1
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Ahmad K, Spens AE. Separate Polycomb Response Elements control chromatin state and activation of the vestigial gene. PLoS Genet 2019; 15:e1007877. [PMID: 31425502 PMCID: PMC6730940 DOI: 10.1371/journal.pgen.1007877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 09/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Patterned expression of many developmental genes is specified by transcription factor gene expression, but is thought to be refined by chromatin-mediated repression. Regulatory DNA sequences called Polycomb Response Elements (PREs) are required to repress some developmental target genes, and are widespread in genomes, suggesting that they broadly affect developmental programs. While PREs in transgenes can nucleate trimethylation on lysine 27 of the histone H3 tail (H3K27me3), none have been demonstrated to be necessary at endogenous chromatin domains. This failure is thought to be due to the fact that most endogenous H3K27me3 domains contain many PREs, and individual PREs may be redundant. In contrast to these ideas, we show here that PREs near the wing selector gene vestigial have distinctive roles at their endogenous locus, even though both PREs are repressors in transgenes. First, a PRE near the promoter is required for vestigial activation and not for repression. Second, only the distal PRE contributes to H3K27me3, but even removal of both PREs does not eliminate H3K27me3 across the vestigial domain. Thus, endogenous chromatin domains appear to be intrinsically marked by H3K27me3, and PREs appear required to enhance this chromatin modification to high levels at inactive genes.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| | - Amy E. Spens
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| |
Collapse
|
3
|
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Orsi GA, Kasinathan S, Hughes KT, Saminadin-Peter S, Henikoff S, Ahmad K. High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Res 2014; 24:809-20. [PMID: 24668908 PMCID: PMC4009610 DOI: 10.1101/gr.163642.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polycomb-mediated chromatin repression modulates gene expression during development in metazoans. Binding of multiple sequence-specific factors at discrete Polycomb response elements (PREs) is thought to recruit repressive complexes that spread across an extended chromatin domain. To dissect the structure of PREs, we applied high-resolution mapping of nonhistone chromatin proteins in native chromatin of Drosophila cells. Analysis of occupied sites reveal interactions between transcription factors that stabilize Polycomb anchoring to DNA, and implicate the general transcription factor ADF1 as a novel PRE component. By comparing two Drosophila cell lines with differential chromatin states, we provide evidence that repression is accomplished by enhanced Polycomb recruitment both to PREs and to target promoters of repressed genes. These results suggest that the stability of multifactor complexes at promoters and regulatory elements is a crucial aspect of developmentally regulated gene expression.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
5
|
Cioffi S, Martucciello S, Fulcoli FG, Bilio M, Ferrentino R, Nusco E, Illingworth E. Tbx1 regulates brain vascularization. Hum Mol Genet 2013; 23:78-89. [PMID: 23945394 DOI: 10.1093/hmg/ddt400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin.
Collapse
|
6
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
7
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
8
|
Lo Sardo F, Lanzuolo C, Comoglio F, De Bardi M, Paro R, Orlando V. PcG-mediated higher-order chromatin structures modulate replication programs at the Drosophila BX-C. PLoS Genet 2013; 9:e1003283. [PMID: 23437006 PMCID: PMC3578750 DOI: 10.1371/journal.pgen.1003283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 12/14/2012] [Indexed: 12/03/2022] Open
Abstract
Polycomb group proteins (PcG) exert conserved epigenetic functions that convey maintenance of repressed transcriptional states, via post-translational histone modifications and high order structure formation. During S-phase, in order to preserve cell identity, in addition to DNA information, PcG-chromatin-mediated epigenetic signatures need to be duplicated requiring a tight coordination between PcG proteins and replication programs. However, the interconnection between replication timing control and PcG functions remains unknown. Using Drosophila embryonic cell lines, we find that, while presence of specific PcG complexes and underlying transcription state are not the sole determinants of cellular replication timing, PcG-mediated higher-order structures appear to dictate the timing of replication and maintenance of the silenced state. Using published datasets we show that PRC1, PRC2, and PhoRC complexes differently correlate with replication timing of their targets. In the fully repressed BX-C, loss of function experiments revealed a synergistic role for PcG proteins in the maintenance of replication programs through the mediation of higher-order structures. Accordingly, replication timing analysis performed on two Drosophila cell lines differing for BX-C gene expression states, PcG distribution, and chromatin domain conformation revealed a cell-type-specific replication program that mirrors lineage-specific BX-C higher-order structures. Our work suggests that PcG complexes, by regulating higher-order chromatin structure at their target sites, contribute to the definition and the maintenance of genomic structural domains where genes showing the same epigenetic state replicate at the same time. DNA replication is a tightly orchestrated process that precisely duplicates the entire genome during cell division to ensure that daughter cells inherit the same genetic information. The genome is replicated following a specific temporal program, where different segments replicate in distinct moments of the S phase correlating with active (early) and repressed (late) transcriptional state of resident genes. Moreover, replicating chromosomal domains are organized in the nuclear space, perhaps to guarantee the conservation of the same topological order in daughter cells. Epigenetic mechanisms, acting via chromatin organization, determine transcriptional states and must be maintained through cell division. Here, we analyzed in detail the link between Polycomb Group (PcG) proteins, higher-order chromatin structure, and replication timing in Drosophila. By using bioinformatic analyses combined with functional experiments, we show that Polycomb Repressive Complex 1 (PRC1), PRC2, and PhoRC differently correlate with replication timing of their targets and that transcription per se does not determine replication timing. Strikingly, by analyzing the PcG-regulated Bithorax Complex, where PRC1, PRC2, and PhoRC complexes are bound to repressed targets, we provide evidence for a synergistic role of PcG proteins in the modulation and maintenance of replication timing through the definition of specific, topologically distinct genomic domains.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Dulbecco Telethon Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Chiara Lanzuolo
- Dulbecco Telethon Institute, IRCCS Santa Lucia Foundation, Rome, Italy
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federico Comoglio
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Basel, Switzerland
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Renato Paro
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Valerio Orlando
- Dulbecco Telethon Institute, IRCCS Santa Lucia Foundation, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- * E-mail:
| |
Collapse
|
9
|
Popkova A, Bernardoni R, Diebold C, Van de Bor V, Schuettengruber B, González I, Busturia A, Cavalli G, Giangrande A. Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant. PLoS Genet 2012; 8:e1003159. [PMID: 23300465 PMCID: PMC3531469 DOI: 10.1371/journal.pgen.1003159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.
Collapse
Affiliation(s)
- Anna Popkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The first genes composing the Polycomb group (PcG) were identified 50 years ago in Drosophila melanogaster as essential developmental functions that regulate the correct segmental expression of homeotic selector genes. In the past two decades, what was initially described as a large family of chromatin-associated proteins involved in the maintenance of transcriptional repression to maintain cellular memory of homeotic genes turned out to be a highly conserved and sophisticated network of epigenetic regulators that play key roles in multiple aspects of cell physiology and identity, including regulation of all developmental genes, cell differentiation, stem and somatic cell reprogramming and response to environmental stimuli. These myriad phenotypes further spread interest for the contribution that PcG proteins revealed in the pathogenesis and progression of cancer and other complex diseases. Recent novel insights have increasingly clarified the molecular regulatory mechanisms at the basis of PcG-mediated epigenetic silencing and opened new visions about PcG functions in cells. In this review, we focus on the multiple modes of action of the PcG complexes and describe their biological roles.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | | |
Collapse
|
11
|
Lanzuolo C, Lo Sardo F, Orlando V. Concerted epigenetic signatures inheritance at PcG targets through replication. Cell Cycle 2012; 11:1296-300. [PMID: 22421150 PMCID: PMC3527071 DOI: 10.4161/cc.19710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polycomb group of proteins (PcG), by controlling gene silencing transcriptional programs through cell cycle, lock cell identity and memory. Recent chromatin genome-wide studies indicate that PcG targets sites are bivalent domains with overlapping repressive H3K27me3 and active H3K4me3 mark domains. During S phase, the stability of epigenetic signatures is challenged by the replication fork passage. Hence, specific mechanisms of epigenetic inheritance might be provided to preserve epigenome structures. Recently, we have identified a critical time window before replication, during which high levels of PcG binding and histone marks on BX-C PRE target sites set the stage for subsequent dilution of epigenomic components, allowing proper transmission of epigenetic signatures to the next generation. Here, we extended this analysis to promoter elements, showing the same mechanism of inheritance. Furthermore, to gain insight into the inheritance of PREs bivalent marks, we analyzed dynamics of H3K4me3 deposition, a mark that correlates with transcriptionally active chromatin. Likewise, we found an early S-phase enrichment of H3K4me3 mark preceding the replication-dependent dilution. This evidence suggests that all epigenetic marks are inherited simultaneously to ensure their correct propagation through replication and to protect the “bivalency” of PREs.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute at IRCCS Santa Lucia Foundation, Epigenetics and Genome Reprogramming, Rome, Italy.
| | | | | |
Collapse
|
12
|
Abstract
A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
Collapse
|
13
|
Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5. [PMID: 22056986 PMCID: PMC4082306 DOI: 10.1038/nature10492] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/17/2011] [Indexed: 12/22/2022]
Abstract
RNAi pathways have evolved as important modulators of gene expression that act in the cytoplasm by degrading RNA target molecules via the activity of short (21-30nt) RNAs1-6 RNAi components have been reported to play a role in the nucleus as they are involved in epigenetic regulation and heterochromatin formation7-10. However, although RNAi-mediated post-transcriptional silencing (PTGS) is well documented, mechanisms of RNAi-mediated transcriptional gene silencing (TGS) and in particular the role of RNAi components in chromatin, especially in higher eukaryotes, are still elusive. Here we show that key RNAi components Dicer-2 (Dcr2) and and Argonaute-2 (AGO2) AGO2 associate with chromatin, with strong preference for euchromatic, transcriptionally active loci and interact with core transcription machinery. Notably Dcr2 and AGO2 loss of function show that transcriptional defects are accompanied by perturbation of Pol II positioning on promoters. Further, both Dcr2 and Ago2 null mutations as well as missense mutations compromising the RNAi activity impair global Pol II dynamics upon heat shock. Finally, AGO2 RIP-seq experiments reveal that, AGO2 is strongly enriched in small-RNAs encompassing promoter as well as other parts of heat shock and other gene loci on both sense and antisense, with a strong bias for antisense, particularly after heat shock. Taken together our results reveal a new scenario in which Dcr2 and AGO2 are globally associated with transcriptionally active loci and may play a pivotal role in shaping the transcriptome by controlling RNA Pol II processivity.
Collapse
|
14
|
PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. PLoS Genet 2011; 7:e1002370. [PMID: 22072989 PMCID: PMC3207895 DOI: 10.1371/journal.pgen.1002370] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polycomb group (PcG) proteins are part of a conserved cell memory system that conveys epigenetic inheritance of silenced transcriptional states through cell division. Despite the considerable amount of information about PcG mechanisms controlling gene silencing, how PcG proteins maintain repressive chromatin during epigenome duplication is still unclear. Here we identified a specific time window, the early S phase, in which PcG proteins are recruited at BX-C PRE target sites in concomitance with H3K27me3 repressive mark deposition. Notably, these events precede and are uncoupled from PRE replication timing, which occurs in late S phase when most epigenetic signatures are reduced. These findings shed light on one of the key mechanisms for PcG-mediated epigenetic inheritance during S phase, suggesting a conserved model in which the PcG-dependent H3K27me3 mark is inherited by dilution and not by de novo methylation occurring at the time of replication.
Collapse
|
15
|
Nativio R, Sparago A, Ito Y, Weksberg R, Riccio A, Murrell A. Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum Mol Genet 2011; 20:1363-74. [PMID: 21282187 PMCID: PMC3049359 DOI: 10.1093/hmg/ddr018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/12/2011] [Indexed: 12/19/2022] Open
Abstract
Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF--cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF--cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF-cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF--cohesin binding sites surrounding the locus. In normal cells, lack of CTCF--cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF--cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively.
Collapse
Affiliation(s)
- Raffaella Nativio
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| | - Angela Sparago
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Yoko Ito
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| | - Rosanna Weksberg
- Program in Genetic and Genomic Biology and
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada and
| | - Andrea Riccio
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- Department of Environmental Science, University of Naples 2, Caserta, Italy
| | - Adele Murrell
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, LiKaShing Centre, Cambridge, UK
| |
Collapse
|
16
|
Chen F, Li Y, Wang L, Hu L. Knockdown of BMI-1 causes cell-cycle arrest and derepresses p16INK4a, HOXA9 and HOXC13 mRNA expression in HeLa cells. Med Oncol 2010; 28:1201-9. [DOI: 10.1007/s12032-010-9634-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
|
17
|
Chen L, Mupo A, Huynh T, Cioffi S, Woods M, Jin C, McKeehan W, Thompson-Snipes L, Baldini A, Illingworth E. Tbx1 regulates Vegfr3 and is required for lymphatic vessel development. ACTA ACUST UNITED AC 2010; 189:417-24. [PMID: 20439995 PMCID: PMC2867300 DOI: 10.1083/jcb.200912037] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Defects in lymphangiogenesis are added to the broad clinical manifestations of DiGeorge syndrome, caused by deletion of the T box transcription factor Tbx1. Lymphatic dysfunction causes several human diseases, and tumor lymphangiogenesis is implicated in cancer spreading. TBX1 is the major gene for DiGeorge syndrome, which is associated with multiple congenital anomalies. Mutation of Tbx1 in mice recapitulates the human disease phenotype. In this study, we use molecular, cellular, and genetic approaches to show, unexpectedly, that Tbx1 plays a critical role in lymphatic vessel development and regulates the expression of Vegfr3, a gene that is essential for lymphangiogenesis. Tbx1 activates Vegfr3 transcription in endothelial cells (ECs) by binding to an enhancer element in the Vegfr3 gene. Conditional deletion of Tbx1 in ECs causes widespread lymphangiogenesis defects in mouse embryos and perinatal death. Using the mesentery as a model tissue, we show that Tbx1 is not required for lymphatic EC differentiation; rather, it is required for the growth and maintenance of lymphatic vessels. Our findings reveal a novel pathway for the development of the lymphatic vessel network.
Collapse
Affiliation(s)
- Li Chen
- Program of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Roure V, Bantignies F. Polycomb group-mediated gene silencing mechanisms: stability versus flexibility. Epigenomics 2009; 1:301-18. [DOI: 10.2217/epi.09.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved chromatin factors that repress transcription of particular target genes in animals and plants. PcG proteins form multimeric complexes that act on their target genes through the regulation of post-translational histone modifications, the modulation of chromatin structure and chromosome organization. PcG proteins have long been considered as a cellular memory system that stably locks regulatory chromatin states for the whole lifespan of the organism. However, recent work on the genome-wide distribution of PcG components and their associated chromatin marks in vertebrate cells and Drosophila have challenged this view, revealing that PcG proteins confer dynamic transcriptional control of key developmental genes during cell differentiation and development.
Collapse
Affiliation(s)
- Virginie Roure
- Institut de Génétique Humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Brookes E, Pombo A. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep 2009; 10:1213-9. [PMID: 19834511 DOI: 10.1038/embor.2009.221] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/14/2009] [Indexed: 01/15/2023] Open
Abstract
The regulation of gene expression programmes is essential for the generation of diverse cell types during development and for adaptation to environmental signals. RNA polymerase II (RNAPII) transcribes genetic information and coordinates the recruitment of accessory proteins that are responsible for the establishment of active chromatin states and transcript maturation. RNAPII is post-translationally modified at active genes during transcription initiation, elongation and termination, and thereby recruits specific histone and RNA modifiers. RNAPII complexes are also located at silent genes in promoter-proximal paused configurations that provide dynamic transcriptional regulation downstream from initiation. In embryonic stem cells, silent developmental regulator genes that are repressed by Polycomb are associated with a form of RNAPII that can elongate through coding regions but that lacks the post-translational modifications that are important for coupling RNA synthesis to co-transcriptional maturation. Here, we discuss the mechanisms through which the transcription of silent genes might be dissociated from productive expression, and the sophisticated interplay between the transcriptional machinery, Polycomb repression and RNA processing.
Collapse
Affiliation(s)
- Emily Brookes
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
20
|
The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster. Gene 2009; 446:58-67. [PMID: 19632310 DOI: 10.1016/j.gene.2009.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/09/2009] [Accepted: 07/17/2009] [Indexed: 11/23/2022]
Abstract
The reversible phosphorylation-dephosphorylation of RNA polymerase II (Pol II) large subunit carboxyl terminal domain (CTD) during transcription cycles in eukaryotic cells generates signals for the steps of RNA synthesis and maturation. The major phosphatase specific for CTD dephosphorylation from yeast to mammals is the TFIIF-interacting CTD-phosphatase, Fcp1. We report here on the in vivo analysis of Fcp1 function in Drosophila using transgenic lines in which the phosphatase production is misregulated. Fcp1 function is essential throughout Drosophila development and ectopic up- or downregulation of fcp1 results in lethality. The fly Fcp1 binds to specific regions of the polytene chromosomes at many sites colocalized with Pol II. In accord with the strong evolutional conservation of Fcp1: (1) the Xenopus fcp1 can substitute the fly fcp1 function, (2) similarly to its S. pombe homologue, Drosophila melanogaster (Dm)Fcp1 interacts with the RPB4 subunit of Pol II, and (3) transient expression of DmFcp1 has a negative effect on transcription in mammalian cells. The in vivo experimental system described here suggests that fly Fcp1 is associated with the transcription engaged Pol II and offers versatile possibilities for studying this evolutionary conserved essential enzyme.
Collapse
|
21
|
Smith ST, Wickramasinghe P, Olson A, Loukinov D, Lin L, Deng J, Xiong Y, Rux J, Sachidanandam R, Sun H, Lobanenkov V, Zhou J. Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization. Dev Biol 2009; 328:518-28. [PMID: 19210964 DOI: 10.1016/j.ydbio.2008.12.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/26/2008] [Accepted: 12/22/2008] [Indexed: 01/27/2023]
Abstract
Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.
Collapse
Affiliation(s)
- Sheryl T Smith
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS One 2008; 3:e2235. [PMID: 18493325 PMCID: PMC2375055 DOI: 10.1371/journal.pone.0002235] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/28/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells. METHODOLOGY/PRINCIPAL FINDINGS We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-'rich' promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells. CONCLUSIONS Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone.
Collapse
|
23
|
Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595-603. [PMID: 18350319 DOI: 10.1007/s00438-008-0336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.
Collapse
Affiliation(s)
- Gabriella Kozma
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary
| | | | | |
Collapse
|
24
|
The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila. PLoS One 2008; 3:e1658. [PMID: 18286205 PMCID: PMC2243016 DOI: 10.1371/journal.pone.0001658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/21/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.
Collapse
|
25
|
Maksimenko OG, Georgiev PG. A study of barrier activity of 1A2 insulator of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2007; 416:240-2. [PMID: 18064821 DOI: 10.1134/s1607672907050031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- O G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | |
Collapse
|
26
|
Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol Cell Biol 2007; 28:1018-28. [PMID: 18039844 DOI: 10.1128/mcb.01136-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polycomb group (PcG) proteins act as positive regulators of cell proliferation. Ring1B is a PcG gene essential for embryonic development, but its contribution to cell turnover in regenerating tissues in not known. Here, we have generated a conditional mouse mutant line to study the Ring1B role in adult hematopoiesis. Mutant mice developed a hypocellular bone marrow that paradoxically contained an enlarged, hyperproliferating compartment of immature cells, with an intact differentiation potential. These alterations were associated with differential upregulation of cyclin D2, which occurred in all mutant bone marrow cells, and of p16(Ink4a), observed only in the differentiated compartment. Concurrent inactivation of Ink4a rescued the defective proliferation of maturing cells but did not affect the hyperproliferative activity of progenitors and resulted in a shortening of the onset of lymphomas induced by Ink4a inactivation. These data show that Ring1B restricts the progenitors' proliferation and promotes the proliferation of their maturing progeny by selectively altering the expression pattern of cell cycle regulators along hematopoietic differentiation. The novel antiproliferative role of Ring1B's downregulation of a cell cycle activator may play an important role in the tight control of hematopoietic cell turnover.
Collapse
|
27
|
Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc Natl Acad Sci U S A 2007; 104:16615-20. [PMID: 17921257 DOI: 10.1073/pnas.0701538104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Drosophila Polycomb group (PcG) and Trithorax group (TrxG) proteins are responsible for the maintenance of stable transcription patterns of many developmental regulators, such as the homeotic genes. We have used ChIP-on-chip to compare the distribution of several PcG/TrxG proteins, as well as histone modifications in active and repressed genes across the two homeotic complexes ANT-C and BX-C. Our data indicate the colocalization of the Polycomb repressive complex 1 (PRC1) with Trx and the DNA binding protein Pleiohomeotic (Pho) at discrete sequence elements as well as significant chromatin assembly differences in active and inactive regions. Trx binds to the promoters of active genes and noncoding transcripts. Most strikingly, in the active state, Pho covers extended chromatin domains over many kilobases. This feature of Pho, observed on many polytene chromosome puffs, reflects a previously undescribed function. At the hsp70 gene, we demonstrate in mutants that Pho is required for transcriptional recovery after heat shock. Besides its presumptive function in recruiting PcG complexes to their site of action, our results now uncover that Pho plays an additional role in the repression of already induced genes.
Collapse
|
28
|
Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 2007; 9:1167-74. [PMID: 17828248 DOI: 10.1038/ncb1637] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 07/26/2007] [Indexed: 12/12/2022]
Abstract
In Drosophila, the function of the Polycomb group genes (PcGs) and their target sequences (Polycomb response elements (PREs)) is to convey mitotic heritability of transcription programmes--in particular, gene silencing. As part of the mechanisms involved, PREs are thought to mediate this transcriptional memory function by building up higher-order structures in the nucleus. To address this question, we analysed in vivo the three-dimensional structure of the homeotic locus bithorax complex (BX-C) by combining chromosome conformation capture (3C) with fluorescent in situ hybridization (FISH) and FISH immunostaining (FISH-I) analysis. We found that, in the repressed state, all major elements that have been shown to bind PcG proteins, including PREs and core promoters, interact at a distance, giving rise to a topologically complex structure. We show that this structure is important for epigenetic silencing of the BX-C, as we find that major changes in higher-order structures must occur to stably maintain alternative transcription states, whereas histone modification and reduced levels of PcG proteins determine an epigenetic switch that is only partially heritable.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute at IGB CNR, Epigenetics and Genome Reprogramming, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
29
|
de la Cruz CC, Kirmizis A, Simon MD, Isono KI, Koseki H, Panning B. The Polycomb Group Protein SUZ12 regulates histone H3 lysine 9 methylation and HP1α distribution. Chromosome Res 2007; 15:299-314. [PMID: 17406994 DOI: 10.1007/s10577-007-1126-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/25/2022]
Abstract
Regulation of histone methylation is critical for proper gene expression and chromosome function. Suppressor of Zeste 12 (SUZ12) is a requisite member of the EED/EZH2 histone methyltransferase complexes, and is required for full activity of these complexes in vitro. In mammals and flies, SUZ12/Su(z)12 is necessary for trimethylation of histone H3 on lysine 27 (H3K27me3) on facultative heterochromatin. However, Su(z)12 is unique among Polycomb Group Proteins in that Su(z)12 mutant flies exhibit gross defects in position effect variegation, suggesting a role for Su(z)12 in constitutive heterochromatin formation. We investigated the role of Suz12 in constitutive heterochromatin and discovered that Suz12 is required for histone H3 lysine 9 tri-methylation (H3K9me3) in differentiated but not undifferentiated mouse embryonic stem cells. Knockdown of SUZ12 in human cells caused a reduction in H3K27me3 and H3K9me3, and altered the distribution of HP1 alpha. In contrast, EZH2 knockdown caused loss of H3K27me3 but not H3K9me3, indicating that SUZ12 regulates H3-K9 methylation in an EZH2-independent fashion. This work uncovers a role for SUZ12 in H3-K9 methylation.
Collapse
Affiliation(s)
- Cecile C de la Cruz
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sessa L, Breiling A, Lavorgna G, Silvestri L, Casari G, Orlando V. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA (NEW YORK, N.Y.) 2007; 13:223-39. [PMID: 17185360 PMCID: PMC1781374 DOI: 10.1261/rna.266707] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/09/2006] [Indexed: 05/13/2023]
Abstract
The ratio of noncoding to protein coding DNA rises with the complexity of the organism, culminating in nearly 99% of nonprotein coding DNA in humans. Nevertheless, a large portion of these regions is transcribed, creating the alleged paradox that noncoding RNA (ncRNA) represents the largest output of the human genome. Such a complex scenario may include epigenetic mechanisms where ncRNAs would be involved in chromatin regulation. We have investigated the intergenic, noncoding transcriptomes of mammalian HOX clusters. We show that "opposite strand transcription" from the intergenic spacer regions in the human HOXA cluster correlates with the activity state of adjacent HOXA genes. This noncoding transcription is regulated by the retinoic acid morphogen and follows the colinear activation pattern of the cluster. Opening of the cluster at sites of activation of intergenic transcripts is accompanied by changes in histone modifications and a loss of interaction with Polycomb group (PcG) repressive complexes. We propose that noncoding transcription is of fundamental importance for the opening and maintenance of the active state of HOX clusters.
Collapse
Affiliation(s)
- Luca Sessa
- Dulbecco Telethon Institute, Naples, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Breiling A, Sessa L, Orlando V. Biology of Polycomb and Trithorax Group Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
32
|
Papp B, Müller J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 2006; 20:2041-54. [PMID: 16882982 PMCID: PMC1536056 DOI: 10.1101/gad.388706] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 05/24/2006] [Indexed: 01/17/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins act as antagonistic regulators to maintain transcriptional OFF and ON states of HOX and other target genes. To study the molecular basis of PcG/trxG control, we analyzed the chromatin of the HOX gene Ultrabithorax (Ubx) in Ubx(OFF)and Ubx(ON)cells purified from developing Drosophila. We find that PcG protein complexes PhoRC, PRC1, and PRC2 and the Trx protein are all constitutively bound to Polycomb response elements (PREs) in the OFF and ON state. In contrast, the trxG protein Ash1 is only bound in the ON state; not at PREs but downstream of the transcription start site. In the OFF state, we find extensive trimethylation at H3-K27, H3-K9, and H4-K20 across the entire Ubx gene; i.e., throughout the upstream control, promoter, and coding region. In the ON state, the upstream control region is also trimethylated at H3-K27, H3-K9, and H4-K20, but all three modifications are absent in the promoter and 5' coding region. Our analyses of mutants that lack the PcG histone methyltransferase (HMTase) E(z) or the trxG HMTase Ash1 provide strong evidence that differential histone lysine trimethylation at the promoter and in the coding region confers transcriptional ON and OFF states of Ubx. In particular, our results suggest that PRE-tethered PcG protein complexes act over long distances to generate Pc-repressed chromatin that is trimethylated at H3-K27, H3-K9, and H4-K20, but that the trxG HMTase Ash1 selectively prevents this trimethylation in the promoter and coding region in the ON state.
Collapse
Affiliation(s)
- Bernadett Papp
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
33
|
Bantignies F, Cavalli G. Cellular memory and dynamic regulation of polycomb group proteins. Curr Opin Cell Biol 2006; 18:275-83. [PMID: 16650749 DOI: 10.1016/j.ceb.2006.04.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Accepted: 04/04/2006] [Indexed: 12/31/2022]
Abstract
Epigenetic components drive the inheritance of transcriptional programs. This cellular memory is crucial for the stable maintenance of cell fates throughout development. Polycomb group (PcG) proteins are central players in various epigenetic phenomena, such as the maintenance of Hox expression patterns from fruit flies to humans, X chromosome inactivation and imprinting in mammals. This cellular memory system involves changes at the chromatin level, through histone modifications and DNA methylation, as well as at the level of the nuclear architecture. Surprisingly, in addition to their role in the stable maintenance of repressive states, PcG factors are involved in more dynamic processes such as cellular proliferation and plasticity.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | |
Collapse
|
34
|
Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B, van Lohuizen M. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 2006; 38:694-9. [PMID: 16628213 DOI: 10.1038/ng1792] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/31/2006] [Indexed: 12/22/2022]
Abstract
Polycomb group (PcG) proteins maintain transcriptional repression of developmentally important genes and have been implicated in cell proliferation and stem cell self-renewal. We used a genome-wide approach to map binding patterns of PcG proteins (Pc, esc and Sce) in Drosophila melanogaster Kc cells. We found that Pc associates with large genomic regions of up to approximately 150 kb in size, hereafter referred to as 'Pc domains'. Sce and esc accompany Pc in most of these domains. PcG-bound chromatin is trimethylated at histone H3 Lys27 and is generally transcriptionally silent. Furthermore, PcG proteins preferentially bind to developmental genes. Many of these encode transcriptional regulators and key components of signal transduction pathways, including Wingless, Hedgehog, Notch and Delta. We also identify several new putative functions of PcG proteins, such as in steroid hormone biosynthesis. These results highlight the extensive involvement of PcG proteins in the coordination of development through the formation of large repressive chromatin domains.
Collapse
Affiliation(s)
- Bas Tolhuis
- Division of Molecular Genetics, and the Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Chubb JR, Bloomfield G, Xu Q, Kaller M, Ivens A, Skelton J, Turner BM, Nellen W, Shaulsky G, Kay RR, Bickmore WA, Singer RH. Developmental timing in Dictyostelium is regulated by the Set1 histone methyltransferase. Dev Biol 2006; 292:519-32. [PMID: 16469305 DOI: 10.1016/j.ydbio.2005.12.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
Histone-modifying enzymes have enormous potential as regulators of the large-scale changes in gene expression occurring during differentiation. It is unclear how different combinations of histone modification coordinate regimes of transcription during development. We show that different methylation states of lysine 4 of histone H3 (H3K4) mark distinct developmental phases of the simple eukaryote, Dictyostelium. We demonstrate that the enzyme responsible for all mono, di and tri-methylation of H3K4 is the Dictyostelium homolog of the Set1 histone methyltransferase. In the absence of Set1, cells display unusually rapid development, characterized by precocious aggregation of amoebae into multicellular aggregates. Early differentiation markers are abundantly expressed in growing set1 cells, indicating the differentiation program is ectopically activated during growth. This phenotype is caused specifically by the loss of Set1 catalytic activity. Set1 mutants induce premature differentiation in wild-type cells, indicating Set1 regulates production of an extra-cellular factor required for the correct perception of growth conditions. Microarray analysis of the set1 mutants reveals genomic clustering of mis-expressed genes, suggesting a requirement for Set1 in the regulation of chromatin-mediated events at gene clusters.
Collapse
Affiliation(s)
- Jonathan R Chubb
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2005; 107:2170-9. [PMID: 16293602 PMCID: PMC1895717 DOI: 10.1182/blood-2005-09-3585] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism responsible for a decline of stem cell functioning after replicative stress remains unknown. We used mouse embryonic fibroblasts (MEFs) and hematopoietic stem cells (HSCs) to identify genes involved in the process of cellular aging. In proliferating and senescent MEFs one of the most differentially expressed transcripts was Enhancer of zeste homolog 2 (Ezh2), a Polycomb group protein (PcG) involved in histone methylation and deacetylation. Retroviral overexpression of Ezh2 in MEFs resulted in bypassing of the senescence program. More importantly, whereas normal HSCs were rapidly exhausted after serial transplantations, overexpression of Ezh2 completely conserved long-term repopulating potential. Animals that were reconstituted with 3 times serially transplanted control bone marrow cells all died due to hematopoietic failure. In contrast, similarly transplanted Ezh2-overexpressing stem cells restored stem cell quality to normal levels. In a "genetic genomics" screen, we identified novel putative Ezh2 target or partner stem cell genes that are associated with chromatin modification. Our data suggest that stabilization of the chromatin structure preserves HSC potential after replicative stress.
Collapse
Affiliation(s)
- Leonie M Kamminga
- Department of Cell Biology, Section Stem Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cernilogar FM, Orlando V. Epigenome programming by Polycomb and Trithorax proteins. Biochem Cell Biol 2005; 83:322-31. [PMID: 15959558 DOI: 10.1139/o05-040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins work, respectively, to maintain repressed or active transcription states of developmentally regulated genes through cell division. Data accumulated in the recent years have increased our understanding of the mechanisms by which PcG and TrxG proteins regulate gene expression. The discovery that histone methylation can serve as a specific mark for PcG and TrxG complexes has provided new insight into the mechanistic function of this cell-memory system.
Collapse
|
38
|
Ficz G, Heintzmann R, Arndt-Jovin DJ. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 2005; 132:3963-76. [PMID: 16079157 DOI: 10.1242/dev.01950] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands).
PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo.
We determined the translational diffusion constants of PcG proteins,dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time,ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.
Collapse
Affiliation(s)
- Gabriella Ficz
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37070 Göttingen, Germany
| | | | | |
Collapse
|
39
|
Canudas S, Pérez S, Fanti L, Pimpinelli S, Singh N, Hanes SD, Azorín F, Espinás ML. dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucleic Acids Res 2005; 33:4857-64. [PMID: 16135462 PMCID: PMC1196206 DOI: 10.1093/nar/gki776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3–HDAC co-repressor complex. GAGA–dSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function.
Collapse
Affiliation(s)
| | | | - Laura Fanti
- Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza’00185 Rome, Italy
| | - Sergio Pimpinelli
- Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza’00185 Rome, Italy
| | - Navjot Singh
- New York State Department of Health, Wadsworth Center, State University of New YorkAlbany, NY 12208, USA
| | - Steven D. Hanes
- New York State Department of Health, Wadsworth Center, State University of New YorkAlbany, NY 12208, USA
| | - Fernando Azorín
- To whom correspondence should be addressed. Tel: +34 93 4034958; Fax: +34 93 4034979;
| | | |
Collapse
|
40
|
Raaphorst FM. Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet 2005; 14 Spec No 1:R93-R100. [PMID: 15809278 DOI: 10.1093/hmg/ddi111] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes belonging to the Polycomb-group (PcG) are epigenetic gene silencers with a vital role in the maintenance of cell identity. They contribute to regulation of various processes in both embryos and adults, including the cell cycle and lymphopoiesis. A growing body of work has linked human PcG genes to various hematological and epithelial cancers, identifying novel mechanisms of malignant transformation and paving the way to development of new cancer treatments and identification of novel diagnostic markers. This review addresses the current insights in the role of PcG genes in development of human malignancies.
Collapse
Affiliation(s)
- Frank M Raaphorst
- Department of Pathology, VU Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Raaphorst FM. Of Mice, Flies, and Man: The Emerging Role of Polycomb-Group Genes in Human Malignant Lymphomas. Int J Hematol 2005; 81:281-7. [PMID: 15914355 DOI: 10.1532/ijh97.05023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genes belonging to the Polycomb group (PcG) are responsible for the maintenance of cell identity and are directly involved in epigenetic gene silencing. They perform a vital role in the regulation of embryogenesis but also contribute to various adult processes, including regulation of the cell cycle and lymphopoiesis. Experimental model systems have demonstrated that enhanced expression of individual PcG genes, such as Bmi1, results in the development of B-cell and T-cell lymphomas. In humans, a growing body of work has now linked human PcG genes to various hematologic and epithelial cancers. This review focuses on the emerging role of PcG genes in the development of human malignant lymphomas.
Collapse
Affiliation(s)
- Frank M Raaphorst
- Department of Pathology, VU Medical Center, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Abstract
Nucleosomal histones can be methylated in vivo at multiple residues and defined methylation patterns are related to distinct functional readouts of chromosomal DNA. Histone methylation has emerged as an important post-translational modification involved in transcriptional regulation and genome integrity. Recent progress in determining the cis and trans determinants of this process revealed multiple roles for histone methylation in epigenetic memory of active and silent states. The analysis of imprinted, X-linked and heterochromatic sequences disclosed mechanistic similarities for heritable transcriptional repression, pointing to a common mode of action. Moreover, the view of histone methylation as a stable modification has recently been challenged by studies revealing a number of pathways that are capable of removing histone methylation. Thus, in addition to having great in vivo complexity, this modification appears more dynamic then was previously thought.
Collapse
Affiliation(s)
- Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.
| | | |
Collapse
|
43
|
Srinivasan S, Armstrong JA, Deuring R, Dahlsveen IK, McNeill H, Tamkun JW. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 2005; 132:1623-35. [PMID: 15728673 DOI: 10.1242/dev.01713] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Drosophila trithorax group gene kismet (kis) was identified in a screen for extragenic suppressors of Polycomb (Pc) and subsequently shown to play important roles in both segmentation and the determination of body segment identities. One of the two major proteins encoded by kis (KIS-L) is related to members of the SWI2/SNF2 and CHD families of ATP-dependent chromatin-remodeling factors. To clarify the role of KIS-L in gene expression, we examined its distribution on larval salivary gland polytene chromosomes. KIS-L is associated with virtually all sites of transcriptionally active chromatin in a pattern that largely overlaps that of RNA Polymerase II (Pol II). The levels of elongating Pol II and the elongation factors SPT6 and CHD1 are dramatically reduced on polytene chromosomes from kis mutant larvae. By contrast, the loss of KIS-L function does not affect the binding of PC to chromatin or the recruitment of Pol II to promoters. These data suggest that KIS-L facilitates an early step in transcriptional elongation by Pol II.
Collapse
Affiliation(s)
- Shrividhya Srinivasan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|