1
|
Deng Q, Li N, Bai S, Cao J, Jin YL, Zhang HE, Wang JK, Wang Q. SbPL1CE8 from Segatella bryantii combines with SbGH28GH105 in a multi-enzyme cascade for pectic biomass utilization. Int J Biol Macromol 2024; 279:135217. [PMID: 39216572 DOI: 10.1016/j.ijbiomac.2024.135217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pectinases are useful biocatalysts for pectic biomass processing and are extensively used in the food/feed, textile and papermaking industries. Two pectinase genes, a pectate lyase (SbPL1CE8) and a polygalacturonase (SbGH28GH105) were isolated from Segatella bryantii and functionally characterized. Recombinant rSbPL1CE8 was most active against polygalacturonic acid (PGA) and pectin with a 60 % degree of esterification, with kcat/Km values of 721.18 ± 64.77 and 327.02 ± 22.44 mL/s/mg, respectively. Truncated rSbPL1 acted as a mesophilic alkaline pectate lyase, which was highly resistant to inactivation by methanol and ethanol. The rSbPL1CE8 exclusively digested PGA and pectin into unsaturated digalacturonate (uG2), which was further converted into galacturonic acid by rSbGH28GH105. The rSbPL1CE8 was highly effective for saccharification of waste materials from Zea mays, Oryza sativa and Arachis hypogaea processing, and for ramie fiber degumming. This novel pectate lyase has great potential for application in industrial pectic biomass processing.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuning Bai
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Lan Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li X, Tao H, Wang S, Zhang D, Xiong X, Cai Y. IAA Synthesis Pathway of Fitibacillus barbaricus WL35 and Its Regulatory Gene Expression Levels in Potato ( Solanum tuberosum L.). Microorganisms 2024; 12:1530. [PMID: 39203372 PMCID: PMC11356661 DOI: 10.3390/microorganisms12081530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Indole-3-acetic acid (IAA), as an important regulator of potato growth, seriously affects the growth and yield of potato. Although many studies have reported that IAA-producing Bacillus can promote plant growth, little research has been conducted on its synthesis pathway and molecular mechanisms. In this study, an IAA-producing strain WL35 was identified as Fitibacillus barbaricus, and its yield was 48.79 mg·L-1. The results of the pot experiments showed that WL35 significantly increased plant height, stem thickness, chlorophyll content, and number of leaves of potato plants by 31.68%, 30.03%, 32.93%, and 36.59%, respectively. In addition, in the field experiments, WL35-treated plants increased commercial potato yield by 16.45%, vitamin C content by 16.35%, protein content by 75%, starch content by 6.60%, and the nitrogen, phosphorus, and potassium accumulation by 9.98%, 12.70%, and 26.76%, respectively. Meanwhile, the synthetic pathway of WL35 was found to be dominated by the tryptophan-dependent pathway, the IAM, TAM, and IPA pathways worked together, and the pathways that played a role at different times were different. Furthermore, RNA-seq analysis showed that there were a total of 2875 DEGs regulated in the samples treated with WL35 seed dressing compared with the CK, of which 1458 genes were up-regulated and 1417 genes were down-regulated. Potato roots express differential genes enriched in processes such as carbohydrate metabolism processes and cellular polysaccharide metabolism, which regulate potato plant growth and development. The above results provide a theoretical basis for the further exploration of the synthesis pathway of IAA and its growth-promoting mechanism in potato.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Shisong Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Di Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| |
Collapse
|
3
|
Burnim AA, Dufault-Thompson K, Jiang X. The three-sided right-handed β-helix is a versatile fold for glycan interactions. Glycobiology 2024; 34:cwae037. [PMID: 38767844 PMCID: PMC11129586 DOI: 10.1093/glycob/cwae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Collapse
Affiliation(s)
- Audrey A Burnim
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| |
Collapse
|
4
|
Calvete‐Torre I, Sabater C, Muñoz‐Almagro N, Campelo AB, Moreno FJ, Margolles A, Ruiz L. A methyl esterase from Bifidobacterium longum subsp. longum reshapes the prebiotic properties of apple pectin by triggering differential modulatory capacity in faecal cultures. Microb Biotechnol 2024; 17:e14443. [PMID: 38722820 PMCID: PMC11081426 DOI: 10.1111/1751-7915.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/13/2024] Open
Abstract
Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.
Collapse
Affiliation(s)
- Inés Calvete‐Torre
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Carlos Sabater
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Nerea Muñoz‐Almagro
- Group of Chemistry and Functionality of Carbohydrates and DerivativesInstitute of Food Science Research, CIAL (CSIC‐UAM), Universidad Autónoma de MadridMadridSpain
| | - Ana Belén Campelo
- Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
| | - F. Javier Moreno
- Group of Chemistry and Functionality of Carbohydrates and DerivativesInstitute of Food Science Research, CIAL (CSIC‐UAM), Universidad Autónoma de MadridMadridSpain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| |
Collapse
|
5
|
Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, Wang R, Huang S, Han Z, Cervone F, Yin H, Qi T, Wang Y, Chai J. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. Science 2024; 383:732-739. [PMID: 38359129 DOI: 10.1126/science.adj9529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.
Collapse
Affiliation(s)
- Yu Xiao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Gao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhifu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
6
|
Hocq L, Habrylo O, Sénéchal F, Voxeur A, Pau-Roblot C, Safran J, Fournet F, Bassard S, Battu V, Demailly H, Tovar JC, Pilard S, Marcelo P, Savary BJ, Mercadante D, Njo MF, Beeckman T, Boudaoud A, Gutierrez L, Pelloux J, Lefebvre V. Mutation of AtPME2, a pH-Dependent Pectin Methylesterase, Affects Cell Wall Structure and Hypocotyl Elongation. PLANT & CELL PHYSIOLOGY 2024; 65:301-318. [PMID: 38190549 DOI: 10.1093/pcp/pcad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Josip Safran
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Françoise Fournet
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Virginie Battu
- Plant Reproduction and Development Laboratory, ENS de Lyon UMR 5667, BP 7000, Lyon cedex 07 69342, France
| | - Hervé Demailly
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - José C Tovar
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Serge Pilard
- Analytical Platform (PFA), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Paulo Marcelo
- Cellular imaging and protein analysis platform (ICAP), University of Picardie, Avenue Laënnec,CHU Sud, CURS, Amiens cedex 1 80054, France
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, PO Box 600, Jonesboro, AR 72467, USA
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maria Fransiska Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Arezki Boudaoud
- Hydrodynamics Laboratory, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Laurent Gutierrez
- Molecular Biology Platform (CRRBM), University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro-BIOPI Plant Biology and Innovation, University of Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
7
|
Tao H, Wang S, Li X, Li X, Cai J, Zhao L, Wang J, Zeng J, Qin Y, Xiong X, Cai Y. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6. Front Microbiol 2023; 14:1295107. [PMID: 38149275 PMCID: PMC10750399 DOI: 10.3389/fmicb.2023.1295107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Potato common scab, caused mainly by Streptomyces scabies, causes surface necrosis and reduces the economic value of potato tubers, but effective chemical control is still lacking. In this study, an attempt was made to control potato common scab by inoculating potatoes with Bacillus velezensis (B. velezensis) and to further investigate the mechanism of biological control. The results showed that B. velezensis Y6 could reduce the disease severity of potato common scab from 49.92 ± 25.74% [inoculated with Streptomyces scabies (S. scabies) only] to 5.56 ± 1.89% (inoculated with S. scabies and Y6 on the same day) and increase the potato yield by 37.32% compared with the control under pot experiment in this study. Moreover, in the field trial, it was found that Y6 could also significantly reduce disease severity from 13.20 ± 1.00% to 4.00 ± 0.70% and increase the potato yield from 2.07 ± 0.10 ton/mu to 2.87 ± 0.28 ton/mu (p < 0.01; Tukey's test). Furthermore, RNA-seq analysis indicated that 256 potato genes were upregulated and 183 potato genes were downregulated in response to B. velezensis Y6 inoculation. In addition, strain Y6 was found to induce the expression of plant growth-related genes in potato, including cell wall organization, biogenesis, brassinosteroid biosynthesis, and plant hormone transduction genes, by 1.01-4.29 times. As well as up-regulate hydroquinone metabolism-related genes and several transcription factors (bHLH, MYB, and NAC) by 1.13-4.21 times. In summary, our study will help to understand the molecular mechanism of biological control of potato common scab and improve potato yield.
Collapse
Affiliation(s)
- Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Shisong Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaobo Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianying Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Lanfeng Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jia Wang
- Guangdong Institute Center of Wine and Spirits, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Ji Zeng
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yuzhi Qin
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education Changsha, Hunan Provincial Engineering Research Center for Potatoes, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Schulz K, Machaj G, Knox P, Hancock RD, Verrall SR, Korpinen R, Saranpää P, Kärkönen A, Karpinska B, Foyer CH. Restraining Quiescence Release-Related Ageing in Plant Cells: A Case Study in Carrot. Cells 2023; 12:2465. [PMID: 37887309 PMCID: PMC10605352 DOI: 10.3390/cells12202465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The blackening of cut carrots causes substantial economic losses to the food industry. Blackening was not observed in carrots that had been stored underground for less than a year, but the susceptibility to blackening increased with the age of the carrots that were stored underground for longer periods. Samples of black, border, and orange tissues from processed carrot batons and slices, prepared under industry standard conditions, were analyzed to identify the molecular and metabolic mechanisms underpinning processing-induced blackening. The black tissues showed substantial molecular and metabolic rewiring and large changes in the cell wall structure, with a decreased abundance of xyloglucan, pectins (homogalacturonan, rhamnogalacturonan-I, galactan and arabinan), and higher levels of lignin and other phenolic compounds when compared to orange tissues. Metabolite profiling analysis showed that there was a major shift from primary to secondary metabolism in the black tissues, which were depleted in sugars, amino acids, and tricarboxylic acid (TCA) cycle intermediates but were rich in phenolic compounds. These findings suggest that processing triggers a release from quiescence. Transcripts encoding proteins associated with secondary metabolism were less abundant in the black tissues, but there were no increases in transcripts associated with oxidative stress responses, programmed cell death, or senescence. We conclude that restraining quiescence release alters cell wall metabolism and composition, particularly regarding pectin composition, in a manner that increases susceptibility to blackening upon processing.
Collapse
Affiliation(s)
- Katie Schulz
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Gabriela Machaj
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 31-120 Krakow, Poland;
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Susan R. Verrall
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 1BE, UK;
| | - Risto Korpinen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Pekka Saranpää
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Anna Kärkönen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
9
|
Carbone V, Reilly K, Sang C, Schofield LR, Ronimus RS, Kelly WJ, Attwood GT, Palevich N. Crystal Structures of Bacterial Pectin Methylesterases Pme8A and PmeC2 from Rumen Butyrivibrio. Int J Mol Sci 2023; 24:13738. [PMID: 37762041 PMCID: PMC10530356 DOI: 10.3390/ijms241813738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed β-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (V.C.); (K.R.); (C.S.); (L.R.S.); (R.S.R.); (W.J.K.); (G.T.A.)
| |
Collapse
|
10
|
Kumar R, Meghwanshi GK, Marcianò D, Ullah SF, Bulone V, Toffolatti SL, Srivastava V. Sequence, structure and functionality of pectin methylesterases and their use in sustainable carbohydrate bioproducts: A review. Int J Biol Macromol 2023; 244:125385. [PMID: 37330097 DOI: 10.1016/j.ijbiomac.2023.125385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Pectin methylesterases (PMEs) are enzymes that play a critical role in modifying pectins, a class of complex polysaccharides in plant cell walls. These enzymes catalyze the removal of methyl ester groups from pectins, resulting in a change in the degree of esterification and consequently, the physicochemical properties of the polymers. PMEs are found in various plant tissues and organs, and their activity is tightly regulated in response to developmental and environmental factors. In addition to the biochemical modification of pectins, PMEs have been implicated in various biological processes, including fruit ripening, defense against pathogens, and cell wall remodelling. This review presents updated information on PMEs, including their sources, sequences and structural diversity, biochemical properties and function in plant development. The article also explores the mechanisms of PME action and the factors influencing enzyme activity. In addition, the review highlights the potential applications of PMEs in various industrial sectors related to biomass exploitation, food, and textile industries, with a focus on development of bioproducts based on eco-friendly and efficient industrial processes.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | | | - Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Henao L, Zade RSH, Restrepo S, Husserl J, Abeel T. Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms. BMC Genomics 2023; 24:143. [PMID: 36959546 PMCID: PMC10037901 DOI: 10.1186/s12864-023-09190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.
Collapse
Affiliation(s)
- Laura Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | | | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology - (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE, Delft, Netherlands.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Kumar R, Kumar S, Bulone V, Srivastava V. Biochemical Characterization and Molecular Insights into Substrate Recognition of Pectin Methylesterase from Phytophthora Infestans. Comput Struct Biotechnol J 2022; 20:6023-6032. [PMID: 36382180 PMCID: PMC9647417 DOI: 10.1016/j.csbj.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) are a class of carbohydrate-active enzymes that act on the O6-methyl ester groups of the homogalacturonan component of pectins, resulting in de-esterification of the substrate polymers and formation of pectate and methanol. PMEs occur in higher plants and microorganisms, including fungi, oomycetes, bacteria, and archaea. Microbial PMEs play a crucial role in pathogens’ invasion of plant tissues. Here, we have determined the structural and functional properties of Pi-PME, a PME from the oomycete plant pathogen Phytophthora infestans. This enzyme exhibits maximum activity at alkaline pH (8.5) and is active over a wide temperature range (25–50 °C). In silico determination of the structure of Pi-PME reveals that the protein consists essentially of three parallel β-sheets interconnected by loops that adopt an overall β-helix organization. The loop regions in the vicinity of the active site are extended compared to plant and fungal PMEs, but they are shorter than the corresponding bacterial and insect regions. Molecular dynamic simulations revealed that Pi-PME interacts most strongly with partially de-methylated homogalacturonans, suggesting that it preferentially uses this type of substrates. The results are compared and discussed with other known PMEs from different organisms, highlighting the specific features of Pi-PME.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park Campus, Sturt Road, South Australia 5042, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
13
|
Relationship of the methanol production, pectin and pectinase activity during apple wine fermentation and aging. Food Res Int 2022; 159:111645. [DOI: 10.1016/j.foodres.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
|
14
|
Synergistic action of thermophilic pectinases for pectin bioconversion into D-galacturonic acid. Enzyme Microb Technol 2022; 160:110071. [DOI: 10.1016/j.enzmictec.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
|
15
|
Han Y, Wang Y, Li J, Du J, Su Z. Evaluating the effect of bentonite, malic acid on pectin methyl esterase, methanol in fermented apple juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Amemiya HM, Goss TJ, Nye TM, Hurto RL, Simmons LA, Freddolino PL. Distinct heterochromatin-like domains promote transcriptional memory and silence parasitic genetic elements in bacteria. EMBO J 2022; 41:e108708. [PMID: 34961960 PMCID: PMC8804932 DOI: 10.15252/embj.2021108708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
There is increasing evidence that prokaryotes maintain chromosome structure, which in turn impacts gene expression. We recently characterized densely occupied, multi-kilobase regions in the E. coli genome that are transcriptionally silent, similar to eukaryotic heterochromatin. These extended protein occupancy domains (EPODs) span genomic regions containing genes encoding metabolic pathways as well as parasitic elements such as prophages. Here, we investigate the contributions of nucleoid-associated proteins (NAPs) to the structuring of these domains, by examining the impacts of deleting NAPs on EPODs genome-wide in E. coli and B. subtilis. We identify key NAPs contributing to the silencing of specific EPODs, whose deletion opens a chromosomal region for RNA polymerase binding at genes contained within that region. We show that changes in E. coli EPODs facilitate an extra layer of transcriptional regulation, which prepares cells for exposure to exotic carbon sources. Furthermore, we distinguish novel xenogeneic silencing roles for the NAPs Fis and Hfq, with the presence of at least one being essential for cell viability in the presence of domesticated prophages. Our findings reveal previously unrecognized mechanisms through which genomic architecture primes bacteria for changing metabolic environments and silences harmful genomic elements.
Collapse
Affiliation(s)
- Haley M Amemiya
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Thomas J Goss
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Taylor M Nye
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
- Present address:
Department of Molecular MicrobiologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| | - Rebecca L Hurto
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Peter L Freddolino
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
17
|
Yamada H, Kubo S, Kunishige Y, Azuma H, Kotani Y, Handa S, Nakazawa M, Ueda M, Hasegawa Y, Sakamoto T. Homogalacturonan and xylogalacturonan region specificity of self-cloning vector-expressed pectin methylesterases (AoPME1-3) in Aspergillus oryzae. Enzyme Microb Technol 2021; 150:109894. [PMID: 34489047 DOI: 10.1016/j.enzmictec.2021.109894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus oryzae is a safe microorganism that is commonly used in food production. We constructed a self-cloning vector capable of high expression in A. oryzae. Using the vector, three putative pectin methylesterase (PME) genes belonging to Carbohydrate Esterase family 8 derived from A. oryzae were expressed, and several characteristics of the gene products were examined. The effects of temperature and pH on the three enzymes (AoPME1, 2, and 3) were similar, with optimal reaction temperatures of 50 - 60 °C and optimal reaction pH range of 5 - 6. The specific activities of AoPME1, 2, and 3 for apple pectin were significantly different (34, 7,601, and 2 U/mg, respectively). When the substrate specificity was examined, AoPME1 showed high activity towards pectin derived from soybean and pea. Although AoPME2 showed little activity towards these pectins, it showed very high activity towards apple- and citrus-derived pectins. AoPME3 showed low specific activity towards all substrates tested. Sugar composition analysis revealed that apple- and citrus-derived pectins were rich in homogalacturonan, while soybean- and pea-derived pectins were rich in xylogalacturonan. When pea pectin was treated with endo-polygalacturonase or endo-xylogalacturonase in the presence of each PME, specific synergistic actions were observed (endo-polygalacturonase with AoPME1 or AoPME2 and endo-xylogalacturonase with AoPME1 or AoPME3). Thus, AoPME1 and AoPME3 hydrolyzed the methoxy group in xylogalacturonan. This is the first report of this activity in microbial enzymes. Our findings on the substrate specificity of PMEs should lead to the determination of the distribution of methoxy groups in pectin and the development of new applications in the field of food manufacturing.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- General Research Laboratory, Ozeki Corporation, Nishinomiya, Hyogo, 663-8227, Japan
| | - Shoko Kubo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yuika Kunishige
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hotaru Azuma
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yuka Kotani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Satoshi Handa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | | | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
18
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
19
|
Vibrational Spectroscopic Analyses and Imaging of the Early Middle Ages Hemp Bast Fibres Recovered from Lake Sediments. Molecules 2021; 26:molecules26051314. [PMID: 33804535 PMCID: PMC7957794 DOI: 10.3390/molecules26051314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Fourier Transform Infrared (FT-IR) spectroscopy and imaging combined with hierarchical cluster analysis (HCA) was applied to analyse biochemical properties of Early Middle Ages hemp (Cannabis sativa L.) bast fibres collected from lake bottom sediment of lake Słone. The examined plant macrofossil material constitutes residues of the hemp retting process that took place in the 7th–8th century. By comparison of three samples: untreated isolated bast fibres, and fibres incubated overnight at 4 and 37 °C, we were able to mimic the retting conditions. Using FT-IR qualitative and semi-quantitative assessment of the primary polysaccharides content, total protein content, and their spatial distribution was performed within the hemp fibres. The concentration of cellulose remained vastly unchanged, while the concentration of lignin and pectin was the highest in the untreated sample. The spatial distributions of compounds were heterogeneous in the untreated and 4 °C-incubated samples, and homogenous in the specimen processed at 37 °C. Interestingly, a higher amide content was detected in the latter sample indicating the highest degree of enzymatic degradation. In this study, we show that the spectroscopic methods allow for a non-destructive evaluation of biochemical composition of plant fibres without preparation, which can be an appropriate approach for studying ancient plant remains.
Collapse
|
20
|
A Computational Method to Predict Effects of Residue Mutations on the Catalytic Efficiency of Hydrolases. Catalysts 2021. [DOI: 10.3390/catal11020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With scientific and technological advances, growing research has focused on engineering enzymes that acquire enhanced efficiency and activity. Thereinto, computer-based enzyme modification makes up for the time-consuming and labor-intensive experimental methods and plays a significant role. In this study, for the first time, we collected and manually curated a data set for hydrolases mutation, including structural information of enzyme-substrate complexes, mutated sites and Kcat/Km obtained from vitro assay. We further constructed a classification model using the random forest algorithm to predict the effects of residue mutations on catalytic efficiency (increase or decrease) of hydrolases. This method has achieved impressive performance on a blind test set with the area under the receiver operating characteristic curve of 0.86 and the Matthews Correlation Coefficient of 0.659. Our results demonstrate that computational mutagenesis has an instructive effect on enzyme modification, which may expedite the design of engineering hydrolases.
Collapse
|
21
|
Safran J, Habrylo O, Cherkaoui M, Lecomte S, Voxeur A, Pilard S, Bassard S, Pau-Roblot C, Mercadante D, Pelloux J, Sénéchal F. New insights into the specificity and processivity of two novel pectinases from Verticillium dahliae. Int J Biol Macromol 2021; 176:165-176. [PMID: 33561463 DOI: 10.1016/j.ijbiomac.2021.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Abstract
Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.
Collapse
Affiliation(s)
- Josip Safran
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France; Current address: Groupe Soufflet, 10400 Nogent-sur-Seine, France
| | - Mehdi Cherkaoui
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France; Current address: UR 1258 BIA Biopolymères Interactions Assemblages, INRAE, 44316 Nantes Cedex 3, France
| | - Sylvain Lecomte
- Linéa Semences, 20 Avenue Saget, 60210 Grandvilliers, France
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France.
| |
Collapse
|
22
|
Duan CJ, Baslé A, Liberato MV, Gray J, Nepogodiev SA, Field RA, Juge N, Ndeh D. Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron. J Biol Chem 2020; 295:18625-18637. [PMID: 33097594 PMCID: PMC7939467 DOI: 10.1074/jbc.ra120.014974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/18/2020] [Indexed: 11/06/2022] Open
Abstract
Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II-derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.
Collapse
Affiliation(s)
- Cheng-Jie Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcelo Visona Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Joseph Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Didier Ndeh
- Quadram Institute Bioscience, Norwich, United Kingdom.
| |
Collapse
|
23
|
Nagar S, Talwar C, Haider S, Puri A, Ponnusamy K, Gupta M, Sood U, Bajaj A, Lal R, Kumar R. Phylogenetic Relationships and Potential Functional Attributes of the Genus Parapedobacter: A Member of Family Sphingobacteriaceae. Front Microbiol 2020; 11:1725. [PMID: 33013721 PMCID: PMC7500135 DOI: 10.3389/fmicb.2020.01725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
The genus Parapedobacter was established to describe a novel genus within the family Sphingobacteriaceae and derives its name from Pedobacter, with which it is shown to be evolutionarily related. Despite this, Parapedobacter and Pedobacter do not share very high 16S rRNA gene sequence similarities. Therefore, we hypothesized whether these substantial differences at the 16S rRNA gene level depict the true phylogeny or that these genomes have actually diverged. Thus, we performed genomic analysis of the four available genomes of Parapedobacter to better understand their phylogenomic position within family Sphingobacteriaceae. Our results demonstrated that Parapedobacter is more closely related to species of Olivibacter, as opposed to the genus Pedobacter. Further, we identified a significant class of enzymes called pectinases with potential industrial applications within the genomes of Parapedobacter luteus DSM 22899T and Parapedobacter composti DSM 22900T. These enzymes, specifically pectinesterases and pectate lyases, are presumed to have largely different catalytic activities based on very low sequence similarities to already known enzymes and thus may be exploited for industrial applications. We also determined the complete Bacteroides aerotolerance (Bat) operon (batA, batB, batC, batD, batE, hypothetical protein, moxR, and pa3071) within the genome of Parapedobacter indicus RK1T. This expands the definition of genus Parapedobacter to containing members that are able to tolerate oxygen stress using encoded oxidative stress responsive systems. By conducting a signal propagation network analysis, we determined that BatD, BatE, and hypothetical proteins are the major controlling hubs that drive the expression of Bat operon. As a key metabolic difference, we also annotated the complete iol operon within the P. indicus RK1T genome for utilization of all three stereoisomers of inositol, namely myo-inositol, scyllo-inositol, and 1D-chiro-inositol, which are abundant sources of organic phosphate found in soils. The results suggest that the genus Parapedobacter holds promising applications owing to its environmentally relevant genomic adaptations, which may be exploited in the future.
Collapse
Affiliation(s)
- Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Akshita Puri
- Department of Zoology, University of Delhi, Delhi, India.,P.G.T.D, Zoology, R.T.M Nagpur University, Nagpur, India
| | | | - Madhuri Gupta
- Department of Zoology, University of Delhi, Delhi, India
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, India.,The Energy and Resources Institute, New Delhi, India
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, Delhi, India.,Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India.,The Energy and Resources Institute, New Delhi, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, Delhi, India.,P.G. Department of Zoology, Magadh University, Bodh Gaya, India
| |
Collapse
|
24
|
Yadav A, Fernández-Baca D, Cannon SB. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Evol Bioinform Online 2020; 16:1176934320939943. [PMID: 32694909 PMCID: PMC7350399 DOI: 10.1177/1176934320939943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Protein domains can be regarded as sections of protein sequences capable of folding independently and performing specific functions. In addition to amino-acid level changes, protein sequences can also evolve through domain shuffling events such as domain insertion, deletion, or duplication. The evolution of protein domains can be studied by tracking domain changes in a selected set of species with known phylogenetic relationships. Here, we conduct such an analysis by defining domains as “features” or “descriptors,” and considering the species (target + outgroup) as instances or data-points in a data matrix. We then look for features (domains) that are significantly different between the target species and the outgroup species. We study the domain changes in 2 large, distinct groups of plant species: legumes (Fabaceae) and grasses (Poaceae), with respect to selected outgroup species. We evaluate 4 types of domain feature matrices: domain content, domain duplication, domain abundance, and domain versatility. The 4 types of domain feature matrices attempt to capture different aspects of domain changes through which the protein sequences may evolve—that is, via gain or loss of domains, increase or decrease in the copy number of domains along the sequences, expansion or contraction of domains, or through changes in the number of adjacent domain partners. All the feature matrices were analyzed using feature selection techniques and statistical tests to select protein domains that have significant different feature values in legumes and grasses. We report the biological functions of the top selected domains from the analysis of all the feature matrices. In addition, we also perform domain-centric gene ontology (dcGO) enrichment analysis on all selected domains from all 4 feature matrices to study the gene ontology terms associated with the significantly evolving domains in legumes and grasses. Domain content analysis revealed a striking loss of protein domains from the Fanconi anemia (FA) pathway, the pathway responsible for the repair of interstrand DNA crosslinks. The abundance analysis of domains found in legumes revealed an increase in glutathione synthase enzyme, an antioxidant required from nitrogen fixation, and a decrease in xanthine oxidizing enzymes, a phenomenon confirmed by previous studies. In grasses, the abundance analysis showed increases in domains related to gene silencing which could be due to polyploidy or due to enhanced response to viral infection. We provide a docker container that can be used to perform this analysis workflow on any user-defined sets of species, available at https://cloud.docker.com/u/akshayayadav/repository/docker/akshayayadav/protein-domain-evolution-project.
Collapse
Affiliation(s)
- Akshay Yadav
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | | | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
25
|
Prabhudev H, Sneharani AH. Extraction and characterization of pectin methylesterase from muskmelon biowaste for pectin remodeling. J Food Biochem 2020; 44:e13237. [PMID: 32478425 DOI: 10.1111/jfbc.13237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Abstract
Pectin methylesterase (PME) extracted from muskmelon was purified by anion exchange chromatography. The specific activity of purified enzyme was 152.01 U/mg and relative molecular weight was ~69,000 Da. Methylesterase was characterized for various physicochemical factors to designate its suitability in the food industry applications. The optimum temperature of the enzyme was 30°C and is thermally stable between the temperature ranges of 15-65°C with critical temperature for stability being >65°C. Thermal inactivation first order kinetics and thermodynamic parameters in temperature range (45-65°C) favors stability of PME and at 75°C complete inactivation of enzyme was observed indicating the unstable nature of enzyme over >65°C. Activation energy (Ea ) and Z values of thermal inactivation were found to be 100.108 kJ/mol and 2.05°C, respectively. About 0.1 M NaCl is essential for enzyme to attain the maximum activity. The enzyme lost activity in presence of divalent calcium (Ca2+ ) and magnesium (Mg2+ ) ions. PRACTICAL APPLICATIONS: Pectin methylesterase (EC3.1.1.11) are an important class of enzymes expressed in plants and microbes and they bring about the de-methylesterification on pectin substrate. Up to ~13% degree of esterification of pectin was observed with muskmelon PME enzyme treatment. The de-methylesterified pectin thus prepared was subjected for gelation in presence of Ca2+ ions and above 0.5% of demethylesterified pectin stable calcium pectate gels were produced. The study demonstrates the suitability of muskmelon PME extracted from biowaste in food applications with good gelling property.
Collapse
Affiliation(s)
- Hosamani Prabhudev
- Department of Studies in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, India
| | - A H Sneharani
- Department of Studies in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, India
| |
Collapse
|
26
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
27
|
Kanungo A, Bag BP. Structural insights into the molecular mechanisms of pectinolytic enzymes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
29
|
Fan HM, Liu BW, Ma FF, Sun X, Zheng CS. Proteomic profiling of root system development proteins in chrysanthemum overexpressing the CmTCP20 gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110175. [PMID: 31481217 DOI: 10.1016/j.plantsci.2019.110175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/20/2023]
Abstract
Plant root systems ensure the efficient absorption of water and nutrients and provide anchoring into the soil. Although root systems are a highly plastic set of traits that vary both between and among species, the basic root system morphology is controlled by inherent genetic factors. TCP20 has been identified as a key regulator of root development in plants, and yet its underlying mechanism has not been fully elucidated, especially in chrysanthemum. We found that overexpression of the CmTCP20 gene promoted both adventitious and lateral root development in chrysanthemum. To get further insight into the molecular mechanisms controlling root system development, we conducted a study employing tandem mass tag proteomic to characterize the differential root system development proteomes from CmTCP20-overexpressing and wild-type chrysanthemum root samples. Of the proteins identified, 234 proteins were found to be differentially abundant (>1.5-fold cut off, p < 0.05) in CmTCP20-overexpressing versus wild-type chrysanthemum root samples. Functional enrichment analysis indicated that the CmTCP20 gene may participate in "phytohormone signal transduction". Our findings provide a valuable perspective on the mechanisms of both adventitious and lateral root development via CmTCP20 modulation at the proteome level in chrysanthemum.
Collapse
Affiliation(s)
- Hong-Mei Fan
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Bo-Wen Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Fang-Fang Ma
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xia Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
30
|
Sista Kameshwar AK, Qin W. Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0230-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
31
|
The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins. mBio 2018; 9:mBio.01216-18. [PMID: 30154258 PMCID: PMC6113627 DOI: 10.1128/mbio.01216-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There are many different classes of proteins secreted from Phytophthora infestans that may influence or facilitate infection. Elucidating where and how they are secreted during infection is an important step toward developing methods to control their delivery processes. We used an inhibitor of conventional secretion to identify the following different classes of infection-associated extracellular proteins: cell wall-degrading and cell wall-modifying enzymes, microbe-associated molecular pattern-like proteins that may elicit immune responses, and apoplastic effectors that are predicted to suppress immunity. In contrast, secretion of a cytoplasmic effector that is translocated into host cells is nonconventional, as it is insensitive to inhibitor treatment. This evidence further supports the finding that proteins that are active in the apoplast and effector proteins that are active in the host cytoplasm are differentially secreted by P. infestans. Critically, it demonstrates that a disease-specific developmental structure, the haustorium, is a major secretion site for diverse protein classes during infection. The oomycete potato blight pathogen Phytophthora infestans secretes a diverse set of proteins to manipulate host plant immunity. However, there is limited knowledge about how and where they are secreted during infection. Here we used the endoplasmic reticulum (ER)-to-Golgi secretion pathway inhibitor brefeldin A (BFA) in combination with liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) to identify extracellular proteins from P. infestans that were conventionally secreted from in vitro-cultured hyphae. We identified 19 proteins with predicted signal peptides that potentially influence plant interactions for which secretion was attenuated by BFA. In addition to inhibition by the apoplastic effector EPIC1, a cysteine protease inhibitor, we show that secretion of the cell wall-degrading pectinesterase enzyme PE1 and the microbe-associated molecular pattern (MAMP)-like elicitin INF4 was inhibited by BFA in vitro and in planta, demonstrating that these proteins are secreted by the conventional, Golgi-mediated pathway. For comparison, secretion of a cytoplasmic RXLR (Arg-[any amino acid]-Leu-Arg) effector, Pi22926, was not inhibited by BFA. During infection, whereas INF4 accumulated outside the plant cell, RXLR effector Pi22926 entered the plant cell and accumulated in the nucleus. The P. infestans effectors, the PE1 enzyme, and INF4 were all secreted from haustoria, pathogen structures that penetrate the plant cell wall to form an intimate interaction with the host plasma membrane. Our findings show the haustorium to be a major site of both conventional and nonconventional secretion of proteins with diverse functions during infection.
Collapse
|
32
|
SAXS and homology modelling based structure characterization of pectin methylesterase a family 8 carbohydrate esterase from Clostridium thermocellum ATCC 27405. Arch Biochem Biophys 2018; 641:39-49. [DOI: 10.1016/j.abb.2018.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
|
33
|
Newman SL, Will WR, Libby SJ, Fang FC. The curli regulator CsgD mediates stationary phase counter-silencing of csgBA in Salmonella Typhimurium. Mol Microbiol 2018; 108:101-114. [PMID: 29388265 DOI: 10.1111/mmi.13919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/23/2022]
Abstract
Integration of horizontally acquired genes into transcriptional networks is essential for the regulated expression of virulence in bacterial pathogens. In Salmonella enterica, expression of such genes is repressed by the nucleoid-associated protein H-NS, which recognizes and binds to AT-rich DNA. H-NS-mediated silencing must be countered by other DNA-binding proteins to allow expression under appropriate conditions. Some genes that can be transcribed by RNA polymerase (RNAP) associated with the alternative sigma factor σS or the housekeeping sigma factor σ70 in vitro appear to be preferentially transcribed by σS in the presence of H-NS, suggesting that σS may act as a counter-silencer. To determine whether σS directly counters H-NS-mediated silencing and whether co-regulation by H-NS accounts for the σS selectivity of certain promoters, we examined the csgBA operon, which is required for curli fimbriae expression and is known to be regulated by both H-NS and σS . Using genetics and in vitro biochemical analyses, we found that σS is not directly required for csgBA transcription, but rather up-regulates csgBA via an indirect upstream mechanism. Instead, the biofilm master regulator CsgD directly counter-silences the csgBA promoter by altering the DNA-protein complex structure to disrupt H-NS-mediated silencing in addition to directing the binding of RNAP.
Collapse
Affiliation(s)
- S L Newman
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - W R Will
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - S J Libby
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - F C Fang
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle WA, USA
| |
Collapse
|
34
|
Abstract
Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The CAZy database, which classifies enzymes that assemble, modify, and break down carbohydrates and glycoconjugates, classifies all carbohydrate esterases into 16 families. This chapter is an overview of the research for nearly 50 years around the main groups of carbohydrate esterases dealing with the degradation of polysaccharides, their main biochemical and molecular traits, as well as its application for the synthesis of high added value esters.
Collapse
|
35
|
Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. mSphere 2017; 2:mSphere00408-17. [PMID: 29202039 PMCID: PMC5700374 DOI: 10.1128/msphere.00408-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate-Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales, Peronosporales, Pythiales, and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum, were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available.
Collapse
|
36
|
Sénéchal F, Habrylo O, Hocq L, Domon JM, Marcelo P, Lefebvre V, Pelloux J, Mercadante D. Structural and dynamical characterization of the pH-dependence of the pectin methylesterase-pectin methylesterase inhibitor complex. J Biol Chem 2017; 292:21538-21547. [PMID: 29109147 DOI: 10.1074/jbc.ra117.000197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) catalyze the demethylesterification of pectin, one of the main polysaccharides in the plant cell wall, and are of critical importance in plant development. PME activity generates highly negatively charged pectin and mutates the physiochemical properties of the plant cell wall such that remodeling of the plant cell can occur. PMEs are therefore tightly regulated by proteinaceous inhibitors (PMEIs), some of which become active upon changes in cellular pH. Nevertheless, a detailed picture of how this pH-dependent inhibition of PME occurs at the molecular level is missing. Herein, using an interdisciplinary approach that included homology modeling, MD simulations, and biophysical and biochemical characterizations, we investigated the molecular basis of PME3 inhibition by PMEI7 in Arabidopsis thaliana Our complementary approach uncovered how changes in the protonation of amino acids at the complex interface shift the network of interacting residues between intermolecular and intramolecular. These shifts ultimately regulate the stability of the PME3-PMEI7 complex and the inhibition of the PME as a function of the pH. These findings suggest a general model of how pH-dependent proteinaceous inhibitors function. Moreover, they enhance our understanding of how PMEs may be regulated by pH and provide new insights into how this regulation may control the physical properties and structure of the plant cell wall.
Collapse
Affiliation(s)
- Fabien Sénéchal
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Olivier Habrylo
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Ludivine Hocq
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jean-Marc Domon
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Paulo Marcelo
- the Plateforme ICAP, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Valérie Lefebvre
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France,
| | - Davide Mercadante
- the Heidelberg Institute for Theoretical Studies, Heidelberg-HITS, 16920 Heidelberg, Germany, and .,the IWR-Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017; 93:4331632. [DOI: 10.1093/femsec/fix127] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
|
38
|
Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1255-1266. [PMID: 28733198 DOI: 10.1016/j.bbapap.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Vladimir E Shevchik
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | - Rosie Shaw
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Richard W Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| | - James A Garnett
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| |
Collapse
|
39
|
Landis JB, Soltis DE, Soltis PS. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 2017; 18:475. [PMID: 28645249 PMCID: PMC5481933 DOI: 10.1186/s12864-017-3868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. RESULTS Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. CONCLUSIONS Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Department of Botany and Plant Sciences, University of California Riverside, 4412 Boyce Hall, 3401 Watkins Drive, Riverside, CA 92521 USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
40
|
Salas-Tovar JA, Flores-Gallegos AC, Contreras-Esquivel JC, Escobedo-García S, Morlett-Chávez JA, Rodríguez-Herrera R. Analytical Methods for Pectin Methylesterase Activity Determination: a Review. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0934-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Rajulapati V, Goyal A. Molecular Cloning, Expression and Characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum. Mol Biotechnol 2017; 59:128-140. [DOI: 10.1007/s12033-017-9997-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Katsaros GJ, Alexandrakis ZS, Taoukis PS. Kinetic Assessment of High Pressure Inactivation of Different Plant Origin Pectinmethylesterase Enzymes. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-016-9153-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
|
44
|
Attenuation and quantitation of virulence gene expression in quorum-quenched Dickeya chrysanthemi. Arch Microbiol 2016; 199:51-61. [PMID: 27496158 DOI: 10.1007/s00203-016-1276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/03/2016] [Accepted: 07/27/2016] [Indexed: 01/24/2023]
Abstract
N-Acyl-homoserine lactones (AHLs)-dependent quorum sensing (QS) system(s) is recruited by the soft rot bacterium Dickeya chrysanthemi for coordinating its social activities such as secretion of plant cell wall-degrading enzymes, while the main signal molecule and quantity dependence of virulence to QS in this bacterium have not been clarified. To do this end, the involvement of AHLs in African violet leaves and potato tuber maceration; swarming motility; pectate lyase and polygalacturonase enzymes production and in planta expression of virulence genes including pelE, pehX and pemA by electroporating two quorum-quenching vectors. The expression of two types of AHL-lactonase expressing vector caused dramatic decrease in swarming motility, production of pectinolytic enzymes and macerating of plant tissues. The maximum ability of quenching of QS in repression of D. chrysanthemi virulence was assessed quantitatively by q-RT-PCR, as expression of pelE, pehX and pemA genes were decreased 90.5-92.18 % in quenched cells. We also showed that virulence and pathogenicity of this bacterium was under the control of DHL-dependent QS system and that the existence of second DHL operating system is probable for this bacterium. Thus, this signal molecule would be the key point for future research to design DHL-specific lactonase enzymes using bioinformatics methods.
Collapse
|
45
|
Ma G, Zhu W, Liu Y. QM/MM studies on the calcium-assisted β-elimination mechanism of pectate lyase from bacillus subtilis. Proteins 2016; 84:1606-1615. [DOI: 10.1002/prot.25103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Guangcai Ma
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
| | - Wenyou Zhu
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
- College of Chemistry and Chemical Engineering; Xuzhou Institute of Technology; Xuzhou Jiangsu 221111 China
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
| |
Collapse
|
46
|
Hugouvieux-Cotte-Pattat N. Metabolism and Virulence Strategies in Dickeya-Host Interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:93-129. [PMID: 27571693 DOI: 10.1016/bs.pmbts.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dickeya, a genus of the Enterobacteriaceae family, all cause plant diseases. They are aggressive necrotrophs that have both a wide geographic distribution and a wide host range. As a plant pathogen, Dickeya has had to adapt to a vegetarian diet. Plants constitute a large storage of carbohydrates; they contain substantial amounts of soluble sugars and the plant cell wall is composed of long polysaccharides. Metabolic functions used by Dickeya in order to multiply during infection are essential aspects of pathogenesis. Dickeya is able to catabolize a large range of oligosaccharides and glycosides of plant origin. Glucose, fructose, and sucrose are all efficiently metabolized by the bacteria. To avoid the formation of acidic products, their final catabolism involves the butanediol pathway, a nonacidifying fermentative pathway. The assimilation of plant polysaccharides necessitates their prior cleavage into oligomers. Notably, the Dickeya virulence strategy is based on its capacity to dissociate the plant cell wall and, for this, the bacteria secrete an extensive set of polysaccharide degrading enzymes, composed mostly of pectinases. Since pectic polymers have a major role in plant tissue cohesion, pectinase action results in plant rot. The pectate lyases secreted by Dickeya play a double role as virulence factors and as nutrient providers. This dual function implies that the pel gene expression is regulated by both metabolic and virulence regulators. The control of sugar assimilation by specific or global regulators enables Dickeya to link its nutritional status to virulence, a coupling that optimizes the different phases of infection.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| |
Collapse
|
47
|
Hu L, Wu G, Hao C, Yu H, Tan L. Transcriptome and selected metabolite analyses reveal points of sugar metabolism in jackfruit (Artocarpus heterophyllus Lam.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:45-56. [PMID: 27181946 DOI: 10.1016/j.plantsci.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/16/2016] [Accepted: 04/16/2016] [Indexed: 05/18/2023]
Abstract
Artocarpus heterophyllus Lam., commonly known as jackfruit, produces the largest tree-borne fruit known thus far. The edible part of the fruit develops from the perianths, and contains many sugar-derived compounds. However, its sugar metabolism is poorly understood. A fruit perianth transcriptome was sequenced on an Illumina HiSeq 2500 platform, producing 32,459 unigenes with an average length of 1345nt. Sugar metabolism was characterized by comparing expression patterns of genes related to sugar metabolism and evaluating correlations with enzyme activity and sugar accumulation during fruit perianth development. During early development, high expression levels of acid invertases and corresponding enzyme activities were responsible for the rapid utilization of imported sucrose for fruit growth. The differential expression of starch metabolism-related genes and corresponding enzyme activities were responsible for starch accumulated before fruit ripening but decreased during ripening. Sucrose accumulated during ripening, when the expression levels of genes for sucrose synthesis were elevated and high enzyme activity was observed. The comprehensive transcriptome analysis presents fundamental information on sugar metabolism and will be a useful reference for further research on fruit perianth development in jackfruit.
Collapse
Affiliation(s)
- Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533, China.
| |
Collapse
|
48
|
Ruggieri V, Bostan H, Barone A, Frusciante L, Chiusano ML. Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. PLANT MOLECULAR BIOLOGY 2016; 91:397-412. [PMID: 27007138 DOI: 10.1007/s11103-016-0469-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Ascorbic acid is involved in a plethora of reactions in both plant and animal metabolism. It plays an essential role neutralizing free radicals and acting as enzyme co-factor in several reaction. Since humans are ascorbate auxotrophs, enhancing the nutritional quality of a widely consumed vegetable like tomato is a desirable goal. Although the main reactions of the ascorbate biosynthesis, recycling and translocation pathways have been characterized, the assignment of tomato genes to each enzymatic step of the entire network has never been reported to date. By integrating bioinformatics approaches, omics resources and transcriptome collections today available for tomato, this study provides an overview on the architecture of the ascorbate pathway. In particular, 237 tomato loci were associated with the different enzymatic steps of the network, establishing the first comprehensive reference collection of candidate genes based on the recently released tomato gene annotation. The co-expression analyses performed by using RNA-Seq data supported the functional investigation of main expression patterns for the candidate genes and highlighted a coordinated spatial-temporal regulation of genes of the different pathways across tissues and developmental stages. Taken together these results provide evidence of a complex interplaying mechanism and highlight the pivotal role of functional related genes. The definition of genes contributing to alternative pathways and their expression profiles corroborates previous hypothesis on mechanisms of accumulation of ascorbate in the later stages of fruit ripening. Results and evidences here provided may facilitate the development of novel strategies for biofortification of tomato fruit with Vitamin C and offer an example framework for similar studies concerning other metabolic pathways and species.
Collapse
Affiliation(s)
- Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| |
Collapse
|
49
|
Kirsch R, Heckel DG, Pauchet Y. How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:72-82. [PMID: 26899322 DOI: 10.1016/j.ibmb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 05/19/2023]
Abstract
Pectin is the most complex polysaccharide in nature and highly abundant in plant cell walls and middle lamellae, where it functions in plant growth and development. Phytopathogens utilize plant pectin as an energy source through enzyme-mediated degradation. These pectolytic enzymes include polygalacturonases (PGs) of the GH28 family and pectin methylesterases (PMEs) of the CE8 family. Recently, PGs were also identified in herbivorous insects of the distantly related plant bug, stick insect and Phytophaga beetle lineages. Unlike all other insects, weevils possess PMEs in addition to PGs. To investigate pectin digestion in insects and the role of PMEs in weevils, all PME and PG family members of the rice weevil Sitophilus oryzae were heterologously expressed and functionally characterized. Enzymatically active and inactive PG and PME family members were identified. The loss of activity can be explained by a lack of substrate binding correlating with substitutions of functionally important amino acid residues. We found subfunctionalization in both enzyme families, supported by expression pattern and substrate specificities as well as evidence for synergistic pectin breakdown. Our data suggest that the rice weevil might be able to use pectin as an energy source, and illustrates the potential of both PG and PME enzyme families to functionally diversify after horizontal gene transfer.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, Jena, 07745, Germany.
| |
Collapse
|
50
|
Kent LM, Loo TS, Melton LD, Mercadante D, Williams MAK, Jameson GB. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control. J Biol Chem 2015; 291:1289-306. [PMID: 26567911 DOI: 10.1074/jbc.m115.673152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged.
Collapse
Affiliation(s)
- Lisa M Kent
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Trevor S Loo
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Laurence D Melton
- From Riddet Institute and School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Davide Mercadante
- From Riddet Institute and Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, 69118 Heidelberg, Germany, and
| | - Martin A K Williams
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| | - Geoffrey B Jameson
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| |
Collapse
|