1
|
Lista MJ, Jousset AC, Cheng M, Saint-André V, Perrot E, Rodrigues M, Di Primo C, Gadelle D, Toccafondi E, Segeral E, Berlioz-Torrent C, Emiliani S, Mergny JL, Lavigne M. DNA topoisomerase 1 represses HIV-1 promoter activity through its interaction with a guanine quadruplex present in the LTR sequence. Retrovirology 2023; 20:10. [PMID: 37254203 DOI: 10.1186/s12977-023-00625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.
Collapse
Affiliation(s)
- María José Lista
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anne-Caroline Jousset
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Université de Strasbourg, CNRS UPR 9002, Architecture et réactivité de l'ARN, 67000, Strasbourg, France
| | - Mingpan Cheng
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Violaine Saint-André
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015, Paris, France
| | - Elouan Perrot
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France
| | - Melissa Rodrigues
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France
| | - Carmelo Di Primo
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
| | - Danielle Gadelle
- Institut de Biologie Integrative de la Cellule, CNRS, Université Paris-Saclay, 91198, Gif Sur Yvette, Cedex, France
| | - Elenia Toccafondi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
- Université de Strasbourg, CNRS UPR 9002, Architecture et réactivité de l'ARN, 67000, Strasbourg, France
| | - Emmanuel Segeral
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Stéphane Emiliani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Jean-Louis Mergny
- CNRS UMR 5320, INSERM U1212, ARNA, Univ. Bordeaux, IECB, 33000, Bordeaux, France
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Marc Lavigne
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France.
- Institut Pasteur, Departement of Virology, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
2
|
Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020; 21:ijms21124504. [PMID: 32599919 PMCID: PMC7349988 DOI: 10.3390/ijms21124504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes—the topoisomerases (TOP)—have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors—GapR and HMGA2—from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.
Collapse
|
3
|
Vasaturo M, Cotugno R, Fiengo L, Vinegoni C, Dal Piaz F, De Tommasi N. The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells. Sci Rep 2018; 8:16735. [PMID: 30425290 PMCID: PMC6233161 DOI: 10.1038/s41598-018-35088-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 11/15/2022] Open
Abstract
The bioactive plant diterpene oridonin displays important pharmacological activities and is widely used in traditional Chinese medicine; however, its molecular mechanism of action is still incompletely described. In vitro and in vivo data have demonstrated anti-tumor activity of oridonin and its ability to interfere with several cell pathways; however, presently only the molecular chaperone HSP70 has been identified as a direct potential target of this compound. Here, using a combination of different proteomic approaches, innovative Cellular Thermal Shift Assay (CETSA) experiments, and classical biochemical methods, we demonstrate that oridonin interacts with Nucleolin, effectively modulating the activity of this multifunctional protein. The ability of oridonin to target Nucleolin and/or HSP70 could account for the bioactivity profile of this plant diterpene. Recently, Nucleolin has attracted attention as a druggable target, as its diverse functions are implicated in pathological processes such as cancer, inflammation, and viral infection. However, up to now, no small molecule as Nucleolin binders has been reported, thus our finding represents the first evidence of Nucleolin modulation by a small inhibitor.
Collapse
Affiliation(s)
- Michele Vasaturo
- Università degli Studi di Salerno, Department of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
- Università degli Studi di Salerno, Ph. D. School of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
| | - Roberta Cotugno
- Università degli Studi di Salerno, Department of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
| | - Lorenzo Fiengo
- Università degli Studi di Salerno, Department of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
- Università degli Studi di Salerno, Ph. D. School of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
| | - Claudio Vinegoni
- Harvard Medical School, MGH Center for Systems Biology, 185 Cambridge Steet, 02144, Boston, MA, USA
| | - Fabrizio Dal Piaz
- Università degli Studi di Salerno, Department of Medicine and Surgery, Via S. Allende, 84081, Baronissi, (SA), Italy.
| | - Nunziatina De Tommasi
- Università degli Studi di Salerno, Department of Pharmacy, Via Giovanni Paolo II, 84084, Fisciano, (SA), Italy
| |
Collapse
|
4
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Cheng Y, Zhao G, Zhang S, Nigim F, Zhou G, Yu Z, Song Y, Chen Y, Li Y. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin. PLoS One 2016; 11:e0167094. [PMID: 27907160 PMCID: PMC5132312 DOI: 10.1371/journal.pone.0167094] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Siwen Zhang
- Department of Endocrine, The First Hospital of Jilin University, Changchun, China
| | - Fares Nigim
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Guangtong Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Scott DD, Oeffinger M. Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair. Biochem Cell Biol 2016; 94:419-432. [PMID: 27673355 DOI: 10.1139/bcb-2016-0068] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus represents a highly multifunctional intranuclear organelle in which, in addition to the canonical ribosome assembly, numerous processes such as transcription, DNA repair and replication, the cell cycle, and apoptosis are coordinated. The nucleolus is further a key hub in the sensing of cellular stress and undergoes major structural and compositional changes in response to cellular perturbations. Numerous nucleolar proteins have been identified that, upon sensing nucleolar stress, deploy additional, non-ribosomal roles in the regulation of varied cell processes including cell cycle arrest, arrest of DNA replication, induction of DNA repair, and apoptosis, among others. The highly abundant proteins nucleophosmin (NPM1) and nucleolin (NCL) are two such factors that transit to the nucleoplasm in response to stress, and participate directly in the repair of numerous different DNA damages. This review discusses the contributions made by NCL and (or) NPM1 to the different DNA repair pathways employed by mammalian cells to repair DNA insults, and examines the implications of such activities for the regulation, pathogenesis, and therapeutic targeting of NPM1 and NCL.
Collapse
Affiliation(s)
- Daniel D Scott
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
| | - Marlene Oeffinger
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
- c Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 2015; 10:e0130546. [PMID: 26103640 PMCID: PMC4478026 DOI: 10.1371/journal.pone.0130546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization. METHODS We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts. RESULTS Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype. CONCLUSIONS IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.
Collapse
Affiliation(s)
- Yunyun Su
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tetsuya Nishimoto
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
9
|
Abstract
Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (“steric exclusion”). In contrast, large T antigen (T-ag), the replicative DNA helicase of the Simian Virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here, we use single-molecule and ensemble assays to show that T-ag assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3′ to 5′ direction. Unexpectedly, T-ag unwinds DNA past a DNA-protein crosslink on the translocation strand, suggesting that the T-ag ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms while revealing a new level of plasticity in their interactions with DNA damage.
Collapse
|
10
|
Abstract
Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | | |
Collapse
|
11
|
Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol 2011; 4:267-75. [PMID: 21980556 DOI: 10.4161/cib.4.3.14884] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023] Open
Abstract
Nucleolin is a multifunctional phosphoprotein ubiquitously distributed in the nucleolus, nucleus and cytoplasm of the cell. Nucleolin has a bipartite nuclear localization signal sequence and is conserved in animals, plants and yeast. Its levels are correlated with the rate of functional activity of the nucleolus in exponentially growing cells. Nucleolin contains intrinsic DNA and RNA helicase, nucleic-acid-dependent ATPase and self-cleaving activities. It binds RNA through its RNA recognition motifs. It regulates various aspects of DNA and RNA metabolism, chromatin structure, rDNA transcription, rRNA maturation, cytokinesis, nucleogenesis, cell proliferation and growth, the folding, maturation and ribosome assembly and nucleocytoplasmic transport of newly synthesized pre-RNAs. In this review we present an overview on nucleolin, its localization, structure and various functions. We also describe the discovery and important studies of nucleolin in plants.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, Delhi India
| | | | | |
Collapse
|
12
|
Mansuy V, Geller S, Rey JP, Campagne C, Boccard J, Poulain P, Prevot V, Pralong FP. Phenotypic and molecular characterization of proliferating and differentiated GnRH-expressing GnV-3 cells. Mol Cell Endocrinol 2011; 332:97-105. [PMID: 20937356 DOI: 10.1016/j.mce.2010.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 09/14/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
Abstract
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Collapse
Affiliation(s)
- Virginie Mansuy
- Service of Endocrinology, Diabetology and Metabolism, University Hospital and Faculty of Biology and Medicine, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sagou K, Uema M, Kawaguchi Y. Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. J Virol 2010; 84:2110-21. [PMID: 19955312 PMCID: PMC2812367 DOI: 10.1128/jvi.02007-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022] Open
Abstract
Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.
Collapse
Affiliation(s)
- Ken Sagou
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| | - Masashi Uema
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| | - Yasushi Kawaguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
14
|
Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 2010; 84:1771-84. [PMID: 20007282 PMCID: PMC2812382 DOI: 10.1128/jvi.01510-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/23/2009] [Indexed: 01/04/2023] Open
Abstract
In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Steeve Boulant
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Simian virus 40 large T antigen can specifically unwind the central palindrome at the origin of DNA replication. J Virol 2009; 83:3312-22. [PMID: 19144705 DOI: 10.1128/jvi.01867-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hydrophilic channels between helicase domains of simian virus 40 (SV40) large T antigen play a critical role in DNA replication. Previous mutagenesis of residues in the channels identified one class of mutants (class A: D429A, N449S, and N515S) with normal DNA binding and ATPase and helicase activities but with a severely reduced ability to unwind origin DNA and to support SV40 DNA replication in vitro. Here, we further studied these mutants to gain insights into how T antigen unwinds the origin. We found that the mutants were compromised in melting the imperfect palindrome (EP) but normal in untwisting the AT-rich track. However, the mutants' defect in EP melting was not the major reason they failed to unwind the origin because supplying an EP region as a mismatched bubble, or deleting the EP region altogether, did not rescue their unwinding deficiency. These results suggested that specific separation of the central palindrome of the origin (site II) is an essential step in unwinding origin DNA by T antigen. In support of this, wild-type T antigen was able to specifically unwind a 31-bp DNA containing only site II in an ATPase-dependent reaction, whereas D429A and N515S failed to do so. By performing a systematic mutagenesis of 31-bp site II DNA, we identified discrete regions in each pentanucleotide necessary for normal origin unwinding. These data indicate that T antigen has a mechanism to specifically unwind the central palindrome. Various models are proposed to illustrate how T antigen could separate the central origin.
Collapse
|
16
|
Wolfe A, Ng Y, Divall SA, Singh SP, Radovick S. Development of an immortalised, post-pubertal gonadotrophin-releasing hormone neuronal cell line. J Neuroendocrinol 2008; 20:1029-37. [PMID: 18624926 PMCID: PMC4888592 DOI: 10.1111/j.1365-2826.2008.01760.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is important in reproduction, although some of the mechanisms for its synthesis and release remain elusive. Progress in understanding the GnRH neurone has been hampered by the limited number and diffuse distribution of the neurone in the mammalian brain. Several stable GnRH-expressing cell lines have been developed using in vivo expression of the simian virus 40 T Antigen (TAg), and they have been helpful for the study of gene expression and neuronal function. However, expression of an immortalising gene may interfere with normal cellular function. We developed a novel GnRH-secreting cell line transgenic mouse model suitable for targeted transformation in post-pubertal mice using a tetracycline-regulated TAg transgene. This clonal cell line, GRT, expresses neuronal markers and GnRH. GRT cells grown in medium containing tetracycline-free serum express increasing mRNA levels of GnRH associated with declining levels of TAg expression. The novelty and ultimately the usefulness of this cell line is that TAg expression, which could affect the GnRH neuronal phenotype, can be regulated by tetracycline.
Collapse
Affiliation(s)
- A Wolfe
- Johns Hopkins University College of Medicine, Department of Pediatrics, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
17
|
Dörr J, Kartarius S, Götz C, Montenarh M. Contribution of the individual subunits of protein kinase CK2 and of hPrp3p to the splicing process. Mol Cell Biochem 2008; 316:187-93. [DOI: 10.1007/s11010-008-9820-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 11/24/2022]
|
18
|
Callé A, Ugrinova I, Epstein AL, Bouvet P, Diaz JJ, Greco A. Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol 2008; 82:4762-73. [PMID: 18321972 PMCID: PMC2346767 DOI: 10.1128/jvi.00077-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Productive infection by herpes simplex virus type 1 (HSV-1), which occurs in the host cell nucleus, is accompanied by dramatic modifications of the nuclear architecture, including profound alterations of nucleolar morphology. Here, we show that the three most abundant nucleolar proteins--nucleolin, B23, and fibrillarin--are redistributed out of the nucleoli as a consequence of HSV-1 infection. We show that the amount of nucleolin increases progressively during the course of infection. We demonstrate for the first time that a nucleolar protein, i.e., nucleolin, colocalizes with ICP8 in the viral replication compartments, at the time when viral replication is effective, suggesting an involvement of nucleolin in the HSV-1 DNA replication process. At later times of infection, a granular form of nucleolin localizes to the cytoplasm, in structures that display the characteristic features of aggresomes, indicating that this form of nucleolin is very probably destined for degradation. The delocalization of nucleolin from the nucleoli requires the viral ICP4 protein or a factor(s) whose expression involves ICP4. Using small interfering RNA technology, we show that viral replication requires a high level of nucleolin expression, demonstrating for the first time a direct role for a nucleolar protein in herpes simplex virus biology.
Collapse
|
19
|
Nucleolin – Characteristics of Protein and its Role in Biology of Cancers and Viral Infections. ACTA ACUST UNITED AC 2008. [DOI: 10.2478/v10052-008-0003-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Taneja P, Nasheuer HP, Hartmann H, Grosse F, Fanning E, Weisshart K. Timed interactions between viral and cellular replication factors during the initiation of SV40 in vitro DNA replication. Biochem J 2008; 407:313-20. [PMID: 17666013 PMCID: PMC2049014 DOI: 10.1042/bj20070794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The initiation of SV40 (simian virus 40) DNA replication requires the co-operative interactions between the viral Tag (large T-antigen), RPA (replication protein A) and Pol (DNA polymerase alpha-primase) on the template DNA. Binding interfaces mapped on these enzymes and expressed as peptides competed with the mutual interactions of the native proteins. Prevention of the genuine interactions was accomplished only prior to the primer synthesis step and blocked the assembly of a productive initiation complex. Once the complex was engaged in the synthesis of an RNA primer and its extension, the interfering effects of the peptides ceased, suggesting a stable association of the replication factors during the initiation phase. Specific antibodies were still able to disrupt preformed interactions and inhibited primer synthesis and extension activities, underlining the crucial role of specific protein-protein contacts during the entire initiation process.
Collapse
Affiliation(s)
- Poonam Taneja
- *Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, U.S.A
| | - Heinz-Peter Nasheuer
- †Department of Biochemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Hella Hartmann
- ‡Leibniz Institute for Age Research, Fritz Lipmann Institute (formerly Institute for Molecular Biotechnology), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Frank Grosse
- ‡Leibniz Institute for Age Research, Fritz Lipmann Institute (formerly Institute for Molecular Biotechnology), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ellen Fanning
- *Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, U.S.A
| | - Klaus Weisshart
- ‡Leibniz Institute for Age Research, Fritz Lipmann Institute (formerly Institute for Molecular Biotechnology), Beutenbergstrasse 11, 07745 Jena, Germany
- To whom correspondence should be sent. Present address: Carl Zeiss MicroImaging GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany (email )
| |
Collapse
|
21
|
Murakami Y, Chen LF, Sanechika N, Kohzaki H, Ito Y. Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. J Cell Biochem 2007; 100:1313-23. [PMID: 17063494 DOI: 10.1002/jcb.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eukaryotic DNA replication takes place in the replication factories, where replication proteins are properly assembled to form replication forks. Thus, recruitment of DNA replication origins to the replication factories must be the key step for the regulation of DNA replication. The transcription factor Runx1 associates with the nuclear matrix, the putative substructure of DNA replication factories. An earlier report from our laboratory showed that Runx1 activates polyomavirus DNA replication, and that this requires its nuclear matrix-binding activity. Here, we show that Runx1 activates polyomavirus DNA replication by stimulating the binding of the viral-encoded replication initiator/helicase, large T antigen, to its replication origin. We found that newly replicated polyomavirus DNA is associated with the nuclear matrix and that large T antigen is targeted to replication factories, suggesting that polyomavirus is replicated in replication factories on the nuclear matrix. Although Runx1 did not co-localize with large T antigen-containing foci by itself, it co-localized with large T antigen-containing replication factories during Runx1-dependent polyomavirus DNA replication. These observations together suggest that Runx1 recruits the polyomavirus replication origin to the replication factory on the nuclear matrix, and that this requires the nuclear matrix-binding activity of Runx1.
Collapse
Affiliation(s)
- Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
22
|
Wang W, Manna D, Simmons DT. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication. J Virol 2007; 81:4510-9. [PMID: 17301125 PMCID: PMC1900167 DOI: 10.1128/jvi.00003-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
23
|
Storck S, Shukla M, Dimitrov S, Bouvet P. Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 2007; 41:125-44. [PMID: 17484127 DOI: 10.1007/1-4020-5466-1_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alteration of nuclear morphology is often used by pathologist as diagnostic marker for malignancies like cancer. In particular, the staining of cells by the silver staining methods (AgNOR) has been proved to be an important tool for predicting the clinical outcome of some cancer diseases. Two major argyrophilic proteins responsible for the strong staining of cells in interphase are the nucleophosmin (B23) and the nucleolin (C23) nucleolar proteins. Interestingly these two proteins have been described as chromatin associated proteins with histone chaperone activities and also as proteins able to regulate chromatin transcription. Nucleolin seems to be over-expressed in highly proliferative cells and is involved in many aspect of gene expression: chromatin remodeling, DNA recombination and replication, RNA transcription by RNA polymerase I and II, rRNA processing, mRNA stabilisation, cytokinesis and apoptosis. Interestingly, nucleolin is also found on the cell surface in a wide range of cancer cells, a property which is being used as a marker for the diagnosis of cancer and for the development of anti-cancer drugs to inhibit proliferation of cancer cells. In addition to its implication in cancer, nucleolin has been described not only as a marker or as a protein being involved in many diseases like viral infections, autoimmune diseases, Alzheimer's disease pathology but also in drug resistance. In this review we will focus on the chromatin associated functions of nucleolin and discuss the functions of nucleolin or its use as diagnostic marker and as a target for therapy
Collapse
Affiliation(s)
- Sébastien Storck
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | | | | | |
Collapse
|
24
|
Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci 2006; 30:437-44. [PMID: 16002295 DOI: 10.1016/j.tibs.2005.06.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/23/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
In eukaryotes, numerous lines of evidence have coalesced into a convincing case that the MCM2-7 complex - a heterohexameric ATPase - is the replicative DNA helicase. However, almost nothing is known about how this enzyme functions in a cellular context. Some models for the mechanism of the MCM2-7 helicase envision that it translocates along single-stranded DNA (ssDNA), whereas, more recently, it is has been suggested that it pumps double-stranded DNA (dsDNA) through its central channel. In particular, one model in which a double hexamer of MCM2-7 pumps dsDNA towards the hexamer interface and extrudes ssDNA laterally as a result of torsional strain is gaining popularity. Here, we discuss existing models and propose a new variation in which a single hexamer is the functional unit of the helicase. Duplex DNA is pumped into MCM2-7 and, as it emerges from the complex, a rigid protein that we term the 'ploughshare' splits the duplex.
Collapse
Affiliation(s)
- Tatsuro S Takahashi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
De A, Donahue SL, Tabah A, Castro NE, Mraz N, Cruise JL, Campbell C. A novel interaction [corrected] of nucleolin with Rad51. Biochem Biophys Res Commun 2006; 344:206-13. [PMID: 16600179 DOI: 10.1016/j.bbrc.2006.03.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 12/27/2022]
Abstract
Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA.
Collapse
Affiliation(s)
- Ananya De
- Department of Pharmacology, The University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Uhlmann-Schiffler H, Jalal C, Stahl H. Ddx42p--a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 2006; 34:10-22. [PMID: 16397294 PMCID: PMC1325199 DOI: 10.1093/nar/gkj403] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human gene ddx42 encodes a human DEAD box protein highly homologous to the p68 subfamily of RNA helicases. In HeLa cells, two ddx42 poly(A)+ RNA species were detected both encoding the nuclear localized 938 amino acid Ddx42p polypeptide. Ddx42p has been heterologously expressed and its biochemical properties characterized. It is an RNA binding protein, and ATP and ADP modulate its RNA binding affinity. Ddx42p is an NTPase with a preference for ATP, the hydrolysis of which is enhanced by various RNA substrates. It acts as a non-processive RNA helicase. Interestingly, RNA unwinding by Ddx42p is promoted in the presence of a single-strand (ss) binding protein (T4gp32). Ddx42p, particularly in the ADP-bound form (the state after ATP hydrolysis), also mediates efficient annealing of complementary RNA strands thereby displacing the ss binding protein. Ddx42p therefore represents the first example of a human DEAD box protein possessing RNA helicase, protein displacement and RNA annealing activities. The adenosine nucleotide cofactor bound to Ddx42p apparently acts as a switch that controls the two opposing activities: ATP triggers RNA strand separation, whereas ADP triggers annealing of complementary RNA strands.
Collapse
Affiliation(s)
- Heike Uhlmann-Schiffler
- FR 2.3 Medical Biochemistry and Molecular Biology, Theoretical Medicine, University of the Saarland, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
27
|
Krepulat F, Löhler J, Heinlein C, Hermannstädter A, Tolstonog GV, Deppert W. Epigenetic mechanisms affect mutant p53 transgene expression in WAP-mutp53 transgenic mice. Oncogene 2005; 24:4645-59. [PMID: 15870706 DOI: 10.1038/sj.onc.1208557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We describe the construction and phenotypic characterization of 23 whey acidic protein (WAP)-mutp53 transgenic mouse lines. The mutp53-expressing lines showed a mosaic expression pattern for the transgenes, leading to a heterogeneous yet mouse line-specific expression pattern for mutp53 upon induction. Only few lines were obtained, in which the majority of the induced mammary epithelial cells expressed the mutp53 transgene, most of the transgenic lines did not express mutp53, or expressed the transgene in less than 2% of the induced mammary epithelial cells. Hormone requirements for mutp53 transgene expression from the WAP-promoter differed in high and low expressing lines, being low in high expressing lines, and even lower in multiparous mutp53 mice, where persistent expression of the transgene occurred. Repeated induction of mutp53 expression through repeated parturition resulted in the formation of expanding mutp53-expressing foci within the mammary alveolar epithelium. The data suggest that epigenetic mechanisms play a role in modulating the expression of the mutp53 transgene. To support this idea, we crossed a nonexpressing WAP-mutp53 line with a strongly SV40 T-antigen-expressing WAP-T mouse line. In the bitransgenic mice, T-antigen-induced chromatin remodeling led to re-expression of epigenetically silenced mutp53 transgene(s). In these mice, mutp53 expression was much more variable compared to SV40 T-antigen expression, and seemed to depend on the coexpression of SV40 T-antigen. Mutp53 expression in this system thus resembles the situation in many human tumors, where one can observe a heterogeneous expression of mutp53, despite a homogeneous distribution of the p53 mutation in the tumor cells.
Collapse
Affiliation(s)
- Frauke Krepulat
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Czubaty A, Girstun A, Kowalska-Loth B, Trzcińska AM, Purta E, Winczura A, Grajkowski W, Staroń K. Proteomic analysis of complexes formed by human topoisomerase I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:133-41. [PMID: 15848144 DOI: 10.1016/j.bbapap.2005.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Human topoisomerase I is a nuclear enzyme that catalyses DNA relaxation and phosphorylation of SR proteins. Topoisomerase I participates in several protein-protein interactions. We performed a proteomic analysis of protein partners of topoisomerase I. Two methods were applied to proteins of the nuclear extract of HeLa cells: a co-immunoprecipitation and an affinity chromatography combined with mass spectrometry. Complexes formed by topoisomerase I with its protein partners were immunoprecipitated by scleroderma anti-topoisomerase I antibodies. To identify binding sites for the protein partners, baits corresponding to fragments of topoisomerase I were constructed and used in the affinity chromatography. The N-terminal domain and the cap region of the core domain appeared to be the main regions that bound proteins. We identified 36 nuclear proteins that were associated with topoisomerase I. The proteins were mainly involved in RNA metabolism. We found 29 new and confirmed 7 previously identified protein partners of topoisomerase I. More than 40% proteins that associate with the cap region contain two closely spaced RRM domains. Docking calculations identified the RRM domains as a possible site for the interaction of these proteins with the cap region.
Collapse
Affiliation(s)
- Alicja Czubaty
- Institute of Biochemistry, Warsaw University, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
May T, Hauser H, Wirth D. Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res 2004; 32:5529-38. [PMID: 15486202 PMCID: PMC524297 DOI: 10.1093/nar/gkh887] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conditional proliferation of mouse embryo fibroblasts was achieved with a novel autoregulatory vector for Tet-dependent expression of the SV40 T-antigen. The majority of cell clones that were isolated under induced conditions showed strict regulation of cell growth. Status switches were found to be fully reversible and highly reproducible with respect to gene expression characteristics. A consequence of T-antigen expression is a significant deregulation of >400 genes. Deinduced cells turn to rest in G0/G1 phase and exhibit a senescent phenotype. The cells are not oncogenic and no evidence for transformation was found after several months of cultivation. Conditional immortalization allows diverse studies including those on cellular activities without the influence of the immortalizing gene(s), senescence as well as secondary effects from T-antigen expression.
Collapse
Affiliation(s)
- Tobias May
- Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
30
|
Simmons DT, Gai D, Parsons R, Debes A, Roy R. Assembly of the replication initiation complex on SV40 origin DNA. Nucleic Acids Res 2004; 32:1103-12. [PMID: 14960720 PMCID: PMC373383 DOI: 10.1093/nar/gkh236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly of the complex that forms over the simian virus 40 origin to initiate DNA replication is not well understood. This complex is composed of the virus-coded T antigen and three cellular proteins, replication protein A (RPA), DNA polymerase alpha/primase (pol/prim) and topoisomerase I (topo I) in association with the origin. The order in which these various proteins bind to the DNA was investigated by performing binding assays using biotinylated origin DNA. We demonstrate that in the presence of all four proteins, pol/prim was essential to stabilize the initiation complex from the disruptive effects of topo I. At the optimal concentration of pol/prim, topo I and RPA bound efficiently to the complex, although pol/prim itself was not detected in significant amounts. At higher concentrations less topo I was recruited, suggesting that DNA polymerase is an important modulator of the binding of topo I. Topo I, in turn, appeared to be involved in recruiting RPA. RPA, in contrast, seemed to have little or no effect on the recruitment of the other proteins to the origin. These and other data suggested that pol/prim is the first cellular protein to interact with the double-hexameric T antigen bound to the origin. This is likely followed by topo I and then RPA, or perhaps by a complex of topo I and RPA. Stoichiometric analysis of the topo I and T antigen present in the complex suggested that two molecules of topo I are recruited per double hexamer. Finally, we demonstrate that DNA has a role in recruiting topo I to the origin.
Collapse
Affiliation(s)
- Daniel T Simmons
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA.
| | | | | | | | | |
Collapse
|
31
|
Gomez-Lorenzo MG, Valle M, Frank J, Gruss C, Sorzano COS, Chen XS, Donate LE, Carazo JM. Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication. EMBO J 2004; 22:6205-13. [PMID: 14633980 PMCID: PMC291853 DOI: 10.1093/emboj/cdg612] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large T antigen is the replicative helicase of simian virus 40. Its specific binding to the origin of replication and oligomerization into a double hexamer distorts and unwinds dsDNA. In viral replication, T antigen acts as a functional homolog of the eukaryotic minichromosome maintenance factor MCM. T antigen is also an oncoprotein involved in transformation through interaction with p53 and pRb. We obtained the three-dimensional structure of the full-length T antigen double hexamer assembled at its origin of replication by cryoelectron microscopy and single-particle reconstruction techniques. The double hexamer shows different degrees of bending along the DNA axis. The two hexamers are differentiated entities rotated relative to each other. Isolated strands of density, putatively assigned to ssDNA, protrude from the hexamer-hexamer junction mainly at two opposite sites. The structure of the T antigen at the origin of replication can be understood as a snapshot of the dynamic events leading to DNA unwinding. Based on these results a model for the initiation of simian virus 40 DNA replication is proposed.
Collapse
|
32
|
Méndez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2004; 25:1158-67. [PMID: 14635251 DOI: 10.1002/bies.10370] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.
Collapse
Affiliation(s)
- Juan Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
33
|
Kaufmann G, Nethanel T. Did an early version of the eukaryal replisome enable the emergence of chromatin? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:173-209. [PMID: 15196893 DOI: 10.1016/s0079-6603(04)77005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriel Kaufmann
- Biochemistry Department, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|