1
|
Torné O, Oikawa K, Teixeira LBC, Kiland JA, McLellan GJ. Trabecular Meshwork Abnormalities in a Model of Congenital Glaucoma Due to LTBP2 Mutation. Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 39432401 PMCID: PMC11500042 DOI: 10.1167/iovs.65.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose To characterize early trabecular meshwork (TM) morphologic abnormalities in a feline model of human primary congenital glaucoma (PCG) caused by mutation in LTBP2. Methods Eyes from 41 cats, including 19 normal and 22 homozygous for LTBP2 mutation, across various postnatal stages (birth, 2 weeks, 5 weeks, and 12 weeks) were paraformaldehyde fixed, anterior segments dissected, post-fixed in glutaraldehyde, osmicated, and processed and sectioned for transmission electron microscopy. Cell morphology, nuclear shape, and intertrabecular space (ITS) were quantitatively assessed, and the structure of the fibrillar extracellular matrix in the TM was systematically evaluated. Results The earliest differences in TM morphology between PCG and normal cats were identified at 2 weeks postnatally. Elastic fibers in the TM were discontinuous and disorganized (P = 0.0122), and by 5 weeks of age PCG cats presented significantly less ITS (P = 0.0076) and morphologically rounder TM cells than normal cats (P = 0.0293). By 12 weeks of age, the ITS was further collapsed (P < 0.0001), and the TM cells were morphologically elongated and attenuated in PCG compared to controls (P = 0.0028). Conclusions In this feline model of PCG due to LTBP2 mutation, development of ultrastructural TM extracellular matrix abnormalities are first observed by 2 weeks and cellular abnormalities by 5 weeks of age. By 12 weeks of age, when intraocular pressure becomes significantly elevated, the TM morphologic abnormalities are already well established. These findings suggest that the postnatal period between 0 and 5 weeks of age is critical for TM and PCG development and progression in cats.
Collapse
Affiliation(s)
- Odalys Torné
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kazuya Oikawa
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Julie A. Kiland
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Tian X, Yuan L, Li L, Yuan X. Alterations in anterior lens capsule structure and LTBP-2 expression in primary angle-closure glaucoma. BMJ Open Ophthalmol 2024; 9:e001535. [PMID: 39317460 PMCID: PMC11423727 DOI: 10.1136/bmjophth-2023-001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE This study investigated the role of latent-transforming growth factor β-binding protein 2 (LTBP-2) in primary angle-closure glaucoma (PACG) by analysing its expression and the ultrastructure of the anterior lens capsule in PACG patients with age-related cataract (ARC). METHODS Tissue samples of the anterior lens capsule were collected from patients undergoing cataract phacoemulsification surgery. Patients in the experimental group were diagnosed with primary angle-closure (PAC) combined with ARC (PAC+ARC) and PACG combined with ARC (PACG+ARC). The control group consisted of patients with only ARC. The techniques used included scanning electron microscopy, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescence. RESULTS Ultrastructural analysis revealed disordered connections in PAC+ARC, loose connections in PACG+ARC and well-ordered connections in ARC. RT-qPCR and western blotting showed significantly lower LTBP-2 mRNA and protein expression in PAC+ARC and PACG+ARC than in ARC, with PAC+ARC having the lowest levels. Immunofluorescence confirmed these findings, showing varying LTBP-2 fluorescence intensities across groups. CONCLUSION The study identified ultrastructural changes in the anterior lens capsules in PACG accompanied by reduced LTBP-2 expression, especially in PAC+ARC patients. This suggests a potential role for LTBP-2 in PACG development, warranting further investigation.
Collapse
Affiliation(s)
- Xiaofeng Tian
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Liyun Yuan
- School of Medicine, Nankai University, Tianjin, China
| | - Liangpin Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| |
Collapse
|
3
|
Nishiura K, Yokokawa T, Misaka T, Ichimura S, Tomita Y, Miura S, Shimizu T, Sato T, Kaneshiro T, Oikawa M, Kobayashi A, Yoshihisa A, Takeishi Y. Prognostic Role of Circulating LTBP-2 in Patients With Dilated Cardiomyopathy: A Novel Biomarker Reflecting Extracellular Matrix LTBP-2 Accumulation. Can J Cardiol 2023; 39:1436-1445. [PMID: 37270166 DOI: 10.1016/j.cjca.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening disease related to heart failure. Extracellular matrix proteins have an important role in the pathogenesis of DCM. Latent transforming growth factor beta-binding protein 2 (LTBP-2), a type of extracellular matrix protein, has not been investigated in DCM. METHODS First, we compared plasma LTBP-2 levels in 131 patients with DCM who underwent endomyocardial biopsy and 44 controls who were matched for age and sex and had no cardiac abnormalities. Next, we performed immunohistochemistry for LTBP-2 on endomyocardial biopsy specimens and followed the DCM patients for ventricular assist device (VAD) implantation, cardiac death, and all-cause death. RESULTS Patients with DCM had elevated plasma LTBP-2 levels compared with controls (P < 0.001). Plasma LTBP-2 levels were positively correlated with LTBP-2-positive fraction in the myocardium from the biopsy specimen. When patients with DCM were divided into 2 groups according to LTBP-2 levels, Kaplan-Meier analysis demonstrated that patients with high plasma LTBP-2 were associated with increased incidences of cardiac death/VAD and all-cause death/VAD. In addition, patients with high myocardial LTBP-2-positive fractions were associated with increased incidences of these adverse outcomes. Multivariable Cox proportional hazard analysis showed that plasma LTBP-2 and myocardial LTBP-2-positive fraction were independently associated with adverse outcomes. CONCLUSIONS Circulating LTBP-2 can serve as a biomarker to predict adverse outcomes, reflecting extracellular matrix LTBP-2 accumulation in the myocardium in DCM.
Collapse
Affiliation(s)
- Kazuto Nishiura
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shohei Ichimura
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yusuke Tomita
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shunsuke Miura
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Shimizu
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Kobayashi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Animal Model Contributions to Primary Congenital Glaucoma. J Ophthalmol 2022; 2022:6955461. [PMID: 35663518 PMCID: PMC9162845 DOI: 10.1155/2022/6955461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF-β-binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression. Animal models can simulate PCG and are essential to study the pathogenesis and treatment of PCG. Various animal species have been used in the study of PCG, including rabbits, rats, mice, cats, zebrafish, and quails. These models are formed spontaneously or by combining with genetic engineering technology. The focus of the present study is to review the characteristics and potential applications of animal models in PCG and provide new approaches to understand the mechanism and develop new treatment strategies for patients with PCG.
Collapse
|
5
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update. J Clin Med 2021; 10:jcm10245930. [PMID: 34945227 PMCID: PMC8707182 DOI: 10.3390/jcm10245930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease.
Collapse
|
7
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
8
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Pottie L, Adamo CS, Beyens A, Lütke S, Tapaneeyaphan P, De Clercq A, Salmon PL, De Rycke R, Gezdirici A, Gulec EY, Khan N, Urquhart JE, Newman WG, Metcalfe K, Efthymiou S, Maroofian R, Anwar N, Maqbool S, Rahman F, Altweijri I, Alsaleh M, Abdullah SM, Al-Owain M, Hashem M, Houlden H, Alkuraya FS, Sips P, Sengle G, Callewaert B. Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. Am J Hum Genet 2021; 108:1095-1114. [PMID: 33991472 PMCID: PMC8206382 DOI: 10.1016/j.ajhg.2021.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFβ growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFβ levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Christin S Adamo
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium; Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Piyanoot Tapaneeyaphan
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research, Ghent 9052, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bioimaging Core, Ghent 9052, Belgium
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34303, Turkey
| | - Naz Khan
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jill E Urquhart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Najwa Anwar
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Fatima Rahman
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Ikhlass Altweijri
- Department of Neurosurgery, King Khalid University Hospital, Riyadh 11211, Saudi Arabia
| | - Monerah Alsaleh
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sawsan Mohamed Abdullah
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Street 21, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Cologne 50931, Germany
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
10
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
11
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Jabbari Moghadam Y, Ahmadian Heris J, Jafari-Rouhi AH, Taheri M, Rezazadeh M. New insight into clinical heterogeneity and inheritance diversity of FBLN5-related cutis laxa. Orphanet J Rare Dis 2021; 16:51. [PMID: 33509220 PMCID: PMC7845118 DOI: 10.1186/s13023-021-01696-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background FBLN5-related cutis laxa (CL) is a rare disorder that involves elastic fiber-enriched tissues and is characterized by lax skin and variable systemic involvement such as pulmonary emphysema, arterial involvement, inguinal hernias, hollow viscus diverticula and pyloric stenosis. This type of CL follows mostly autosomal recessive (AR) and less commonly autosomal dominant patterns of inheritance. Results In this study, we detected a novel homozygous missense variant in exon 6 of FBLN5 gene (c.G544C, p.A182P) by using whole exome sequencing in a consanguineous Iranian family with two affected members. Our twin patients showed some of the clinical manifestation of FBLN5-related CL but they did not present pulmonary complications, gastrointestinal and genitourinary abnormalities. The notable thing about this monozygotic twin sisters is that only one of them showed ventricular septal defect, suggesting that this type of CL has intrafamilial variability. Co-segregation analysis showed the patients’ parents and relatives were heterozygous for detected variation suggesting AR form of the CL. In silico prediction tools showed that this mutation is pathogenic and 3D modeling of the normal and mutant protein revealed relative structural alteration of fibulin-5 suggesting that the A182P can contribute to the CL phenotype via the combined effect of lack of protein function and partly misfolding-associated toxicity. Conclusion We underlined the probable roles and functions of the involved domain of fibulin-5 and proposed some possible mechanisms involved in AR form of FBLN5-related CL. However, further functional studies and subsequent clinical and molecular investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG Center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Jabbari Moghadam
- Department of Otorhinolaryngology, School of Medicine, Sina Medical Research and Training Hospital, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Pediatrics, School of Medicine, Children Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Paraoan L, Sharif U, Carlsson E, Supharattanasitthi W, Mahmud NM, Kamalden TA, Hiscott P, Jackson M, Grierson I. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration. Prog Retin Eye Res 2020; 79:100859. [PMID: 32278708 DOI: 10.1016/j.preteyeres.2020.100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.
Collapse
Affiliation(s)
- Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Emil Carlsson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Nur Musfirah Mahmud
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Tengku Ain Kamalden
- Eye Research Centre, Department of Ophthalmology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Hiscott
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Jackson
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Mocan MC, Mehta AA, Aref AA. Update in Genetics and Surgical Management of
Primary Congenital Glaucoma. Turk J Ophthalmol 2019; 49:347-355. [PMID: 31893591 PMCID: PMC6961078 DOI: 10.4274/tjo.galenos.2019.28828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Primary congenital glaucoma (PCG) continues to be an important cause of visual impairment in children despite advances in medical and surgical treatment options. The progressive and blinding nature of the disease, together with the long lifespan of the affected population, necessitates a thorough understanding of the pathophysiology of PCG and the development of long-lasting treatment options. The first part of this review discusses the genetic features and makeup of this disorder, including all currently identified genetic loci (GLC3A, GLC3B, GLC3C and GLC3D) and relevant protein targets important for trabecular and Schlemm canal dysgenesis. These target molecules primarily include CYP1B1, LTBP2, and TEK/Tie2 proteins. Their potential roles in PCG pathogenesis are discussed with the purpose of bringing the readers up to date on the molecular genetics aspect of this disorder. Special emphasis is placed on functional implications of reported genetic mutations in the setting of PCG. The second part of the review focuses on various modifications and refinements to the traditional surgical approaches performed to treat PCG, including advances in goniotomy and trabeculotomy ab externo techniques, glaucoma drainage implant surgery and cyclodiode photocoagulation techniques that ultimately provide safer surgical approaches and more effective intraocular pressure control in the 21st century.
Collapse
Affiliation(s)
- Mehmet C. Mocan
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, USA
| | - Amy A. Mehta
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, USA
| | - Ahmad A. Aref
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, USA
| |
Collapse
|
15
|
Antimicrobial Properties of Extracellular Matrix Scaffolds for Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9641456. [PMID: 31911931 PMCID: PMC6930736 DOI: 10.1155/2019/9641456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
The necessity to manufacture graft materials with superior biocompatibility capabilities and biodegradability characteristics for tissue regeneration has led to the production of extracellular matrix- (ECM-) based scaffolds. Among their advantages are better capacity to allow cell colonization, which enables its successful integration into the tissue surrounding the area to be repaired. In addition, it has been shown that some of these scaffolds have antimicrobial activity, preventing possible infections; therefore, it could be used as an alternative to control surgical infection and decrease the use of antimicrobial agents. The purpose of this review is to collect the existing information about antimicrobial activity of the ECM and their components.
Collapse
|
16
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
17
|
Snyder KC, Oikawa K, Williams J, Kiland JA, Gehrke S, Teixeira LBC, Huang AS, McLellan GJ. Imaging Distal Aqueous Outflow Pathways in a Spontaneous Model of Congenital Glaucoma. Transl Vis Sci Technol 2019; 8:22. [PMID: 31616579 PMCID: PMC6788461 DOI: 10.1167/tvst.8.5.22] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose To validate the use of aqueous angiography (AA) in characterizing distal aqueous outflow pathways in normal and glaucomatous cats. Methods Ex vivo AA and optical coherence tomography (OCT) were performed in nine adult cat eyes (5 feline congenital glaucoma [FCG] and 4 normal), following intracameral infusion of 2.5% fluorescein and/or 0.4% indocyanine green (ICG) at physiologic intraocular pressure (IOP). Scleral OCT line scans were acquired in areas of high- and low-angiographic signal. Tissues dissected in regions of high- and low-AA signal, were sectioned and hematoxylin and eosin (H&E)-stained or immunolabeled (IF) for vascular endothelial and perivascular cell markers. Outflow vessel numbers and locations were compared between groups by Student's t-test. Results AA yielded circumferential, high-quality images of distal aqueous outflow pathways in normal and FCG eyes. No AA signal or scleral lumens were appreciated in one buphthalmic FCG eye, though collapsed vascular profiles were identified on IF. The remaining eight of nine eyes all showed segmental AA signal, distinguished by differences in time of signal onset. AA signal always corresponded with lumens seen on OCT. Numbers of intrascleral vessels were not significantly different between groups, but scleral vessels were significantly more posteriorly located relative to the limbus in FCG. Conclusions A capacity for distal aqueous humor outflow was confirmed by AA in FCG eyes ex vivo but with significant posterior displacement of intrascleral vessels relative to the limbus in FCG compared with normal eyes. Translational Relevance This report provides histopathologic correlates of advanced diagnostic imaging findings in a spontaneous model of congenital glaucoma.
Collapse
Affiliation(s)
- Kevin C Snyder
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Kazuya Oikawa
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA.,Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Jeremy Williams
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Julie A Kiland
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Shaile Gehrke
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Leandro B C Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Alex S Huang
- Doheny Eye Institute, and Department of Ophthalmology University of California, Los Angeles, CA, USA
| | - Gillian J McLellan
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA.,Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
18
|
Recent updates on the molecular network of elastic fiber formation. Essays Biochem 2019; 63:365-376. [PMID: 31395654 DOI: 10.1042/ebc20180052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Elastic fibers confer elasticity and recoiling to tissues and organs and play an essential role in induction of biochemical responses in a cell against mechanical forces derived from the microenvironment. The core component of elastic fibers is elastin (ELN), which is secreted as the monomer tropoelastin from elastogenic cells, and undergoes self-aggregation, cross-linking and deposition on to microfibrils, and assemble into insoluble ELN polymers. For elastic fibers to form, a microfibril scaffold (primarily formed by fibrillin-1 (FBN1)) is required. Numerous elastic fiber-associated proteins are involved in each step of elastogenesis and they instruct and/or facilitate the elastogenesis processes. In this review, we designated five proteins as key molecules in elastic fiber formation, including ELN, FBN1, fibulin-4 (FBLN4), fibulin-5 (FBLN5), and latent TGFβ-binding protein-4 (LTBP4). ELN and FBN1 serve as building blocks for elastic fibers. FBLN5, FBLN4 and LTBP4 have been demonstrated to play crucial roles in elastogenesis through knockout studies in mice. Using these molecules as a platform and expanding the elastic fiber network through the generation of an interactome map, we provide a concise review of elastogenesis with a recent update as well as discuss various biological functions of elastic fiber-associated proteins beyond elastogenesis in vivo.
Collapse
|
19
|
Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, Hsu AC, Haw TJ, Fricker M, Harrison CL, Jones B, Hansbro NG, Wark PA, Horvat JC, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis. JCI Insight 2019; 5:124529. [PMID: 31343988 DOI: 10.1172/jci.insight.124529] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia, USA
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Celeste L Harrison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
21
|
Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. Matrix Biol 2018; 73:21-33. [DOI: 10.1016/j.matbio.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
|
22
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
23
|
Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 2018; 89:109-117. [PMID: 30016650 PMCID: PMC6461133 DOI: 10.1016/j.semcdb.2018.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.
Collapse
|
24
|
Dolmatov IY, Afanasyev SV, Boyko AV. Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS One 2018; 13:e0195836. [PMID: 29649336 PMCID: PMC5897022 DOI: 10.1371/journal.pone.0195836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
Echinoderms are capable of asexual reproduction by fission. An individual divides into parts due to changes in the strength of connective tissue of the body wall. The structure of connective tissue and the mechanisms of variations in its strength in echinoderms remain poorly studied. An analysis of transcriptomes of individuals during the process of fission provides a new opportunity to understand the mechanisms of connective tissue mutability. In the holothurian Cladolabes schmeltzii, we have found a rather complex organization of connective tissue. Transcripts of genes encoding a wide range of structural proteins of extracellular matrix, as well as various proteases and their inhibitors, have been discovered. All these molecules may constitute a part of the mechanism of connective tissue mutability. According to our data, the extracellular matrix of echinoderms is substantially distinguished from that of vertebrates by the lack of elastin, fibronectins, and tenascins. In case of fission, a large number of genes of transcription factors and components of different signaling pathways are expressed. Products of these genes are probably involved in regulation of asexual reproduction, connective tissue mutability, and preparation of tissues for subsequent regeneration. It has been shown that holothurian tensilins are a special group of tissue inhibitors of metalloproteinases, which has formed within the class Holothuroidea and is absent from other echinoderms. Our data can serve a basis for the further study of the mechanisms of extracellular matrix mutability, as well as the mechanisms responsible for asexual reproduction in echinoderms.
Collapse
Affiliation(s)
- Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
- * E-mail:
| | - Sergey V. Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey V. Boyko
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
25
|
LTBPs in biology and medicine: LTBP diseases. Matrix Biol 2017; 71-72:90-99. [PMID: 29217273 DOI: 10.1016/j.matbio.2017.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
The latent transforming growth factor (TGF) β binding proteins (LTBP) are crucial mediators of TGFβ function, as they control growth factor secretion, matrix deposition, presentation and activation. Deficiencies in specific LTBP isoforms yield discrete phenotypes representing defects in bone, lung and cardiovascular development mediated by loss of TGFβ signaling. Additional phenotypes represent loss of unique TGFβ-independent features of LTBP effects on elastogenesis and microfibril assembly. Thus, the LTBPs act as sensors for the regulation of both growth factor activity and matrix function.
Collapse
|
26
|
Yamashiro Y, Yanagisawa H. Crossing Bridges between Extra- and Intra-Cellular Events in Thoracic Aortic Aneurysms. J Atheroscler Thromb 2017; 25:99-110. [PMID: 28943527 PMCID: PMC5827090 DOI: 10.5551/jat.rv17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thoracic aortic aneurysms (TAAs) are common, life-threatening diseases and are a major cause of mortality and morbidity. Over the past decade, genetic approaches have revealed that 1) activation of the transforming growth factor beta (TGF-β) signaling, 2) alterations in the contractile apparatus of vascular smooth muscle cells (SMCs), and 3) defects in the extracellular matrix (ECM) were responsible for development of TAAs. Most recently, a fourth mechanism has been proposed in that dysfunction of mechanosensing in the aortic wall in response to hemodynamic stress may be a key driver of TAAs. Interestingly, the elastin-contractile unit, which is an anatomical and functional unit connecting extracellular elastic laminae to the intracellular SMC contractile filaments, via cell surface receptors, has been shown to play a critical role in the mechanosensing of SMCs, and many genes identified in TAAs encode for proteins along this continuum. However, it is still debated whether these four pathways converge into a common pathway. Currently, an effective therapeutic strategy based on the underlying mechanism of each type of TAAs has not been established. In this review, we will update the present knowledge on the molecular mechanism of TAAs with a focus on the signaling pathways potentially involved in the initiation of TAAs. Finally, we will evaluate current therapeutic strategies for TAAs and propose new directions for future treatment of TAAs.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | - Hiromi Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| |
Collapse
|
27
|
Wang C, Wang G, Zhang L, Pan J, Wei Y. Latent Transforming Growth Factor β Binding Protein 2 (LTBP2) as a Novel Biomarker for the Diagnosis and Prognosis of Pancreatic Carcinoma. Med Sci Monit 2017; 23:3232-3239. [PMID: 28669978 PMCID: PMC5507795 DOI: 10.12659/msm.905284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Latent transforming growth factor b binding protein 2 (LTBP2) is proven to be associated with ECM and involved in the advancement of several kinds of cancer. The present study evaluated the diagnosis and prognosis of pancreatic carcinoma (PC) using LTBP2 as a biomarker. MATERIAL AND METHODS Protein levels of LTBP2 were evaluated in 111 pairs of pancreatic ductal adenocarcinoma (PDAC) tissues and adjacent nontumor tissues via immunohistochemistry. ELISA method was used to quantify the serum concentration of LTBP2. The subjects in this study included 141 PDAC patients, 20 patients with benign pancreatic disease, and 20 healthy volunteers. RESULTS IHC results showed that LTBP2 levels were significantly elevated in the PDAC tissues as compared with the adjacent nontumor tissues (P<0.05). Sixty-one of the 111 (54.9%) PDAC tissues showed high expression of the protein. LTBP2 overexpression was significantly correlated with poor differentiation (P=0.018) and advanced TNM stage (P=0.036). Moreover, Kaplan-Meier analysis showed that high levels of LTBP2 predicted worse overall survival (P=0.001) and disease-free survival (P=0.001). Multivariate Cox regression analysis indicated that high expression of LTBP2 was an autonomous prognostic factor for poor overall and disease-free survival (P=0.001; P=0.002). Receiver operating characteristic (ROC) curve analyses of showed that LTBP-2 had an area under the curve (AUC) of 0.846 (95% confidence intervals: 0.757-0.934) and cut-off value of 19.12. CONCLUSIONS LTBP2 is a novel biomarker for the diagnosis of PC and may be a potential target for PDAC clinical therapy.
Collapse
Affiliation(s)
- Cheng Wang
- Corresponding Author: Cheng Wang, e-mail:
| | | | | | | | | |
Collapse
|
28
|
Fujikawa Y, Yoshida H, Inoue T, Ohbayashi T, Noda K, von Melchner H, Iwasaka T, Shiojima I, Akama TO, Nakamura T. Latent TGF-β binding protein 2 and 4 have essential overlapping functions in microfibril development. Sci Rep 2017; 7:43714. [PMID: 28252045 PMCID: PMC5333096 DOI: 10.1038/srep43714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Microfibrils are exracellular matrix components necessary for elastic fiber assembly and for suspending lenses. We previously reported that latent TGF-β binding protein 2 (LTBP-2), a microfibril-associated protein, is required for forming stable microfibril bundles in ciliary zonules. However, it was not understood why Ltbp2 null mice only showed an eye-specific phenotype, whereas LTBP-2 is abundantly expressed in other tissues containing microfibrils in wild type mice. Here, we show that LTBP-4, another microfibril-associated protein, compensates for the loss of LTBP-2 in microfibril formation. Ltbp2/4S double knockout (DKO) mice showed increased lethality due to emphysema, which was much more severe than that found in Ltbp4S null mice. Elastic fibers in the lungs of Ltbp2/4S DKO mice were severely disorganized and fragmented. Cultured mouse embryonic fibroblasts (MEFs) from Ltbp2/4S DKO embryos developed reduced microfibril meshwork in serum-free conditions, whereas the microfibril formation was restored by the addition of either recombinant LTBP-2 or -4. Finally, ectopic expression of LTBP-4 in the whole body restored ciliary zonule microfibril bundles in the eyes of Ltbp2 null mice. These data suggest that LTBP-2 and -4 have critical overlapping functions in forming the robust structure of microfibrils in vitro and in vivo.
Collapse
Affiliation(s)
- Yusuke Fujikawa
- Department of Pharmacology, Kansai Medical University, Osaka, 573-1010, Japan.,Department of Cardiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Hideyuki Yoshida
- Department of Pharmacology, Kansai Medical University, Osaka, 573-1010, Japan.,Department of Ophthalmology, Kansai Medical University, Osaka, 753-1010, Japan
| | - Tadashi Inoue
- Department of Pharmacology, Kansai Medical University, Osaka, 573-1010, Japan.,Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University Graduate School of Medical Sciences, Yonago, Tottori, 683-8503, Japan
| | - Kazuo Noda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Harald von Melchner
- Department of Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, 60590, Germany
| | - Toshiji Iwasaka
- Department of Cardiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Ichiro Shiojima
- Department of Cardiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Osaka, 573-1010, Japan
| |
Collapse
|
29
|
Fibulin-6 regulates pro-fibrotic TGF-β responses in neonatal mouse ventricular cardiac fibroblasts. Sci Rep 2017; 7:42725. [PMID: 28209981 PMCID: PMC5314373 DOI: 10.1038/srep42725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/12/2017] [Indexed: 11/26/2022] Open
Abstract
Fibulin-6, an essential component of extracellular matrix determines the architecture of cellular junctions in tissues undergoing strain. Increased expression and deposition of fibulin-6 facilitates fibroblast migration in response to TGF-β, following myocardial infarction in mouse heart. The underlying mechanism still remains elusive. In conjunction with our previous study, we have now demonstrated that in fibulin-6 knockdown (KD) fibroblasts, not only TGF-β dependent migration, but also stress fiber formation, cellular networking and subsequently fibroblast wound contraction is almost abrogated. SMAD dependent TGF-β pathway shows ~75% decreased translocation of R-SMAD and co-SMAD into the nucleus upon fibulin-6 KD. Consequently, SMAD dependent pro-fibrotic gene expression is considerably down regulated to basal levels both in mRNA and protein. Also, investigating the non-SMAD pathways we observed a constitutive increase in pERK-levels in fibulin-6 KD fibroblast compared to control, but no change was seen in pAKT. Immunoprecipitation studies revealed 60% reduced interaction of TGF-β receptor II and I (TGFRII and I) accompanied by diminished phosphorylation of TGFRI at serin165 in fibulin-6 KD cells. In conclusion, fibulin-6 plays an important role in regulating TGF-β mediated responses, by modulating TGF-β receptor dimerization and activation to further trigger downstream pathways.
Collapse
|
30
|
Hirai M, Arita Y, McGlade CJ, Lee KF, Chen J, Evans SM. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 2017; 127:569-582. [PMID: 28067668 PMCID: PMC5272190 DOI: 10.1172/jci91081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine.
Collapse
Affiliation(s)
- Maretoshi Hirai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Yoh Arita
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - C. Jane McGlade
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA
| | | | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
- Department of Medicine and
- Department of Pharmacology, UCSD, La Jolla, California, USA
| |
Collapse
|
31
|
Abstract
A characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time. Elastin is formed by polymerization of tropoelastin monomers. It is an amorphous protein highly resistant to the action of proteases that forms the core of elastic fibers. Microfibrils surrounding the core are composed of fibrillins that bind a number of proteins involved in fiber formation. They include microfibril-associated glycoproteins (MAGPs), microfibrillar-associated proteins (MFAPs) and fibulins. Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXLs) are responsible for tropoelastin cross-linking and polymerization. TGF-β complexes attached to microfibrils release this cytokine and influence the behavior of the cells in the neighborhood. The role of TGF-β as the main profibrotic cytokine in the liver is well-known and the release of the cytokines of TGF-β superfamily from their storage in elastic fibers may affect the course of fibrosis. Elastic fibers are often studied in the tissues where they provide elasticity and resilience but their role is no longer viewed as purely mechanical. Tropoelastin, elastin polymer and elastin peptides resulting from partial elastin degradation influence fibroblastic and inflammatory cells as well as angiogenesis. A similar role may be performed by elastin in the liver. This article reviews the results of the research of liver elastic fibers on the background of the present knowledge of elastin biochemistry and physiology. The regulation of liver elastin synthesis and degradation may be important for the outcome of liver fibrosis.
Collapse
Affiliation(s)
- Jiří Kanta
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
32
|
Wan F, Peng L, Zhu C, Zhang X, Chen F, Liu T. Knockdown of Latent Transforming Growth Factor-β (TGF-β)-Binding Protein 2 (LTBP2) Inhibits Invasion and Tumorigenesis in Thyroid Carcinoma Cells. Oncol Res 2016; 25:503-510. [PMID: 27712597 PMCID: PMC7841189 DOI: 10.3727/096504016x14755368915591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Latent transforming growth factor-β (TGF-β)-binding protein 2 (LTBP2) is one of four proteins in the LTBP family of proteins (LTBP1-4) and was shown to play a vital role in tumorigenesis. However, little is known regarding the functional role of LTBP2 in thyroid carcinoma. Therefore, the current study aimed to evaluate the effect of LTBP2 expression on the proliferation, invasion, and tumorigenesis in thyroid carcinoma cells and to explore the molecular mechanism of LTBP2 in tumor progression. Our results showed that the expression of LTBP2 is upregulated in human thyroid carcinoma and cell lines. Knockdown of LTBP2 inhibits the proliferation, invasion, and EMT phenotype in thyroid carcinoma cells. Furthermore, knockdown of LTBP2 attenuates thyroid carcinoma growth in nude mice. Finally, knockdown of LTBP2 inhibits activation of the PI3K/Akt pathway in thyroid carcinoma cells. In summary, the present study has provided further evidence that knockdown of LTBP2 inhibits invasion and tumorigenesis in thyroid carcinoma cells. Our findings may help to further elucidate the molecular mechanisms underlying thyroid carcinoma progression and provide candidate targets for the prevention and treatment of thyroid carcinoma.
Collapse
Affiliation(s)
- Fuqiang Wan
- Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi, P.R. China
| | - Li Peng
- Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi, P.R. China
| | - ChaoYu Zhu
- Department No. 2 of Abdominal Surgery, Linyi Tumor Hospital, Linyi, P.R. China
| | - XinFa Zhang
- Department of Breast Surgery, Linyi Tumor Hospital, Linyi, P.R. China
| | - FangWen Chen
- Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi, P.R. China
| | - Tao Liu
- Department of General Surgery, Linyi People's Hospital, Linyi, P.R. China
| |
Collapse
|
33
|
Sasaki T, Hanisch FG, Deutzmann R, Sakai LY, Sakuma T, Miyamoto T, Yamamoto T, Hannappel E, Chu ML, Lanig H, von der Mark K. Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. Matrix Biol 2016; 56:132-149. [PMID: 27339457 DOI: 10.1016/j.matbio.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023]
Abstract
Fibulin-4 is a 60kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-β pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly.
Collapse
Affiliation(s)
- Takako Sasaki
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| | - Franz-Georg Hanisch
- Institute for Biochemistry II, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Microbiology and Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Lynn Y Sakai
- Shriners Hospital for Children, Portland Research Center, Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Ewald Hannappel
- Institut für Biochemie, Emil-Fischer-Zentrum, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
34
|
Chen X, Chen Y, Fan BJ, Xia M, Wang L, Sun X. Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma. Mol Vis 2016; 22:528-35. [PMID: 27293371 PMCID: PMC4885908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/26/2016] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To identify deleterious mutations in the latent transforming growth factor-β-binding protein 2 (LTBP2) gene in sporadic patients with primary congenital glaucoma (PCG) from a Han Chinese population, which had been excluded for mutations in the CYP1B1 gene. METHODS In this retrospective case-control study, 36 coding exons and adjacent exon-intron boundaries of LTBP2 were amplified with PCR and screened for mutations with Sanger sequencing in DNA samples of 214 sporadic patients with PCG. Sequence variants identified in the patients with PCG were subsequently screened in 100 unaffected control subjects and the unaffected parents of the patients with PCG who had sequence changes in LTBP2. RESULTS Eight heterozygous single nucleotide polymorphisms (SNPs) in coding regions of LTBP2 were identified in the patients with PCG. Four of these SNPs were missense changes that resulted in the replacement of amino acids (rs2304707, rs116914994, rs45468895, and rs763035721), two of which (rs2304707 and rs116914994) were also present in the control subjects. No significant differences in the frequencies of the missense SNPs were found between the patients with PCG and the controls. The two missense SNPs, rs45468895 and rs763035721, which were each found in one patient also existed in their unaffected parents, suggesting that these two SNPs were not segregated in these families and are unlikely to be a disease-causative variant. In addition, four synonymous SNPs were detected in the patients with PCG (rs61738025, rs862031, rs199805158, and rs12586758). CONCLUSIONS The results showed that no deleterious mutations were found in coding regions of LTBP2 in patients with PCG, suggesting that it is not a causal gene for PCG in the Han Chinese population.
Collapse
Affiliation(s)
- Xueli Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bao Jian Fan
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Mingying Xia
- Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Wang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China,Key Laboratory of Myopia, Ministry of Health (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
35
|
Brandsma CA, van den Berge M, Postma D, Timens W. Fibulin-5 as a potential therapeutic target in COPD. Expert Opin Ther Targets 2016; 20:1031-3. [PMID: 26962995 DOI: 10.1517/14728222.2016.1164696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Corry-Anke Brandsma
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| | - Maarten van den Berge
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Dirkje Postma
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wim Timens
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| |
Collapse
|
36
|
Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, Keeley FW, Koshiba-Takeuchi K. Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat Commun 2016; 7:10397. [PMID: 26783159 PMCID: PMC4735684 DOI: 10.1038/ncomms10397] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022] Open
Abstract
The evolution of phenotypic traits is a key process in diversification of life. However, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we address the origin of bulbus arteriosus (BA), an organ of evolutionary novelty seen in the teleost heart outflow tract (OFT), which sophisticates their circulatory system. The BA is a unique organ that is composed of smooth muscle while the OFTs in other vertebrates are composed of cardiac muscle. Here we reveal that the teleost-specific extracellular matrix (ECM) gene, elastin b, was generated by the teleost-specific whole-genome duplication and neofunctionalized to contribute to acquisition of the BA by regulating cell fate determination of cardiac precursor cells into smooth muscle. Furthermore, we show that the mechanotransducer yap is involved in this cell fate determination. Our findings reveal a mechanism of generating evolutionary novelty through alteration of cell fate determination by the ECM. The bulbus arteriosus is an organ unique to the heart of teleosts, composed of specialized smooth muscle. Here, the authors show that the gene elastin b, which regulates cell fate of cardiac precursor cells into smooth muscle, evolved after whole-genome duplication and neofunctionalization in teleosts.
Collapse
Affiliation(s)
- Yuuta Moriyama
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Fumihiro Ito
- Division of Ecological Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tohru Yano
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato, Tokyo 105-8461, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato, Tokyo 105-8461, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Fred W Keeley
- Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kazuko Koshiba-Takeuchi
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
37
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
38
|
Kan R, Shuen WH, Lung HL, Cheung AKL, Dai W, Kwong DLW, Ng WT, Lee AWM, Yau CC, Ngan RKC, Tung SY, Lung ML. NF-κB p65 Subunit Is Modulated by Latent Transforming Growth Factor-β Binding Protein 2 (LTBP2) in Nasopharyngeal Carcinoma HONE1 and HK1 Cells. PLoS One 2015; 10:e0127239. [PMID: 25974126 PMCID: PMC4431814 DOI: 10.1371/journal.pone.0127239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/12/2015] [Indexed: 01/22/2023] Open
Abstract
NF-κB is a well-characterized transcription factor, widely known as a key player in tumor-derived inflammation and cancer development. Herein, we present the functional and molecular relevance of the canonical NF-κB p65 subunit in nasopharyngeal carcinoma (NPC). Loss- and gain-of-function approaches were utilized to reveal the functional characteristics of p65 in propagating tumor growth, tumor-associated angiogenesis, and epithelial-to-mesenchymal transition in NPC cells. Extracellular inflammatory stimuli are critical factors that trigger the NF-κB p65 signaling; hence, we investigated the components of the tumor microenvironment that might potentially influence the p65 signaling pathway. This led to the identification of an extracellular matrix (ECM) protein that was previously reported as a candidate tumor suppressor in NPC. Our studies on the Latent Transforming Growth Factor-β Binding Protein 2 (LTBP2) protein provides substantial evidence that it can modulate the p65 transcriptional activity. Re-expression of LTBP2 elicits tumor suppressive effects that parallel the inactivation of p65 in NPC cells. LTBP2 was able to reduce phosphorylation of p65 at Serine 536, inhibit nuclear localization of active phosphorylated p65, and impair the p65 DNA-binding ability. This results in a consequential down-regulation of p65-related gene expression. Therefore, the data suggest that the overall up-regulation of p65 expression and the loss of this candidate ECM tumor suppressor are milestone events contributing to NPC development.
Collapse
Affiliation(s)
- Rebecca Kan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wai Ho Shuen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Hong Lok Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
| | - Wai Tong Ng
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong (SAR), PR China
| | - Anne Wing Mui Lee
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, The University of Hong Kong—Shen Zhen Hospital, PR China
| | - Chun Chung Yau
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Oncology, Princess Margaret Hospital, Hong Kong (SAR), PR China
| | - Roger Kai Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (SAR), PR China
| | - Stewart Yuk Tung
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong (SAR), PR China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- Center for Nasopharyngeal Carcinoma Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), PR China
- * E-mail:
| |
Collapse
|
39
|
Abstract
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.
Collapse
|
40
|
Chiang MS, Yang JR, Liao SC, Hsu CC, Hsu CW, Yuan K. Latent transforming growth factor-β binding proteins (LTBP-1 and LTBP-2) and gingiva keratinization. Oral Dis 2015; 21:762-9. [PMID: 25858550 DOI: 10.1111/odi.12344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Transforming growth factor-beta (TGF-β) proteins are involved in epithelial keratinization. The major function of latent TGF-β binding proteins (LTBPs) is modulating TGF-β activity. However, whether LTBP-1 and LTBP-2 play roles in gingiva keratinization remains unclear. MATERIALS AND METHODS Human keratinized gingiva and non-keratinized alveolar mucosa were processed for LTBP-1, LTBP-2, cytokeratin-1 (K1), cytokeratin-4 (K4), and TGF-β immunohistochemical (IHC) staining. Porcine heterotopically transplanted connective tissues and newly grown epithelia were harvested for IHC staining. The expression levels of LTBP-1 and LTBP-2 were compared between differentiated and undifferentiated human normal oral keratinocytes (hNOK). The expression of LTBP-1 and LTBP-2 was knocked down in a cell line (OEC-M1) to evaluate the effects on the expression of K1, K4, and involucrin (INV). RESULTS In human and porcine specimens, LTBP-2 expression patterns distinguished keratinized and non-keratinized oral epithelia. Western blotting results showed that K1, LTBP-1, and INV proteins were upregulated in differentiated hNOK. In OEC-M1 cells, LTBP-2 knockdown resulted in upregulated the expression of K1 and INV and downregulated the expression of K4. LTBP-1 knockdown resulted in opposite effects. CONCLUSION The expression patterns of LTBP-2 differ in keratinized gingiva and non-keratinized mucosa. LTBP-1 and LTBP-2 are involved in the keratinization of oral epithelium; however, the underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- M-S Chiang
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J-R Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | - S-C Liao
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - C-C Hsu
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - C-W Hsu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Dental Department, Tainan Municipal Hospital, Tainan, Taiwan
| | - K Yuan
- Department of Oral Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
41
|
Hinderer S, Shena N, Ringuette LJ, Hansmann J, Reinhardt DP, Brucker SY, Davis EC, Schenke-Layland K. In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold. ACTA ACUST UNITED AC 2015; 10:034102. [PMID: 25784676 DOI: 10.1088/1748-6041/10/3/034102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), 70569 Stuttgart, Germany. Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Alizadeh M, Karimi F, Fallah MR. Evaluation of verapamil efficacy in Peyronie's disease comparing with pentoxifylline. Glob J Health Sci 2014; 6:23-30. [PMID: 25363175 PMCID: PMC4796342 DOI: 10.5539/gjhs.v6n7p23] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 07/28/2014] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Peyronie's disease described as penile curvature, fibromathosis and pain that occur most often in men aged 40 to 60 years. The main complaint that caused the patient to visit the clinic is nodules on the upper surface of the penis, causing curvature and distortion particularly during erection, but they don't have any urinary problem. In this study, we evaluated the effect of verapamil compared to pentoxifylline in Peyronie's disease. METHODS In this study, 90 patients with signs and symptoms of Peyronie's disease which were diagnosed and were in the age range 40 to 70 years enrolled. The patients were randomly divided into 3 groups. First group received pentoxifylline orally at a dose of 400 mg three times a day, in the second group verapamil (10 mg every other week for up to 12 sessions) was injected into the lesion and the third group received both treatments in combination. RESULTS In patients, who received pentoxifylline, curvature reduction was 26.7%, plaque size reduction was 30%, the recovery rate of erectile dysfunction was 46.7% and pain reduced was 73.3%. Each of these cases in patients, who used beta-blockers, was 36.7%, 33.3%, 66.7% and 76.6%. In combination therapy, curvature reduction was 36.7%, plaque size reduction was 33.3%, the recovery rate of erectile dysfunction was 86.7% and pain reduced was 80%. CONCLUSION In our study there was no significant difference between two groups using verapamil or pentoxifylline, but there was a significant improvement in combination therapy group. Due to our results we propose that combination therapy can improve results and should be considered as a choice in treatment of Peyronie's disease.
Collapse
|
44
|
Brandsma CA, van den Berge M, Postma DS, Jonker MR, Brouwer S, Paré PD, Sin DD, Bossé Y, Laviolette M, Karjalainen J, Fehrmann RSN, Nickle DC, Hao K, Spanjer AIR, Timens W, Franke L. A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD. Thorax 2014; 70:21-32. [PMID: 24990664 DOI: 10.1136/thoraxjnl-2014-205091] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive, incurable lung disease characterised by abnormal tissue repair causing emphysema and small airways fibrosis. Since current therapy cannot modify this abnormal repair, it is crucial to unravel its underlying molecular mechanisms. Unbiased analysis of genome-wide gene expression profiles in lung tissue provides a powerful tool to investigate this. METHODS We performed genome-wide gene expression profiling in 581 lung tissue samples from current and ex-smokers with (n=311) and without COPD (n=270). Subsequently, quantitative PCR, western blot and immunohistochemical analyses were performed to validate our main findings. RESULTS 112 genes were found to be upregulated in patients with COPD compared with controls, whereas 61 genes were downregulated. Among the most upregulated genes were fibulin-5 (FBLN5), elastin (ELN), latent transforming growth factor β binding protein 2 (LTBP2) and microfibrillar associated protein 4 (MFAP4), all implicated in elastogenesis. Our gene expression findings were validated at mRNA and protein level. We demonstrated higher ELN gene expression in COPD lung tissue and similar trends for FBLN5 and MFAP4, and negative correlations with lung function. FBLN5 protein levels were increased in COPD lung tissue and cleaved, possibly non-functional FBLN5 protein was present. Strong coexpression of FBLN5, ELN, LTBP2 and MFAP4 in lung tissue and in silico analysis indicated cofunctionality of these genes. Finally, colocalisation of FBLN5, MFAP4 and LTBP2 with elastic fibres was demonstrated in lung tissue. CONCLUSIONS We identified a clear gene signature for elastogenesis in COPD and propose FBLN5 as a novel player in tissue repair in COPD.
Collapse
Affiliation(s)
- Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Sharon Brouwer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Peter D Paré
- The University of British Columbia, Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada Respiratory Division, University of British Columbia, Vancouver, Canada
| | - Don D Sin
- The University of British Columbia, Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada Respiratory Division, University of British Columbia, Vancouver, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada Department of Molecular Medicine, Laval University, Québec, Canada
| | - Michel Laviolette
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Juha Karjalainen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ke Hao
- Merck Research Laboratories, Boston, Massachusetts, USA
| | - Anita I R Spanjer
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Inoue T, Ohbayashi T, Fujikawa Y, Yoshida H, Akama TO, Noda K, Horiguchi M, Kameyama K, Hata Y, Takahashi K, Kusumoto K, Nakamura T. Latent TGF-β binding protein-2 is essential for the development of ciliary zonule microfibrils. Hum Mol Genet 2014; 23:5672-82. [PMID: 24908666 DOI: 10.1093/hmg/ddu283] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latent TGF-β-binding protein-2 (LTBP-2) is an extracellular matrix protein associated with microfibrils. Homozygous mutations in LTBP2 have been found in humans with genetic eye diseases such as congenital glaucoma and microspherophakia, indicating a critical role of the protein in eye development, although the function of LTBP-2 in vivo has not been well understood. In this study, we explore the in vivo function of LTBP-2 by generating Ltbp2(-/-) mice. Ltbp2(-/-) mice survived to adulthood but developed lens luxation caused by compromised ciliary zonule formation without a typical phenotype related to glaucoma, suggesting that LTBP-2 deficiency primarily causes lens dislocation but not glaucoma. The suppression of LTBP2 expression in cultured human ciliary epithelial cells by siRNA disrupted the formation of the microfibril meshwork by the cells. Supplementation of recombinant LTBP-2 in culture medium not only rescued the microfibril meshwork formation in LTBP2-suppressed ciliary epithelial cells but also restored unfragmented and bundled ciliary zonules in Ltbp2(-/-) mouse eyes under organ culture. Although several reported human mutant LTBP-2 proteins retain normal domain structure and keep the fibrillin-1-binding site intact, none of these mutant proteins were secreted from their producing cells, suggesting secretion arrest occurred to the LTBP-2 mutants owing to conformational alteration. The findings of this study suggest that LTBP-2 is an essential component for the formation of microfibril bundles in ciliary zonules.
Collapse
Affiliation(s)
- Tadashi Inoue
- Department of Pharmacology, Department of Plastic and Reconstructive Surgery
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology and
| | | | - Hideyuki Yoshida
- Department of Pharmacology, Department of Ophthalmology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Kazuo Noda
- Department of Pharmacology, Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan and
| | - Masahito Horiguchi
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Katsuro Kameyama
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Tottori 683-8503, Japan
| | - Yoshio Hata
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences, Yonago, Tottori 683-8503, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | | | | |
Collapse
|
46
|
Confocal microscopy demonstrates association of LTBP-2 in fibrillin-1 microfibrils and colocalisation with perlecan in the disc cell pericellular matrix. Tissue Cell 2014; 46:185-97. [PMID: 24867584 DOI: 10.1016/j.tice.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Comparative immunolocalisations of latent transforming growth factor-beta-1 binding protein (LTBP)-2, fibrillin-1, versican and perlecan were undertaken in foetal human and wild type C57BL/6 mouse and Hspg2 exon 3 null HS deficient mouse intervertebral discs (IVDs). LTBP-2 was a prominent pericellular component of annular fibrochondrocytes in the posterior annulus fibrosus (AF), interstitial matrix adjacent to nucleus pulposus (NP) cells and to fibrillar and cell associated material in the anterior AF of the human foetal IVD and also displayed a pericellular localisation pattern in murine IVDs. Perlecan and LTBP-2 displayed strong pericellular colocalisation patterns in the posterior AF and to fibrillar material in the outer anterior AF in the foetal human IVD. Versican was a prominent fibril-associated component in the posterior and anterior AF, localised in close proximity to fibrillin-1 in fibrillar arrangements in the cartilaginous vertebral rudiments around paraspinal blood vessels, to major collagen fibre bundles in the anterior and posterior AF and shorter fibres in the NP. Fibrillin-1 was prominent in the outer anterior AF of the human foetal IVD and in fibres extending from the AF into the cartilaginous vertebral rudiments. LTBP-2 was prominently associated with annular fibrils containing fibrillin-1, versican was localised in close proximity to these but not specifically with LTBP-2. The similar deposition levels of LTBP-2 observed in the AF of the Hspg2 exon 3 null and wild type murine IVDs indicated that perlecan HS was not essential for LTBP-2 deposition but colocalisation of LTBP-2 with perlecan in the foetal human IVD was consistent with HS mediated interactions which have already been demonstrated in-vitro.
Collapse
|
47
|
Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies. Atherosclerosis 2014; 233:590-600. [DOI: 10.1016/j.atherosclerosis.2014.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 02/01/2023]
|
48
|
Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 2014; 37:142-9. [PMID: 24613575 DOI: 10.1016/j.matbio.2014.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein-protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5(-/-)) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4(-/-)) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|
49
|
Kuchtey J, Kuchtey RW. The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure. J Ocul Pharmacol Ther 2014; 30:170-80. [PMID: 24521159 DOI: 10.1089/jop.2013.0184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microfibrils are macromolecular aggregates located in the extracellular matrix of both elastic and nonelastic tissues that have essential functions in formation of elastic fibers and control of signaling through the transforming growth factor beta (TGFβ) family of cytokines. Elevation of systemic TGFβ and chronic activation of TGFβ signal transduction are associated with diseases caused by mutations in microfibril-associated genes, including FBN1. A role for microfibrils in glaucoma is suggested by identification of risk alleles in LOXL1 for exfoliation glaucoma and mutations in LTBP2 for primary congenital glaucoma, both of which are microfibril-associated genes. Recent identification of a mutation in another microfibril-associated gene, ADAMTS10, in a dog model of primary open-angle glaucoma led us to form the microfibril hypothesis of glaucoma, which in general states that defective microfibrils may be an underlying cause of glaucoma. Microfibril defects could contribute to glaucoma through alterations in biomechanical properties of tissue and/or through effects on signaling through TGFβ, which is well established to be elevated in the aqueous humor of glaucoma patients. Recent work has shown that diseases caused by microfibril defects are associated with increased concentrations of TGFβ protein and chronic activation of TGFβ-mediated signal transduction. In analogy with other microfibril-related diseases, defective microfibrils could provide a mechanism for the elevation of TGFβ2 in glaucomatous aqueous humor. If glaucoma shares mechanisms with other diseases caused by defective microfibrils, such as Marfan syndrome, therapeutic interventions to inhibit chronic activation of TGFβ signaling used in those diseases may be applied to glaucoma.
Collapse
Affiliation(s)
- John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University , Nashville, Tennessee
| | | |
Collapse
|
50
|
Miao M, Reichheld SE, Muiznieks LD, Huang Y, Keeley FW. Elastin Binding Protein and FKBP65 Modulate in Vitro Self-Assembly of Human Tropoelastin. Biochemistry 2013; 52:7731-41. [DOI: 10.1021/bi400760f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ming Miao
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sean E. Reichheld
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lisa D. Muiznieks
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yayi Huang
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fred W. Keeley
- Department
of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|