1
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
3
|
Yu L, Sun L, Liu X, Wang X, Yan H, Pu Q, Xie Y, Jiang Y, Du J, Yang Z. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma. Hepatol Res 2023; 53:417-431. [PMID: 36628564 DOI: 10.1111/hepr.13877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Immunosuppression in a tumor microenvironment is associated with enhanced tumor progression. Natural killer group 2 (NKG2) family proteins, including inhibitory receptors and activators, can be used as attractive targets for immunotherapy of immune checkpoint inhibition. We further explore the expression level prognostic value of NKG2A and NKG2D in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS This study was a prospective study involving 92 patients with HBV-HCC, 16 patients with HBV-related liver cirrhosis, 18 patients with CHB, and 38 healthy donors. We analyzed the expression and related functions of NKG2A, NKG2D, and the NKG2A/NKG2D ratio in the peripheral blood of patients with HBV-HCC and analyzed tumor progression. The tissue samples from patients with HBV-HCC were further used for multiple immunofluorescence and immunohistochemistry. RESULTS In patients with HBV-HCC with tumor progression, the ratio of NKG2A/NKG2D is higher in NK cells and T cells. The Kaplan-Meier survival curve showed that the NKG2A/NKG2D ratio on NK cells could predict tumor progression in patients with HBV-HCC, and that an increase in this ratio was associated with inhibition of NK cell function. The Cancer Genome Atlas (TCGA) database was further used to verify that the higher the NKG2A/NKG2D ratio, the shorter the progression-free survival of patients with HCC, and the more likely the immune function was suppressed. CONCLUSIONS The imbalance between NKG2A and NKG2D of NK cells is involved in NK cell immunosuppression, and the increase of the NKG2A/NKG2D ratio is related to the tumor progression of HBV-HCC.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME, Eskandari N. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer 2022; 21:15. [PMID: 35031075 PMCID: PMC8759167 DOI: 10.1186/s12943-021-01492-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamzeh Sarvnaz
- Department of Immunology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Student Research Committee, Department of Medical Genetics, School of Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Mohammad Esmaeil Akbari
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
6
|
Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules 2020; 10:biom10020301. [PMID: 32075046 PMCID: PMC7094213 DOI: 10.3390/biom10020301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma is a common malignant tumor with high mortality. Its malignant proliferation, invasion, and metastasis are closely related to the cellular immune function of the patients. NKG2D is a key activated and type II membrane protein molecule expressed on the surface of almost all NK cells. The human NKG2D gene is 270 kb long, located at 12p12.3-p13.1, and contains 10 exons and 9 introns. The three-dimensional structure of the NKG2D monomeric protein contains two alpha-helices, two beta-lamellae, and four disulfide bonds, and its' signal of activation is transmitted mainly by the adaptor protein (DAP). NKG2D ligands, including MICA, MICB, and ULBPs, can be widely expressed in hepatoma cells. After a combination of NKG2D and DAP10 in the form of homologous two polymers, the YxxM motif in the cytoplasm is phosphorylated and then signaling pathways are also gradually activated, such as PI3K, PLCγ2, JNK-cJunN, and others. Activated NK cells can enhance the sensitivity to hepatoma cells and specifically dissolve by releasing a variety of cytokines (TNF-α and IFN-γ), perforin, and high expression of FasL, CD16, and TRAIL. NK cells may specifically bind to the over-expressed MICA, MICB, and ULBPs of hepatocellular carcinoma cells through the surface activating receptor NKG2D, which can help to accurately identify hepatoma, play a critical role in anti-hepatoma via the pathway of cytotoxic effects, and obviously delay the poor progress of hepatocellular carcinoma.
Collapse
|
7
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
8
|
Kaminski VDL, Ellwanger JH, Sandrim V, Pontillo A, Chies JAB. Influence of NKG2C gene deletion and CCR5Δ32 in Pre‐eclampsia—Approaching the effect of innate immune gene variants in pregnancy. Int J Immunogenet 2019; 46:82-87. [DOI: 10.1111/iji.12416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós‐Graduação em Genética e Biologia Molecular, Departamento de Genética Universidade Federal do Rio Grande do Sul ‐ UFRGS Porto Alegre RS Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós‐Graduação em Genética e Biologia Molecular, Departamento de Genética Universidade Federal do Rio Grande do Sul ‐ UFRGS Porto Alegre RS Brazil
| | - Valeria Sandrim
- Departamento de Farmacologia, Instituto de Biociências UNESP‐Universidade Estadual Paulista Botucatu SP Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenetica Departamento de Imunologia, Instituto de Ciências Biomédicas Universidade de São Paulo ‐ USP São Paulo SP Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós‐Graduação em Genética e Biologia Molecular, Departamento de Genética Universidade Federal do Rio Grande do Sul ‐ UFRGS Porto Alegre RS Brazil
| |
Collapse
|
9
|
Sattler S, Ghadially H, Hofer E. Evolution of the C-type lectin-like receptor genes of the DECTIN-1 cluster in the NK gene complex. ScientificWorldJournal 2012; 2012:931386. [PMID: 22550468 PMCID: PMC3322459 DOI: 10.1100/2012/931386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.
Collapse
Affiliation(s)
- Susanne Sattler
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria.
| | | | | |
Collapse
|
10
|
Bandyopadhyay N, Kahveci T, Goodison S, Sun Y, Ranka S. Pathway-BasedFeature Selection Algorithm for Cancer Microarray Data. Adv Bioinformatics 2010; 2009:532989. [PMID: 20204186 PMCID: PMC2831238 DOI: 10.1155/2009/532989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/30/2009] [Indexed: 01/09/2023] Open
Abstract
Classification of cancers based on gene expressions produces better accuracy when compared to that of the clinical markers. Feature selection improves the accuracy of these classification algorithms by reducing the chance of overfitting that happens due to large number of features. We develop a new feature selection method called Biological Pathway-based Feature Selection (BPFS) for microarray data. Unlike most of the existing methods, our method integrates signaling and gene regulatory pathways with gene expression data to minimize the chance of overfitting of the method and to improve the test accuracy. Thus, BPFS selects a biologically meaningful feature set that is minimally redundant. Our experiments on published breast cancer datasets demonstrate that all of the top 20 genes found by our method are associated with cancer. Furthermore, the classification accuracy of our signature is up to 18% better than that of vant Veers 70 gene signature, and it is up to 8% better accuracy than the best published feature selection method, I-RELIEF.
Collapse
Affiliation(s)
- Nirmalya Bandyopadhyay
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Tamer Kahveci
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steve Goodison
- Anderson Cancer Center Orlando, Cancer Research Institute Orlando, FL 32827, USA
| | - Y. Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sanjay Ranka
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Marusina AI, Burgess SJ, Pathmanathan I, Borrego F, Coligan JE. Regulation of human DAP10 gene expression in NK and T cells by Ap-1 transcription factors. THE JOURNAL OF IMMUNOLOGY 2008; 180:409-17. [PMID: 18097042 DOI: 10.4049/jimmunol.180.1.409] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human NKG2D/DAP10 is an activation receptor expressed by NK and subsets of T cells, whose ligands include MHC class I chain-related (MIC) protein A and protein B and UL16-binding proteins that are often up-regulated by stress or pathological conditions. DAP10 is required for NKG2D/DAP10 cell surface expression and signaling capacity. Little is known about the mechanisms that regulate DAP10 gene expression. We describe the existence of multiple transcriptional start sites upstream of DAP10 exon 1 and identify the location of the basic promoter upstream of these starting sites. The promoter is active in NK and CD8+ T cells, but not in CD4+ T cells. We demonstrate TCR-mediated up-regulation of DAP10 transcription and found that a 40 bp region within the DAP10 promoter, containing an Ap-1 binding site, is largely responsible for this increased transcription. Using pull-down and chromatin immunoprecipitation assays, we show that the DAP10 promoter interacts with Ap-1 transcription factors in primary CD8+ T and NK cells in vitro and in vivo. Overexpression of c-Jun or c-Fos in NK and T cells led to enhanced DAP10 promoter activity and DAP10 protein expression. Taken together, our data indicate that Ap-1 is an important transcription factor for regulating DAP10 gene expression in human NK and T cells, and that Ap-1 plays a key role in the transactivation of DAP10 promoter following TCR stimulation.
Collapse
Affiliation(s)
- Alina I Marusina
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852-1742, USA
| | | | | | | | | |
Collapse
|
12
|
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2007; 35:263-78. [PMID: 17172651 DOI: 10.1385/ir:35:3:263] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+ T cells, and they have been shown to play an important role in regulating responses against infected and tumorigenic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The stochastic expression of individual members of NK cell receptor gene families on subsets of NK cells has attracted considerable interest in the transcriptional regulation of these genes. Each receptor gene can contain up to three separate promoters with distinct properties. The recent discovery that an upstream promoter can function as a probabilistic switch element in the Ly49 gene family has revealed a novel mechanism of variegated gene expression. An important question to be answered is whether or not the other NK cell receptor gene families contain probabilistic switches. The promoter elements currently identified in the Ly49, NKR-P1, CD94, NKG2A, and KIR gene families are described.
Collapse
Affiliation(s)
- S K Anderson
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Bldg. 560, Rm. 31-93, Frederick, MD 21702-1201, USA.
| |
Collapse
|
14
|
Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE. GATA-3 Is an Important Transcription Factor for Regulating Human NKG2A Gene Expression. THE JOURNAL OF IMMUNOLOGY 2005; 174:2152-9. [PMID: 15699146 DOI: 10.4049/jimmunol.174.4.2152] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD94/NKG2A is an inhibitory receptor expressed by most human NK cells and a subset of T cells that recognizes HLA-E on potential target cells. To study the transcriptional regulation of the human NKG2A gene, we cloned a 3.9-kb genomic fragment that contains a 1.65-kb region upstream of the exon 1, as well as exon 1 (untranslated), intron 1 and exon 2. Using deletion mutants, we identified a region immediately upstream from the most upstream transcriptional initiation site that led to increased transcriptional activity from a luciferase reporter construct in YT-Indy (NKG2A positive) cells relative to Jurkat and K562 (both NKG2A negative) cells. We also localized a DNase I hypersensitivity site to this region. Within this 80-bp segment, we identified two GATA binding sites. Mutation of GATA binding site II (-2302 bp) but not GATA binding site I (-2332 bp) led to decreased transcriptional activity. Pull-down assays revealed that GATA-3 could bind oligonucleotide probes containing the wild type but not a mutated GATA site II. Using chromatin immunoprecipitation assays, we showed that GATA-3 specifically binds to the NKG2A promoter in situ in NKL and primary NK cells, but not in Jurkat T cells. Moreover, coexpression of human GATA-3 with an NKG2A promoter construct in K562 cells led to enhanced promoter activity, and transfection of NKL cells with small interfering RNA specific for GATA-3 reduced NKG2A cell surface expression. Taken together, our data indicate that GATA-3 is an important transcription factor for regulating NKG2A gene expression.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Cells, Cultured
- DNA Mutational Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Deoxyribonuclease I/metabolism
- GATA3 Transcription Factor
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA, Small Interfering/genetics
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Alina I Marusina
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
15
|
Kikuno R, Sato A, Mayer WE, Shintani S, Aoki T, Klein J. Clustering of C-Type Lectin Natural Killer Receptor-Like Loci in the Bony Fish Oreochromis niloticus. Scand J Immunol 2004; 59:133-42. [PMID: 14871289 DOI: 10.1111/j.0300-9475.2004.01372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of the cichlid (teleost) fish Oreochromis niloticus contains a set of genes which encode group V C-type lectin proteins homologous to the mammalian NKG2/CD94 family of natural killer (NK) cell receptors. To determine the genomic organization of these killer cell-like receptor (KLR) genes, an O. niloticus BAC library was screened with a cDNA probe derived previously from an expressed sequence tag of the related cichlid species Paralabidochromis chilotes. Four distinct KLR-bearing BAC clones were analysed, three of which could be assembled into a contig. One of the clones was sequenced in its entirety, whereas the others were partially sequenced to identify the KLR loci borne by them. Altogether, 28 distinct KLR loci were identified, of which at least 26 occupy a single chromosomal region, the KLR complex. One half of the loci appear to be occupied by pseudogenes. Compared to the human NK cell receptor complex, the Oreochromis KLR complex is more compact and, apart from transposons, appears to contain only KLR loci. The gene density of the complex is one KLR locus per 18 kb of sequence. All the KLR loci constituting the complex are derived from a single most recent common ancestor, which is estimated to have existed 7.7 million years ago. The 180 kb of the determined sequence is a mosaic of blocks of similar segments reflecting a complex history of duplications, deletions and rearrangements. The transposons found in the sequenced part belong to the TC1, Xena, CR1 and TX1 families.
Collapse
Affiliation(s)
- R Kikuno
- The First Laboratory for Human Gene Research, Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Stewart CA, Van Bergen J, Trowsdale J. Different and divergent regulation of the KIR2DL4 and KIR3DL1 promoters. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6073-81. [PMID: 12794136 DOI: 10.4049/jimmunol.170.12.6073] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The killer Ig-like receptors (KIR) are a family of highly related MHC class I receptors that show extreme genetic polymorphism both within the human population and between closely related primate species, suggestive of rapid evolutionary diversification. Most KIR are expressed in a variegated fashion by the NK population, giving rise to an NK repertoire of specificities for MHC class I. We compared the promoter for KIR3DL1, which exhibits variegated gene expression, with that for KIR2DL4, which is expressed by all NK cell clones. Maximum transcriptional activity of each was encoded within approximately 270 bp upstream of the translation initiation codon. The KIR2DL4 promoter drove reporter gene expression only in NK cells, while the KIR3DL1 promoter was active in a range of cell types, suggesting that the latter requires other regulatory elements for physiological expression. In NK cells, reporter gene expression driven by the KIR2DL4 promoter was greater than that driven by the KIR3DL1 promoter. DNase I footprinting revealed that transcription factor binding sites differ between the two promoters. The data indicate that while the promoters of these two KIR genes share 67% nucleotide identity, they have evolved distinct properties consistent with different roles in regulating the generation of NK repertoire.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Cell Line
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Humans
- Jurkat Cells
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- Multigene Family/immunology
- Organ Specificity/genetics
- Organ Specificity/immunology
- Promoter Regions, Genetic/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR
- Receptors, KIR2DL4
- Receptors, KIR3DL1
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Initiation Site
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Andrew Stewart
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
17
|
Hikami K, Tsuchiya N, Yabe T, Tokunaga K. Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population. Genes Immun 2003; 4:160-7. [PMID: 12618865 DOI: 10.1038/sj.gene.6363940] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD94 and NKG2 are members of the NK cell receptor families, and are encoded in the natural killer gene complex (NKC) on human chromosome 12p12-13, one of the candidate chromosomal regions for rheumatic diseases. To examine a possible association between variations in CD94 and NKG2 genes and genetic susceptibility to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), we carried out a systematic polymorphism screening of NKG2-A (KLRC1), NKG2-C (KLRC2) and CD94 (KLRD1) genes on a population basis. In NKG2-A, previously considered to be highly conserved, 10 polymorphisms in the noncoding region and introns, as well as one rare variation leading to an amino acid substitution within the transmembrane region, c.238T>A (Cys80Ser), were detected. In NKG2-C, in addition to the previously described two nonsynonymous substitutions, c.5G>A (Ser2Asn) and c.305C>T (Ser102Phe), two polymorphisms were newly detected in the noncoding region. In CD94, only one single nucleotide substitution was identified in the 5' untranslated region. When the patients and healthy individuals were genotyped for these variations, no significant association was observed. However, although statistically not significant, NKG2-A c.238T>A (Cys80Ser) was observed in three patients with RA, but in none of the healthy individuals and the patients with SLE. Unexpectedly, in the process of polymorphism screening, we identified homozygous deletion of NKG2-C in approximately 4.3% of healthy donors; under the assumption of Hardy-Weinberg equilibrium, the allele frequency of NKG2-C deletion was estimated to be 20.7%. These results demonstrated that, although human NKG2-A, -C and CD94 are generally conserved with respect to amino acid sequences, NKG2-A is polymorphic in the noncoding region, and that the number of genes encoded in the human NKC is variable among individuals, as previously shown for the leukocyte receptor complex (LRC), HLA and Fcgamma receptor (FCGR) regions.
Collapse
Affiliation(s)
- K Hikami
- Department of Human Genetics, Graduate School of Mdicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Brostjan C, Bellón T, Sobanov Y, López-Botet M, Hofer E. Differential expression of inhibitory and activating CD94/NKG2 receptors on NK cell clones. J Immunol Methods 2002; 264:109-19. [PMID: 12191515 DOI: 10.1016/s0022-1759(02)00084-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Natural killer cells are known to express a variety of surface receptors involved in HLA class I monitoring. It is thus of interest to investigate the clonal distribution and relative expression levels of activating versus inhibitory NK receptors. We have developed a quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay designed to determine specific and absolute mRNA levels for NKG2-A/B, -C, -E, -F, -H and NKG2-D. When analyzing NK cell clones derived from a single donor we found differential expression of inhibitory (NKG2-A/B) versus triggering (NKG2-C and potentially -E, -F, -H) NK receptor chains. The generation of the splice variants NKG2-E and -H seemed to occur at a constant ratio. We further compared NKG2 transcript levels to surface receptor expression as monitored by flow cytometric analysis and to NK cell cytotoxicity as detected by reverse ADCC: a clear correlation was observed. Thus, the data obtained reveal a substantial variability in the NKG2 repertoire among NK cell subpopulations, which is likely to affect the sensitivity and reactivity towards the ligand HLA-E.
Collapse
MESH Headings
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Line
- Clone Cells/immunology
- Clone Cells/metabolism
- Cytotoxicity Tests, Immunologic/methods
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- NK Cell Lectin-Like Receptor Subfamily K
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Natural Killer Cell
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Christine Brostjan
- Department of Surgery, General Hospital, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
19
|
Borrego F, Kabat J, Kim DK, Lieto L, Maasho K, Peña J, Solana R, Coligan JE. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002; 38:637-60. [PMID: 11858820 DOI: 10.1016/s0161-5890(01)00107-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells express receptors that are specific for MHC class I molecules. These receptors play a crucial role in regulating the lytic and cytokine expression capabilities of NK cells. In humans, three distinct families of genes have been defined that encode for receptors of HLA class I molecules. The first family identified consists of type I transmembrane molecules belonging to the immunoglobulin (Ig) superfamily and are called killer cell Ig-like receptors (KIR). A second group of receptors belonging to the Ig superfamily, named ILT (for immunoglobulin like transcripts), has more recently been described. ILTs are expressed mainly on B, T and myeloid cells, but some members of this group are also expressed on NK cells. They are also referred to as LIRs (for leukocyte Ig-like receptor) and MIRs (for macrophage Ig-like receptor). The ligands for the KIR and some of the ILT receptors include classical (class Ia) HLA class I molecules, as well as the nonclassical (class Ib) HLA-G molecule. The third family of HLA class I receptors are C-type lectin family members and are composed of heterodimers of CD94 covalently associated with a member of the NKG2 family of molecules. The ligand for most members is the nonclassical class I molecule HLA-E. NKG2D, a member of the NKG2 family, is expressed as a homodimer, along with the adaptor molecule DAP10. The ligands of NKG2D include the human class I like molecules MICA and MICB, and the recently described ULBPs. Each of these three families of receptors has individual members that can recognize identical or similar ligands yet signal for activation or inhibition of cellular functions. This dichotomy correlates with particular structural features present in the transmembrane and intracytoplasmic portions of these molecules. In this review we will discuss the molecular structure, specificity, cellular expression patterns, and function of these HLA class I receptors, as well as the chromosomal location and genetic organization.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Twinbrook II, Room 205, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sobanov Y, Bernreiter A, Derdak S, Mechtcheriakova D, Schweighofer B, Düchler M, Kalthoff F, Hofer E. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol 2001; 31:3493-503. [PMID: 11745369 DOI: 10.1002/1521-4141(200112)31:12<3493::aid-immu3493>3.0.co;2-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The NK gene complex is a region on human chromosome 12 containing several families of lectin-like genes including the CD94 and NKG2 NK receptor genes. We report here that the region telomeric of CD94 contains in addition to the LOX-1 gene the novel human DECTIN-1 and the CLEC-1 and CLEC-2 genes within about 100 kb. Sequence similarities and chromosomal arrangement suggest that these genes form a separate subfamily of lectin-like genes within the NK gene complex. DECTIN-1 is selectively expressed in dendritic cells and to a lower extent in monocytes and macrophages. mRNA forms with and without a stalk exon are observed. During functional maturation of dendritic cells the level of DECTIN-1 mRNA is down-regulated several-fold. CLEC-1 is found to be not only expressed in dendritic cells, but also in endothelial cells and in the latter aspect resembles the LOX-1 gene. Whereas recombinant full-length DECTIN-1 and LOX-1 are transported to the cell surface, CLEC-1 proteins accumulate in perinuclear compartments. We propose that this family of lectin-like genes encodes receptors with important immune and/or scavenger functions in monocytic, dendritic and endothelial cells.
Collapse
Affiliation(s)
- Y Sobanov
- Department of Vascular Biology and Thrombosis Research, VIRCC, University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|