and peptide conformations, and in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations showed that the complexes have varying degrees of flexibility in a manner consistent with the structures. We suggest that our structures represent transient substates explored by MHC I molecules during peptide editing. The visualization of peptide-dependent conformational flexibility in MHC I groove is a major step forward in our conceptual understanding of peptide repertoire development in antigen presentation. Our study also raises questions about the role of the N-terminus of the groove in peptide editing.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Xubiao Peng
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| |
Collapse
|
22
|
Boulanger DSM, Douglas LR, Duriez PJ, Kang Y, Dalchau N, James E, Elliott T. Tapasin-mediated editing of the MHC I immunopeptidome is epitope specific and dependent on peptide off-rate, abundance, and level of tapasin expression. Front Immunol 2022; 13:956603. [PMID: 36389776 PMCID: PMC9659924 DOI: 10.3389/fimmu.2022.956603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Tapasin, a component of the major histocompatibility complex (MHC) I peptide loading complex, edits the repertoire of peptides that is presented at the cell surface by MHC I and thereby plays a key role in shaping the hierarchy of CD8+ T-cell responses to tumors and pathogens. We have developed a system that allows us to tune the level of tapasin expression and independently regulate the expression of competing peptides of different off-rates. By quantifying the relative surface expression of peptides presented by MHC I molecules, we show that peptide editing by tapasin can be measured in terms of “tapasin bonus,” which is dependent on both peptide kinetic stability (off-rate) and peptide abundance (peptide supply). Each peptide has therefore an individual tapasin bonus fingerprint. We also show that there is an optimal level of tapasin expression for each peptide in the immunopeptidome, dependent on its off-rate and abundance. This is important, as the level of tapasin expression can vary widely during different stages of the immune response against pathogens or cancer and is often the target for immune escape.
Collapse
Affiliation(s)
- Denise S. M. Boulanger
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Denise S. M. Boulanger, ; Tim Elliott,
| | - Leon R. Douglas
- Cancer Research UK (CR-UK) Protein Core Facility, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick J. Duriez
- Cancer Research UK (CR-UK) Protein Core Facility, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yoyel Kang
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Edd James
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Denise S. M. Boulanger, ; Tim Elliott,
| |
Collapse
|
23
|
Jiang J, Taylor DK, Kim EJ, Boyd LF, Ahmad J, Mage MG, Truong HV, Woodward CH, Sgourakis NG, Cresswell P, Margulies DH, Natarajan K. Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat Commun 2022; 13:5470. [PMID: 36115831 PMCID: PMC9482634 DOI: 10.1038/s41467-022-33153-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Loading of MHC-I molecules with peptide by the catalytic chaperone tapasin in the peptide loading complex plays a critical role in antigen presentation and immune recognition. Mechanistic insight has been hampered by the lack of detailed structural information concerning tapasin-MHC-I. We present here crystal structures of human tapasin complexed with the MHC-I molecule HLA-B*44:05, and with each of two anti-tapasin antibodies. The tapasin-stabilized peptide-receptive state of HLA-B*44:05 is characterized by distortion of the peptide binding groove and destabilization of the β2-microglobulin interaction, leading to release of peptide. Movements of the membrane proximal Ig-like domains of tapasin, HLA-B*44:05, and β2-microglobulin accompany the transition to a peptide-receptive state. Together this ensemble of crystal structures provides insights into a distinct mechanism of tapasin-mediated peptide exchange.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Daniel K Taylor
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Ellen J Kim
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Michael G Mage
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Hau V Truong
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire H Woodward
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520-8011, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA.
| |
Collapse
|
24
|
Müller IK, Winter C, Thomas C, Spaapen RM, Trowitzsch S, Tampé R. Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity. Nat Commun 2022; 13:5383. [PMID: 36104323 PMCID: PMC9474470 DOI: 10.1038/s41467-022-32841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Adaptive immunity depends on cell surface presentation of antigenic peptides by major histocompatibility complex class I (MHC I) molecules and on stringent ER quality control in the secretory pathway. The chaperone tapasin in conjunction with the oxidoreductase ERp57 is crucial for MHC I assembly and for shaping the epitope repertoire for high immunogenicity. However, how the tapasin–ERp57 complex engages MHC I clients has not yet been determined at atomic detail. Here, we present the 2.7-Å crystal structure of a tapasin–ERp57 heterodimer in complex with peptide-receptive MHC I. Our study unveils molecular details of client recognition by the multichaperone complex and highlights elements indispensable for peptide proofreading. The structure of this transient ER quality control complex provides the mechanistic basis for the selector function of tapasin and showcases how the numerous MHC I allomorphs are chaperoned during peptide loading and editing. Adaptive immunity depends on cellular chaperone and quality control systems that are decisive for an effective presentation of foreign antigens via MHC I molecules. Here, the authors present the structure of a key chaperone-MHC I complex.
Collapse
|
25
|
Molecular basis of MHC I quality control in the peptide loading complex. Nat Commun 2022; 13:4701. [PMID: 35948544 PMCID: PMC9365787 DOI: 10.1038/s41467-022-32384-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules are central to adaptive immunity. Their assembly, epitope selection, and antigen presentation are controlled by the MHC I glycan through a sophisticated network of chaperones and modifying enzymes. However, the mechanistic integration of the corresponding processes remains poorly understood. Here, we determine the multi-chaperone-client interaction network of the peptide loading complex (PLC) and report the PLC editing module structure by cryogenic electron microscopy at 3.7 Å resolution. Combined with epitope-proofreading studies of the PLC in near-native lipid environment, these data show that peptide-receptive MHC I molecules are stabilized by multivalent chaperone interactions including the calreticulin-engulfed mono-glucosylated MHC I glycan, which only becomes accessible for processing by α-glucosidase II upon loading of optimal epitopes. Our work reveals allosteric coupling between peptide-MHC I assembly and glycan processing. This inter-process communication defines the onset of an adaptive immune response and provides a prototypical example of the tightly coordinated events in endoplasmic reticulum quality control. The immune system monitors the health status of cells by surveilling fragments of foreign molecules from invaders presented on MHC I complexes at the cell surface. Here, the authors investigate the sequence of events of MHC I assembly and quality control cycle.
Collapse
|
26
|
Walker-Sperling V, Digitale JC, Viard M, Martin MP, Bashirova A, Yuki Y, Ramsuran V, Kulkarni S, Naranbhai V, Li H, Anderson SK, Yum L, Clifford R, Kibuuka H, Ake J, Thomas R, Rowland-Jones S, Rek J, Arinaitwe E, Kamya M, Rodriguez-Barraquer I, Feeney ME, Carrington M. Genetic variation that determines TAPBP expression levels associates with the course of malaria in an HLA allotype-dependent manner. Proc Natl Acad Sci U S A 2022; 119:e2205498119. [PMID: 35858344 PMCID: PMC9303992 DOI: 10.1073/pnas.2205498119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Victoria Walker-Sperling
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
| | - Jean C. Digitale
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, 94143
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Maureen P. Martin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Arman Bashirova
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Yuko Yuki
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Smita Kulkarni
- Texas Biomedical Research Institute, Host Pathogen Interaction Program, San Antonio, Texas, 78227
| | - Vivek Naranbhai
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Dana Farber Cancer Institute, Department of Medical Oncology, Boston, Massachusetts, 02215
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4041, South Africa
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Lauren Yum
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Robert Clifford
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Julie Ake
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Rasmi Thomas
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Pediatrics, University of California San Francisco, San Francisco, California, 94158
| | - Mary Carrington
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, 02139
| |
Collapse
|
27
|
Xu H, Song K, Da LT. Dynamics of peptide loading into major histocompatibility complex class I molecules chaperoned by TAPBPR. Phys Chem Chem Phys 2022; 24:12397-12409. [PMID: 35575131 DOI: 10.1039/d2cp00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Major histocompatibility complex class I (MHC-I) molecules display antigenic peptides on the cell surface for T cell receptor scanning, thereby activating the immune response. Peptide loading into MHC-I molecules is thus a critical step during the antigen presentation process. Chaperone TAP-binding protein related (TAPBPR) plays a critical role in promoting high-affinity peptide loading into MHC-I, by discriminating against the low-affinity ones. However, the complete peptide loading dynamics into TAPBPR-bound MHC-I is still elusive. Here, we constructed kinetic network models based on hundreds of short-time MD simulations with an aggregated simulation time of ∼21.7 μs, and revealed, at atomic level, four key intermediate states of one antigenic peptide derived from melanoma-associated MART-1/Melan-A protein during its loading process into TAPBPR-bound MHC-I. We find that the TAPBPR binding at the MHC-I pocket-F can substantially reshape the distant pocket-B via allosteric regulations, which in turn promotes the following peptide N-terminal loading. Intriguingly, the partially loaded peptide could profoundly weaken the TAPBPR-MHC stability, promoting the dissociation of the TAPBPR scoop-loop (SL) region from the pocket-F to a more solvent-exposed conformation. Structural inspections further indicate that the peptide loading could remotely affect the SL binding site through both allosteric perturbations and direct contacts. In addition, another structural motif of TAPBPR, the jack hairpin region, was also found to participate in mediating the peptide editing. Our study sheds light on the detailed molecular mechanisms underlying the peptide loading process into TAPBPR-bound MHC-I and pinpoints the key structural factors responsible for dictating the peptide-loading dynamics.
Collapse
Affiliation(s)
- Honglin Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
28
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
Ilca FT, Boyle LH. The glycosylation status of MHC class I molecules impacts their interactions with TAPBPR. Mol Immunol 2021; 139:168-176. [PMID: 34543843 PMCID: PMC8524320 DOI: 10.1016/j.molimm.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/16/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022]
Abstract
Glycosylation plays a crucial role in the folding, structure, quality control and trafficking of glycoproteins. Here, we explored whether the glycosylation status of MHC class I (MHC-I) molecules impacts their affinity for the peptide editor, TAPBPR. We demonstrate that the interaction between TAPBPR and MHC-I is stronger when MHC-I lacks a glycan. Subsequently, TAPBPR can dissociate peptides, even those of high affinity, more easily from non-glycosylated MHC-I compared to their glycosylated counterparts. In addition, TAPBPR is more resistant to peptide-mediated allosteric release from non-glycosylated MHC-I compared to species with a glycan attached. Consequently, we find the glycosylation status of HLA-A*68:02, -A*02:01 and -B*27:05 influences their ability to undergo TAPBPR-mediated peptide exchange. The discovery that the glycan attached to MHC-I significantly influences the affinity of their interactions with TAPBPR has important implications, on both an experimental level and in a biological context.
Collapse
Affiliation(s)
- F Tudor Ilca
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
30
|
The role of MHC I protein dynamics in tapasin and TAPBPR-assisted immunopeptidome editing. Curr Opin Immunol 2021; 70:138-143. [PMID: 34265495 DOI: 10.1016/j.coi.2021.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
Major Histocompatibility Complex class I (MHC I) molecules are highly polymorphic, with allotypes differing in peptide binding preferences, and in their dependence upon tapasin for optimal peptide selection. The tapasin dependence of MHC allotypes is inversely correlated with their self-editing ability, and underpinned by conformational plasticity. Recently, TAPBPR has been shown to enhance MHC I assembly via a chaperone-like function, and by editing the peptide repertoire of some MHC I allotypes. Structural analysis has shown TAPBPR binding changes the conformation and dynamics of MHC I, with MHC protein dynamics likely to determine the prevailing TAPBPR function: generically enhancing MHC I assembly by stabilising highly dynamic peptide-empty MHC I; and by editing the peptide repertoire of highly dynamic MHC I allotypes.
Collapse
|
31
|
Lan H, Abualrous ET, Sticht J, Fernandez LMA, Werk T, Weise C, Ballaschk M, Schmieder P, Loll B, Freund C. Exchange catalysis by tapasin exploits conserved and allele-specific features of MHC-I molecules. Nat Commun 2021; 12:4236. [PMID: 34244493 PMCID: PMC8271027 DOI: 10.1038/s41467-021-24401-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
The repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, ‘loosening’ the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11–20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange. Tapasin is part of the peptide loading complex necessary for presenting antigenic peptides on MHC-I for the induction of adaptive immunity. Here the authors show that tapasin interacts with MHC-I in both conserved and allele-specific regions to promote antigen presentation, with tapasin L18 and K16 residues both implicated in this molecular interaction.
Collapse
Affiliation(s)
- Huan Lan
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Esam T Abualrous
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Artificial Intelligence for the Sciences, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Core Facility BioSupraMol, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Laura Maria Arroyo Fernandez
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tamina Werk
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Core Facility BioSupraMol, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martin Ballaschk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biology, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Aflalo A, Boyle LH. Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. Int J Immunogenet 2021; 48:317-325. [PMID: 34176210 DOI: 10.1111/iji.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
MHC class I (MHC-I) molecules undergo an intricate folding process in order to pick up antigenic peptide to present to the immune system. In recent years, the discovery of a new peptide editor for MHC-I has added an extra level of complexity in our understanding of how peptide presentation is regulated. On top of this, the incredible diversity in MHC-I molecules leads to significant variation in the interaction between MHC-I and components of the antigen processing and presentation pathway. Here, we review our current understanding regarding how polymorphisms in human leukocyte antigen class I molecules influence their interactions with key components of the antigen processing and presentation pathway. A deeper understanding of this may offer new insights regarding how apparently subtle variation in MHC-I can have a significant impact on susceptibility to disease.
Collapse
Affiliation(s)
- Aure Aflalo
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Truong HV, Sgourakis NG. Dynamics of MHC-I molecules in the antigen processing and presentation pathway. Curr Opin Immunol 2021; 70:122-128. [PMID: 34153556 PMCID: PMC8622473 DOI: 10.1016/j.coi.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The endogenous antigen processing and presentation (APP) is a fundamental pathway found in jawed vertebrates, which allows for a set of epitope peptides sampled from the intracellular proteome to be assembled and displayed on class I proteins of the major histocompatibility complex (MHC-I). Peptide/MHC-I antigens enable different aspects of adaptive immunity to emerge, by providing a basis for recognition of self vs. non-self by T cells and Natural Killer (NK) cells. Pioneering studies of pMHC-I molecules and their higher-order protein complexes with molecular chaperones and membrane receptors have gleaned important insights into the peptide loading and antigen recognition mechanisms. While X-ray and cryoEM structures have provided us with static snapshots of different MHC-I assembly stages, complementary biophysical techniques have revealed that MHC-I molecules are highly mobile on a range of biologically relevant timescales, which bears importance for their assembly, peptide repertoire selection, membrane display and turnover. This review summarizes insights gained from experimental and simulation studies aimed at investigating MHC-I dynamics, and their functional implications.
Collapse
Affiliation(s)
- Hau V Truong
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Illing PT, van Hateren A, Darley R, Croft NP, Mifsud NA, King S, Kostenko L, Bharadwaj M, McCluskey J, Elliott T, Purcell AW. Kinetics of Abacavir-Induced Remodelling of the Major Histocompatibility Complex Class I Peptide Repertoire. Front Immunol 2021; 12:672737. [PMID: 34093574 PMCID: PMC8170132 DOI: 10.3389/fimmu.2021.672737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Abacavir hypersensitivity syndrome can occur in individuals expressing the HLA-B*57:01 major histocompatibility complex class I allotype when utilising the drug abacavir as a part of their anti-retroviral regimen. The drug is known to bind within the HLA-B*57:01 antigen binding cleft, leading to the selection of novel self-peptide ligands, thus provoking life-threatening immune responses. However, the sub-cellular location of abacavir binding and the mechanics of altered peptide selection are not well understood. Here, we probed the impact of abacavir on the assembly of HLA-B*57:01 peptide complexes. We show that whilst abacavir had minimal impact on the maturation or average stability of HLA-B*57:01 molecules, abacavir was able to differentially enhance the formation, selectively decrease the dissociation, and alter tapasin loading dependency of certain HLA-B*57:01-peptide complexes. Our data reveals a spectrum of abacavir mediated effects on the immunopeptidome which reconciles the heterogeneous functional T cell data reported in the literature.
Collapse
Affiliation(s)
- Patricia T. Illing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rachel Darley
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan P. Croft
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Samuel King
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Mandvi Bharadwaj
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
35
|
Geng J, Raghavan M. Conformational sensing of major histocompatibility complex (MHC) class I molecules by immune receptors and intracellular assembly factors. Curr Opin Immunol 2021; 70:67-74. [PMID: 33857912 DOI: 10.1016/j.coi.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a critical role in both innate and adaptive immune responses. The heterodimeric complex of a polymorphic MHC-I heavy chain and a conserved light chain binds to a diverse set of peptides which are presented at the cell surface. Peptide-free (empty) versions of MHC-I molecules are typically retained intracellularly due to their low stability and bound by endoplasmic reticulum chaperones and assembly factors. However, emerging evidence suggests that at least some MHC-I allotypes are relatively stable and detectable at the cell-surface as peptide-deficient conformers, under some conditions. Such MHC-I conformers interact with multiple immune receptors to mediate various immunological functions. Furthermore, conformational sensing of MHC-I molecules by intracellular assembly factors and endoplasmic reticulum chaperones influences the peptide repertoire, with profound consequences for immunity. In this review, we discuss recent advances relating to MHC-I conformational variations and their pathophysiological implications.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Light control of the peptide-loading complex synchronizes antigen translocation and MHC I trafficking. Commun Biol 2021; 4:430. [PMID: 33785857 PMCID: PMC8010092 DOI: 10.1038/s42003-021-01890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC I) molecules is essential to mount an adaptive immune response against pathogens and cancerous cells. To this end, the transporter associated with antigen processing (TAP) delivers snippets of the cellular proteome, resulting from proteasomal degradation, into the ER lumen. After peptide loading and editing by the peptide-loading complex (PLC), stable peptide-MHC I complexes are released for cell surface presentation. Since the process of MHC I trafficking is poorly defined, we established an approach to control antigen presentation by introduction of a photo-caged amino acid in the catalytic ATP-binding site of TAP. By optical control, we initiate TAP-dependent antigen translocation, thus providing new insights into TAP function within the PLC and MHC I trafficking in living cells. Moreover, this versatile approach has the potential to be applied in the study of other cellular pathways controlled by P-loop ATP/GTPases. Brunnberg et al. establish a protocol that enables them to optically control translocation of the transporter associated with antigen processing (TAP), which plays a role in delivering proteasomal degradation products into the ER lumen. Their versatile approach provides insights into TAP function in the context of peptide-loading complex and stable peptide-MHC I complex trafficking in living cells, but has the potential to be applied to the investigation of other pathways.
Collapse
|
37
|
Thomas C, Tampé R. MHC I assembly and peptide editing - chaperones, clients, and molecular plasticity in immunity. Curr Opin Immunol 2021; 70:48-56. [PMID: 33689959 DOI: 10.1016/j.coi.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/07/2021] [Indexed: 11/24/2022]
Abstract
Peptides presented on MHC I molecules allow the immune system to detect diseased cells. The displayed peptides typically stem from proteasomal degradation of cytoplasmic proteins and are translocated into the ER lumen where they are trimmed and loaded onto MHC I. Peptide translocation is carried out by the transporter associated with antigen processing, which forms the central building block of a dynamic assembly called the peptide-loading complex (PLC). By coordinating peptide transfer with MHC I loading and peptide optimization, the PLC is a linchpin in the adaptive immune system. Peptide loading and optimization is catalyzed by the PLC component tapasin and the PLC-independent TAPBPR, two MHC I-dedicated enzymes chaperoning empty or suboptimally loaded MHC I and selecting stable peptide-MHC I complexes in a process called peptide editing or proofreading. Recent structural and functional studies of peptide editing have dramatically improved our understanding of this pivotal event in antigen processing/presentation. This review is dedicated to Vincenzo Cerundolo (1959-2020) for his pioneering work in the field of antigen processing/presentation.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, Frankfurt, 60438 Main, Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, Frankfurt, 60438 Main, Germany.
| |
Collapse
|
38
|
HLA polymorphism and tapasin independence influence outcomes of HIV and dengue virus infection. Proc Natl Acad Sci U S A 2020; 117:31570-31572. [PMID: 33239443 DOI: 10.1073/pnas.2020109117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Bashirova AA, Viard M, Naranbhai V, Grifoni A, Garcia-Beltran W, Akdag M, Yuki Y, Gao X, O'hUigin C, Raghavan M, Wolinsky S, Bream JH, Duggal P, Martinson J, Michael NL, Kirk GD, Buchbinder SP, Haas D, Goedert JJ, Deeks SG, Fellay J, Walker B, Goulder P, Cresswell P, Elliott T, Sette A, Carlson J, Carrington M. HLA tapasin independence: broader peptide repertoire and HIV control. Proc Natl Acad Sci U S A 2020; 117:28232-28238. [PMID: 33097667 PMCID: PMC7668082 DOI: 10.1073/pnas.2013554117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines.
Collapse
Affiliation(s)
- Arman A Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Vivek Naranbhai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| | - Marjan Akdag
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Xiaojiang Gao
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Colm O'hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Susan P Buchbinder
- HIV Research Section, San Francisco Department of Public Health, San Francisco, CA 94102
| | - David Haas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37204
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94110
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, OX1 4AJ, United Kingdom
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| |
Collapse
|
40
|
Zaitoua AJ, Kaur A, Raghavan M. Variations in MHC class I antigen presentation and immunopeptidome selection pathways. F1000Res 2020; 9. [PMID: 33014341 PMCID: PMC7525337 DOI: 10.12688/f1000research.26935.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.
Collapse
Affiliation(s)
- Anita J Zaitoua
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amanpreet Kaur
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Ilca FT, Drexhage LZ, Brewin G, Peacock S, Boyle LH. Distinct Polymorphisms in HLA Class I Molecules Govern Their Susceptibility to Peptide Editing by TAPBPR. Cell Rep 2020; 29:1621-1632.e3. [PMID: 31693900 PMCID: PMC7057265 DOI: 10.1016/j.celrep.2019.09.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/28/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding how peptide selection is controlled on different major histocompatibility complex class I (MHC I) molecules is pivotal for determining how variations in these proteins influence our predisposition to infectious diseases, cancer, and autoinflammatory conditions. Although the intracellular chaperone TAPBPR edits MHC I peptides, it is unclear which allotypes are subjected to TAPBPR-mediated peptide editing. Here, we examine the ability of 97 different human leukocyte antigen (HLA) class I allotypes to interact with TAPBPR. We reveal a striking preference of TAPBPR for HLA-A, particularly for supertypes A2 and A24, over HLA-B and -C molecules. We demonstrate that the increased propensity of these HLA-A molecules to undergo TAPBPR-mediated peptide editing is determined by molecular features of the HLA-A F pocket, specifically residues H114 and Y116. This work reveals that specific polymorphisms in MHC I strongly influence their susceptibility to chaperone-mediated peptide editing, which may play a significant role in disease predisposition.
Collapse
Affiliation(s)
- F Tudor Ilca
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Linnea Z Drexhage
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Gemma Brewin
- Tissue Typing Laboratory, Box 209, Level 6 ATC, Cambridge University Hospitals, NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Sarah Peacock
- Tissue Typing Laboratory, Box 209, Level 6 ATC, Cambridge University Hospitals, NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
42
|
Fisette O, Schröder GF, Schäfer LV. Atomistic structure and dynamics of the human MHC-I peptide-loading complex. Proc Natl Acad Sci U S A 2020; 117:20597-20606. [PMID: 32788370 PMCID: PMC7456110 DOI: 10.1073/pnas.2004445117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The major histocompatibility complex class-I (MHC-I) peptide-loading complex (PLC) is a cornerstone of the human adaptive immune system, being responsible for processing antigens that allow killer T cells to distinguish between healthy and compromised cells. Based on a recent low-resolution cryo-electron microscopy (cryo-EM) structure of this large membrane-bound protein complex, we report an atomistic model of the PLC and study its conformational dynamics on the multimicrosecond time scale using all-atom molecular dynamics (MD) simulations in an explicit lipid bilayer and water environment (1.6 million atoms in total). The PLC has a layered structure, with two editing modules forming a flexible protein belt surrounding a stable, catalytically active core. Tapasin plays a central role in the PLC, stabilizing the MHC-I binding groove in a conformation reminiscent of antigen-loaded MHC-I. The MHC-I-linked glycan steers a tapasin loop involved in peptide editing toward the binding groove. Tapasin conformational dynamics are also affected by calreticulin through a conformational selection mechanism that facilitates MHC-I recruitment into the complex.
Collapse
Affiliation(s)
- Olivier Fisette
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Physics Department, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany;
| |
Collapse
|
43
|
Ilca T, Boyle LH. The Ins and Outs of TAPBPR. Curr Opin Immunol 2020; 64:146-151. [PMID: 32814254 DOI: 10.1016/j.coi.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
Peptide presentation on MHC class I molecules (MHC-I) is central to mounting effective antiviral and antitumoral immune responses. The tapasin-related protein TAPBPR is an MHC-I peptide editor which shapes the final peptide repertoire displayed on the cell surface. Here, we review recent findings which further elucidate the mechanisms by which TAPBPR performs peptide editing on a molecular level, and how glycosylation on MHC-I influences the interaction with TAPBPR and the peptide loading complex. We also explore how the function of TAPBPR can be utilized to promote exogenous peptide loading directly onto plasma-membrane expressed MHC-I. This has led to the development of new assays to investigate TAPBPR-mediated peptide editing and uncovered translational opportunities of utilizing TAPBPR to treat human disease.
Collapse
Affiliation(s)
- Tudor Ilca
- Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
44
|
Margulies DH, Jiang J, Natarajan K. Structural and dynamic studies of TAPBPR and Tapasin reveal the mechanism of peptide loading of MHC-I molecules. Curr Opin Immunol 2020; 64:71-79. [DOI: 10.1016/j.coi.2020.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
45
|
Overall SA, Toor JS, Hao S, Yarmarkovich M, Sara M O'Rourke, Morozov GI, Nguyen S, Japp AS, Gonzalez N, Moschidi D, Betts MR, Maris JM, Smibert P, Sgourakis NG. High throughput pMHC-I tetramer library production using chaperone-mediated peptide exchange. Nat Commun 2020; 11:1909. [PMID: 32312993 PMCID: PMC7170893 DOI: 10.1038/s41467-020-15710-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Peptide exchange technologies are essential for the generation of pMHC-multimer libraries used to probe diverse, polyclonal TCR repertoires in various settings. Here, using the molecular chaperone TAPBPR, we develop a robust method for the capture of stable, empty MHC-I molecules comprising murine H2 and human HLA alleles, which can be readily tetramerized and loaded with peptides of choice in a high-throughput manner. Alternatively, catalytic amounts of TAPBPR can be used to exchange placeholder peptides with high affinity peptides of interest. Using the same system, we describe high throughput assays to validate binding of multiple candidate peptides on empty MHC-I/TAPBPR complexes. Combined with tetramer-barcoding via a multi-modal cellular indexing technology, ECCITE-seq, our approach allows a combined analysis of TCR repertoires and other T cell transcription profiles together with their cognate antigen specificities in a single experiment. The new approach allows TCR/pMHC interactions to be interrogated easily at large scale.
Collapse
Affiliation(s)
- Sarah A Overall
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, 101 6th Ave, New York, NY, 10013, USA
| | - Mark Yarmarkovich
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sara M O'Rourke
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Giora I Morozov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Nicolas Gonzalez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, 101 6th Ave, New York, NY, 10013, USA
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA.
| |
Collapse
|
46
|
Sagert L, Hennig F, Thomas C, Tampé R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. eLife 2020; 9:55326. [PMID: 32167472 PMCID: PMC7117912 DOI: 10.7554/elife.55326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Adaptive immunity vitally depends on major histocompatibility complex class I (MHC I) molecules loaded with peptides. Selective loading of peptides onto MHC I, referred to as peptide editing, is catalyzed by tapasin and the tapasin-related TAPBPR. An important catalytic role has been ascribed to a structural feature in TAPBPR called the scoop loop, but the exact function of the scoop loop remains elusive. Here, using a reconstituted system of defined peptide-exchange components including human TAPBPR variants, we uncover a substantial contribution of the scoop loop to the stability of the MHC I-chaperone complex and to peptide editing. We reveal that the scoop loop of TAPBPR functions as an internal peptide surrogate in peptide-depleted environments stabilizing empty MHC I and impeding peptide rebinding. The scoop loop thereby acts as an additional selectivity filter in shaping the repertoire of presented peptide epitopes and the formation of a hierarchical immune response.
Collapse
Affiliation(s)
- Lina Sagert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Felix Hennig
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
47
|
O’Rourke SM, Morozov GI, Roberts JT, Barb AW, Sgourakis NG. Production of soluble pMHC-I molecules in mammalian cells using the molecular chaperone TAPBPR. Protein Eng Des Sel 2019; 32:525-532. [PMID: 32725167 PMCID: PMC7451022 DOI: 10.1093/protein/gzaa015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Current approaches for generating major histocompatibility complex (MHC) Class-I proteins with desired bound peptides (pMHC-I) for research, diagnostic and therapeutic applications are limited by the inherent instability of empty MHC-I molecules. Using the properties of the chaperone TAP-binding protein related (TAPBPR), we have developed a robust method to produce soluble, peptide-receptive MHC-I molecules in Chinese Hamster Ovary cells at high yield, completely bypassing the requirement for laborious refolding from inclusion bodies expressed in E.coli. Purified MHC-I/TAPBPR complexes can be prepared for multiple human allotypes, and exhibit complex glycan modifications at the conserved Asn 86 residue. As a proof of concept, we demonstrate both HLA allele-specific peptide binding and MHC-restricted antigen recognition by T cells for two relevant tumor-associated antigens. Our system provides a facile, high-throughput approach for generating pMHC-I antigens to probe and expand TCR specificities present in polyclonal T cell repertoires.
Collapse
Affiliation(s)
- Sara M O’Rourke
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Giora I Morozov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jacob T Roberts
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Adam W Barb
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center University of Georgia, Athens, GA 30602, USA
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
48
|
Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem 2019; 294:18534-18544. [PMID: 31601650 PMCID: PMC6901306 DOI: 10.1074/jbc.ra119.010102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (i.e. 8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA) n AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA) n unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612. Tel.:
312-355-0664; E-mail:
| |
Collapse
|
49
|
Zimmermann C, Kowalewski D, Bauersfeld L, Hildenbrand A, Gerke C, Schwarzmüller M, Le-Trilling VTK, Stevanovic S, Hengel H, Momburg F, Halenius A. HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 2019; 15:e1008040. [PMID: 31527904 PMCID: PMC6764698 DOI: 10.1371/journal.ppat.1008040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/27/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hildenbrand
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Magdalena Schwarzmüller
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
50
|
Natarajan K, Jiang J, Margulies DH. Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway. Crit Rev Biochem Mol Biol 2019; 54:164-173. [PMID: 31084439 DOI: 10.1080/10409238.2019.1610352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recognition of foreign and dysregulated antigens by the cellular innate and adaptive immune systems is in large part dependent on the cell surface display of peptide/MHC (pMHC) complexes. The formation of such complexes requires the generation of antigenic peptides, proper folding of MHC molecules, loading of peptides onto MHC molecules, glycosylation, and transport to the plasma membrane. This complex series of biosynthetic, biochemical, and cell biological reactions is known as "antigen processing and presentation". Here, we summarize recent work, focused on the structural and functional characterization of the key MHC-I-dedicated chaperones, tapasin, and TAPBPR. The mechanisms reflect the ability of conformationally flexible molecules to adapt to their ligands, and are comparable to similar processes that are exploited in peptide antigen loading in the MHC-II pathway.
Collapse
Affiliation(s)
- Kannan Natarajan
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Jiansheng Jiang
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - David H Margulies
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|