1
|
Shende R, Wong SSW, Meitei HT, Lal G, Madan T, Aimanianda V, Pal JK, Sahu A. Protective role of host complement system in Aspergillus fumigatus infection. Front Immunol 2022; 13:978152. [PMID: 36211424 PMCID: PMC9539816 DOI: 10.3389/fimmu.2022.978152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.
Collapse
Affiliation(s)
- Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
| | - Heikrujam Thoihen Meitei
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR – National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| | - Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| |
Collapse
|
2
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
3
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
A/J mice are more susceptible than C57BL/6 to acetaminophen-induced hepatotoxicity. J Pharmacol Toxicol Methods 2021; 108:106960. [PMID: 33766729 DOI: 10.1016/j.vascn.2021.106960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 11/20/2022]
Abstract
Acetaminophen (APAP) is commonly used to treat fever and pain. However, when in overdose is the predominant cause of hepatotoxicity. Despite advances in understanding the mechanisms of APAP-induced hepatotoxicity, the management of acute liver failure remains a challenge. Thus, more relevant experimental models are crucial to provide a better understanding of this condition. The aim of this study is to evaluate the effect of APAP-induced hepatotoxicity on A/J mice using C57BL/6 as reference experimental model. Eight- to ten-week-old male A/J and C57BL/6 mice were treated with APAP (300 or 500 mg/kg) by intraperitoneal injection. After 24 h total blood leukocyte counting, plasma levels of alanine amino transferase (ALT) and aspartate amino transferase (AST), histopathological analysis of liver, lung and kidney were evaluated. A/J mice presented reduction in circulating leukocytes concomitant with the increase in plasma levels of ALT and AST, and liver necrosis when treated with 300 and 500 mg/kg of APAP. C57BL/6 mice presented similar results only with 500 mg/kg of APAP. Our results show that A/J mice have a marked susceptibility to the effects of APAP and could be considered as an experimental model to study APAP-induced toxicity.
Collapse
|
5
|
Markey L, Hooper A, Melon LC, Baglot S, Hill MN, Maguire J, Kumamoto CA. Colonization with the commensal fungus Candida albicans perturbs the gut-brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology 2020; 121:104808. [PMID: 32739746 PMCID: PMC7572798 DOI: 10.1016/j.psyneuen.2020.104808] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Anxiety disorders are the most prevalent mental health disorder worldwide, with a lifetime prevalence of 5-7 % of the human population. Although the etiology of anxiety disorders is incompletely understood, one aspect of host health that affects anxiety disorders is the gut-brain axis. Adolescence is a key developmental window in which stress and anxiety disorders are a major health concern. We used adolescent female mice in a gastrointestinal (GI) colonization model to demonstrate that the commensal fungus Candida albicans affects host health via the gut-brain axis. In mice, bacterial members of the gut microbiota can influence the host gut-brain axis, affecting anxiety-like behavior and the hypothalamus-pituitary-adrenal (HPA) axis which produces the stress hormone corticosterone (CORT). Here we showed that mice colonized with C. albicans demonstrated increased anxiety-like behavior and increased basal production of CORT as well as dysregulation of CORT production following acute stress. The HPA axis and anxiety-like behavior are negatively regulated by the endocannabinoid N-arachidonoylethanolamide (AEA). We demonstrated that C. albicans-colonized mice exhibited changes in the endocannabinoidome. Further, increasing AEA levels using the well-characterized fatty acid amide hydrolase (FAAH) inhibitor URB597 was sufficient to reverse both neuroendocrine phenotypes in C. albicans-colonized mice. Thus, a commensal fungus that is a common colonizer of humans had widespread effects on the physiology of its host. To our knowledge, this is the first report of microbial manipulation of the endocannabinoid (eCB) system that resulted in neuroendocrine changes contributing to anxiety-like behavior.
Collapse
Affiliation(s)
- Laura Markey
- Department of Molecular Biology and Microbiology, Tufts University, 150 Harrison Ave, Boston, MA, 02111, United States
| | - Andrew Hooper
- Department of Neuroscience, Tufts University, 150 Harrison Ave, Boston, MA, 02111, United States
| | - Laverne C Melon
- Department of Neuroscience, Tufts University, 150 Harrison Ave, Boston, MA, 02111, United States
| | - Samantha Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N1Z4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N1Z4, Canada
| | - Jamie Maguire
- Department of Neuroscience, Tufts University, 150 Harrison Ave, Boston, MA, 02111, United States
| | - Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, 150 Harrison Ave, Boston, MA, 02111, United States.
| |
Collapse
|
6
|
Xin H. Effects of immune suppression in murine models of disseminated Candida glabrata and Candida tropicalis infection and utility of a synthetic peptide vaccine. Med Mycol 2020; 57:745-756. [PMID: 30521033 DOI: 10.1093/mmy/myy122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Candida species are the second most frequent cause of fungal infections worldwide. Current knowledge of immunity to Candida has been gleaned almost exclusively from studies on Candida albicans, the most common disease-causing species. Knowledge of immunity to non-albicans Candida (NAC) species is still at an early stage due to the lack of tractable animal models with which to study these important pathogens. This is partly because many NAC species are not usually pathogenic in mouse models of candidiasis. In this study, we established an immunosuppressed mouse model of disseminated candidiasis by the two clinically important NAC species, C. glabrata and C. tropicalis. The inbred mouse strains, A/J and BALB/c, show distinct susceptibilities to disseminated Candida infection. A/J mice, deficient for complement C5, are more susceptible to disseminated infection with both C. glabrata and C. tropicalis compared to BALB/c mice, the latter having functional C5. Here we show that peptide-pulsed dendritic cell (DC) vaccination with a peptide derived from a C. tropicalis cell surface protein, significantly improved survival and reduced the fungal burdens of disseminated candidiasis in these immunocompromised mice. Importantly, this study is the first report of protective efficacy conferred by a peptide vaccine against medically important NAC species in immunosuppressed hosts. Establishing this experimental mouse model provides an important tool to further understand pathogenesis and host resistance in Candida infection. Significantly, our findings also demonstrate how this model can be used to evaluate new control strategies against candidiasis, such as vaccines.
Collapse
Affiliation(s)
- Hong Xin
- Louisiana State University Health Sciences Center, Microbiology and Immunology
| |
Collapse
|
7
|
Zimmermann N, Gibbons WJ, Homan SM, Prows DR. Heart disease in a mutant mouse model of spontaneous eosinophilic myocarditis maps to three loci. BMC Genomics 2019; 20:727. [PMID: 31601172 PMCID: PMC6788080 DOI: 10.1186/s12864-019-6108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Heart disease (HD) is the major cause of morbidity and mortality in patients with hypereosinophilic diseases. Due to a lack of adequate animal models, our understanding of the pathophysiology of eosinophil-mediated diseases with heart complications is limited. We have discovered a mouse mutant, now maintained on an A/J inbred background, that spontaneously develops hypereosinophilia in multiple organs. Cellular infiltration into the heart causes an eosinophilic myocarditis, with affected mice of the mutant line (i.e., A/JHD) demonstrating extensive myocardial damage and remodeling that leads to HD and premature death, usually by 15-weeks old. Results Maintaining the A/JHD line for many generations established that the HD trait was heritable and implied the mode of inheritance was not too complex. Backcross and intercross populations generated from mating A/JHD males with females from four different inbred strains produced recombinant populations with highly variable rates of affected offspring, ranging from none in C57BL/6 J intercrosses, to a few mice with HD using 129S1/SvImJ intercrosses and C57BL/6 J backcrosses, but nearly 8% of intercrosses and > 17% of backcrosses from SJL/J related populations developed HD. Linkage analyses of these SJL/J derived recombinants identified three highly significant loci: a recessive locus mapping to distal chromosome 5 (LOD = 4.88; named Emhd1 for eosinophilic myocarditis to heart disease-1); and two dominant variants mapping to chromosome 17, one (Emhd2; LOD = 7.51) proximal to the major histocompatibility complex, and a second (Emhd3; LOD = 6.89) that includes the major histocompatibility region. Haplotype analysis identified the specific crossovers that defined the Emhd1 (2.65 Mb), Emhd2 (8.46 Mb) and Emhd3 (14.59 Mb) intervals. Conclusions These results indicate the HD trait in this mutant mouse model of eosinophilic myocarditis is oligogenic with variable penetrance, due to multiple segregating variants and possibly additional genetic or nongenetic factors. The A/JHD mouse model represents a unique and valuable resource to understand the interplay of causal factors that underlie the pathology of this newly discovered eosinophil-associated disease with cardiac complications.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Gibbons
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Shelli M Homan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
8
|
Abstract
Disseminated candidiasis is a life-threatening disease and remains the most common bloodstream infection in hospitalized patients in the United States. Despite the availability of modern antifungal therapy, crude mortality in the last decade has remained unacceptably high. In particular, Candida auris is a multidrug-resistant, health care-associated fungal pathogen and has recently emerged as the first fungal pathogen to cause a global public health threat. A reliable animal model for disseminated C. auris candidiasis is therefore needed to study the unique aspects of this little-known host-pathogen interaction. In this study, we established an inbred A/J intravenous model as an appropriate model for human disseminated C. auris infection. We found that C5 deficiency in A/J mice results in a complex phenotype characterized by rapid fungal proliferation in target organs and the development of a unique and rapidly fatal response. In contrast, C57BL/6J mice and mice deficient in neutrophil elastase (NE-/-) survived high-dose C. auris intravenous challenge, even with cyclophosphamide (CY)-induced immunosuppression. Our study is the first to provide insight into the role of C5 in the host responses to C. auris invasive infection and establishes an inbred A/J mouse model of systemic C. auris infection without CY-induced immunosuppression.IMPORTANCE In the last decade, Candida auris has emerged globally as a multidrug-resistant fungal pathogen. Although C. auris was initially isolated from the external ear canal, it can cause outbreaks of invasive infections with very high mortality and comorbidities. Recent reports highlight the ongoing challenges due to organism misidentification, high rates of multifungal drug resistance, and unacceptably high patient mortality. The assessment of C. auris virulence in a specific genetic deficiency mouse model of invasive C. auris infection in this study contributes to the little knowledge of host defense to C. auris infection, which holds promise as a model for investigating the pathogenesis of C. auris invasive infection, exploring the immune responses elicited by the fungus, evaluating the possible induction of immunity to the infection, and targeting candidates for an antifungal vaccine.
Collapse
|
9
|
Ma Z, Zhu H, Su Y, Meng Y, Lin H, He K, Fan H. Screening of Streptococcus Suis serotype 2 resistance genes with GWAS and transcriptomic microarray analysis. BMC Genomics 2018; 19:907. [PMID: 30541452 PMCID: PMC6292034 DOI: 10.1186/s12864-018-5339-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine streptococcosis has caused great economic loss in the swine industry, and the major pathogen responsible for this disease is Streptococcus Suis serotype 2 (SS2). Disease resistance breeding is a fundamental way of resolving this problem. With the development of GWAS and transcriptomic microarray technology, we now have powerful research tools to identify SS2 resistance genes. RESULTS In this research, we generated an F2 generation of SS2 resistant C57BL/6 and SS2 susceptive A/J mice. With the F2 generation of these two mice strains and GWAS analysis, we identified 286 significant mouse genome SNPs sites associated with the SS2 resistance trait. Gene expression profiles for C57BL/6 and A/J were analyzed under SS2 infection pressure by microarray. In total, 251 differentially expressed genes were identified between these two mouse strains during SS2 infection. After combining the GWAS and gene expression profile data, we located two genes that were significantly associated with SS2 resistance, which were the UBA domain containing 1 gene (Ubac1) and Epsin 1 gene (Epn 1). GO classification and over-representation analysis revealed nine up-regulated related to immune function, which could potentially be involved in the C57BL/6 SS2 resistance trait. CONCLUSION This is the first study to use both SNP chip and gene express profile chip for SS2 resistance gene identification in mouse, and these results will contribute to swine SS2 resistance breeding.
Collapse
Affiliation(s)
- Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Haodan Zhu
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Yiqi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Kongwang He
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Karakadze M, Hirt P, Wikramanayake T. The genetic basis of seborrhoeic dermatitis: a review. J Eur Acad Dermatol Venereol 2017; 32:529-536. [DOI: 10.1111/jdv.14704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Affiliation(s)
- M.A. Karakadze
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - P.A. Hirt
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - T.C. Wikramanayake
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| |
Collapse
|
11
|
Chlamydia muridarum with Mutations in Chromosomal Genes tc0237 and/or tc0668 Is Deficient in Colonizing the Mouse Gastrointestinal Tract. Infect Immun 2017; 85:IAI.00321-17. [PMID: 28584162 PMCID: PMC5520443 DOI: 10.1128/iai.00321-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
Chlamydiae colonize the gastrointestinal tracts of both animals and humans. However, their medical significance remains unknown. We have previously shown that wild-type Chlamydia muridarum spreads to and establishes stable colonization of the gastrointestinal tract following intravaginal inoculation. In the present study, we found that C. muridarum with mutations in chromosomal genes tc0237 and/or tc0668 was defective in spreading to the mouse gastrointestinal tract, which correlated with its attenuated pathogenicity in the upper genital tract. This correlation was more consistent than that of chlamydial pathogenicity with ascending infection in the genital tract, since attenuated C. muridarum spread significantly less to the gastrointestinal tract but maintained robust ascending infection of the upper genital tract. Transcervical inoculation further confirmed the correlation between C. muridarum spreading to the gastrointestinal tract and its pathogenicity in the upper genital tract. Finally, defective spreading of C. muridarum mutants was due to their inability to colonize the gastrointestinal tract since intragastric inoculation did not rescue the mutants' colonization. Thus, promoting C. muridarum colonization of the gastrointestinal tract may represent a primary function of the TC0237 and TC0668 proteins. Correlation of chlamydial colonization of the gastrointestinal tract with chlamydial pathogenicity in the upper genital tract suggests a potential role for gastrointestinal chlamydiae in genital tract pathogenicity.
Collapse
|
12
|
Hassan MA, Jensen KD, Butty V, Hu K, Boedec E, Prins P, Saeij JPJ. Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection. PLoS Genet 2015; 11:e1005619. [PMID: 26510153 PMCID: PMC4625001 DOI: 10.1371/journal.pgen.1005619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits. Macrophages provide a first line of defense against invading pathogens and play an important role in the initiation and resolution of immune responses. When in contact with pathogens or immune factors, such as cytokines, macrophages assume activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). Even though it is known that macrophages from different individuals are biased towards one of the various activation states, the genetic factors that define individual differences in macrophage activation are not fully understood. Additionally, although macrophages are important in infectious disease pathogenesis, how individual differences in macrophage activation contribute to individual differences in susceptibility to infectious disease is just emerging. We used macrophages from genetically segregating mice to show that discrete transcriptional programs, which are modulated by specific genomic regions, modulate differences in macrophage activation. Murine macrophages differences in controlling Toxoplasma growth mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using a shRNA-mediated knockdown approach, we show that the DEAD box polypeptide 1 (Ddx1) modulates nitric oxide production in macrophages stimulated with interferon gamma and tumor necrosis factor. These findings are a step towards the identification of genes that regulate macrophage phenotypes and disease outcome.
Collapse
Affiliation(s)
- Musa A. Hassan
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (MAH); (JPJS)
| | - Kirk D. Jensen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent Butty
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kenneth Hu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Erwan Boedec
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Biotechnology, University of Strasbourg, Strasbourg, France
| | - Pjotr Prins
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
- * E-mail: (MAH); (JPJS)
| |
Collapse
|
13
|
De Simone M, Spagnuolo L, Lorè NI, Rossi G, Cigana C, De Fino I, Iraqi FA, Bragonzi A. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication. PLoS One 2014; 9:e106873. [PMID: 25268734 PMCID: PMC4182038 DOI: 10.1371/journal.pone.0106873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/02/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection.
Collapse
Affiliation(s)
- Maura De Simone
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Spagnuolo
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
14
|
Multi-step pathogenesis and induction of local immune response by systemic Candida albicans infection in an intravenous challenge mouse model. Int J Mol Sci 2014; 15:14848-67. [PMID: 25153636 PMCID: PMC4159886 DOI: 10.3390/ijms150814848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
Collapse
|
15
|
Radovanovic I, Leung V, Iliescu A, Bongfen SE, Mullick A, Langlais D, Gros P. Genetic control of susceptibility to Candida albicans in SM/J mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:1290-300. [PMID: 24973457 DOI: 10.4049/jimmunol.1400783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the immunocompromised host, invasive infection with the fungal pathogen Candida albicans is associated with high morbidity and mortality. Sporadic cases in otherwise normal individuals are rare, and they are thought to be associated with genetic predisposition. Using a mouse model of systemic infection with C. albicans, we identified the SM/J mouse strain as unusually susceptible to infection. Genetic linkage studies in informative [C57BL/6JxSM/J]F2 mice identified a major locus on distal chromosome 15, given the appellation Carg5, that regulates C. albicans replication in SM/J mice. Cellular and molecular immunophenotyping experiments, as well as functional studies in purified cell populations from SM/J and C57BL/6J, and in [C57BL/6JxSM/J]F2 mice fixed for homozygous or heterozygous Carg5 alleles, indicate that Carg5-regulated susceptibility in SM/J is associated with a complex defect in the myeloid compartment of these mice. SM/J neutrophils express lower levels of Ly6G, and importantly, they show significantly reduced production of reactive oxygen species in response to stimulation with fMLF and PMA. Likewise, CD11b(+)Ly6G(-)Ly6C(hi) inflammatory monocytes were present at lower levels in the blood of infected SM/J, recruited less efficiently at the site of infection, and displayed blunted oxidative burst. Studies in F2 mice establish strong correlations between Carg5 alleles, Ly6G expression, production of serum CCL2 (MCP-1), and susceptibility to C. albicans. Genomic DNA sequencing of chromatin immunoprecipitated for myeloid proinflammatory transcription factors IRF1, IRF8, STAT1 and NF-κB, as well as RNA sequencing, were used to develop a "myeloid inflammatory score" and systematically analyze and prioritize potential candidate genes in the Carg5 interval.
Collapse
Affiliation(s)
- Irena Radovanovic
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Vicki Leung
- Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3G 0B1, Canada; and
| | - Alexandra Iliescu
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silayuv E Bongfen
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Alaka Mullick
- National Research Council-Biotechnology Research Institute, Montreal, Quebec H4P 2R2, Canada
| | - David Langlais
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada;
| |
Collapse
|
16
|
Chen J, Zhang H, Zhou Z, Yang Z, Ding Y, Zhou Z, Zhong E, Arulanandam B, Baseman J, Zhong G. Chlamydial induction of hydrosalpinx in 11 strains of mice reveals multiple host mechanisms for preventing upper genital tract pathology. PLoS One 2014; 9:e95076. [PMID: 24736397 PMCID: PMC3988139 DOI: 10.1371/journal.pone.0095076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
The female lower genital tract is constantly exposed to microbial infection, some of which can ascend to and cause pathology such as hydrosalpinx in the upper genital tract, which can affect fertility. To understand host mechanisms for preventing upper genital tract pathology, we screened 11 inbred strains of mice for hydrosalpinx induction by C. muridarum. When examined on days 60 to 80 after intravaginal infection, the 11 strains fell into 3 groups based on their hydrosalpinx severity: CBA/J and SJL/J mice were highly susceptible with a hydrosalpinx score of 5 or greater; Balb/c, C57BL/6J, C57BL/10J, C3H/HeJ and C3H/HeN were susceptible with a score between 1 and <5; NOD/ShiLtJ, DBA/1J, DBA/2J and A/J were resistant with a score of <1. The diverse range of mouse susceptibility to hydrosalpinx induction may reflect the varied clinical outcomes of C. trachomatis-infected women. When the 11 strains were infected via an intrauterine inoculation to bypass the requirement for ascension, higher incidence and more severe hydrosalpinges were induced in most mice, indicating that the interaction between chlamydial ascension and host control of ascension is critical for determining susceptibility to hydrosalpinx development in many mice. However, a few mouse strains resisted significant exacerbation of hydrosalpinx by intrauterine infection, indicating that these mice have evolved ascension-independent mechanisms for preventing upper genital tract pathology. Together, the above observations have demonstrated that different strains of mice can prevent upper genital tract pathology by using different mechanisms.
Collapse
Affiliation(s)
- Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yiling Ding
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Edward Zhong
- Department of Economics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bernard Arulanandam
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Joel Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lack of long-lasting hydrosalpinx in A/J mice correlates with rapid but transient chlamydial ascension and neutrophil recruitment in the oviduct following intravaginal inoculation with Chlamydia muridarum. Infect Immun 2014; 82:2688-96. [PMID: 24711570 DOI: 10.1128/iai.00055-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lower genital tract infection with Chlamydia trachomatis and C. muridarum can induce long-lasting hydrosalpinx in the upper genital tract of women and female mice, respectively. However, A/J mice were highly resistant to induction of long-lasting hydrosalpinx by C. muridarum. We further compared host inflammatory responses and chlamydial infection courses between the hydrosalpinx-resistant A/J mice and CBA/J mice known to be susceptible to hydrosalpinx induction. Both mouse strains developed robust pyosalpinx during the acute phase followed by hydrosalpinx during the chronic phase. However, the hydrosalpinges disappeared in A/J mice by day 60 after infection, suggesting that some early hydrosalpinges are reversible. Although the overall inflammatory responses were indistinguishable between CBA/J and A/J mice, we found significantly more neutrophils in oviduct lumen of A/J mice on days 7 and 10, which correlated with a rapid but transient oviduct invasion by C. muridarum with a peak infection on day 7. In contrast, CBA/J mice developed a delayed and extensive oviduct infection. These comparisons have revealed an important role of the interactions of oviduct infection with inflammatory responses in chlamydial induction of long-lasting hydrosalpinx, suggesting that a rapid but transient invasion of oviduct by chlamydial organisms can prevent the development of the long-lasting hydrosalpinges.
Collapse
|
18
|
Toth LA, Trammell RA, Williams RW. Mapping complex traits using families of recombinant inbred strains: an overview and example of mapping susceptibility to Candida albicans induced illness phenotypes. Pathog Dis 2014; 71:234-48. [PMID: 24535895 DOI: 10.1111/2049-632x.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022] Open
Abstract
This overview and data-based example indicate how large families of recombinant inbred (RI) strains can be used to identify genetic loci and genes that underlie complex phenotypic differences among inbred mice. The RI approach requires no a priori expectations or assumptions about mechanisms that influence the phenotype, other than that variability is partly heritable. RI strains, which are produced by inbreeding the F2 progeny of two parental strains for at least 20 generations, have two major advantages. First, numerous subjects with identical genotypes can be analyzed to determine the average phenotype associated with that genotype, and second, it becomes practical to systematically accumulate large genome and phenome data sets for entire RI families, including sequence data, transcriptomes for many organs, and cell types and extensive data on gene-by-pathogen interactions. This enables the construction of far more sophisticated models of disease cause and progression. To illustrate the use of the systems genetics approach to infectious disease, we designed a simple study using three complementary families of RI strains (CXB, BXD, and AXB/BXA) that are differentially susceptible to intravenous challenge with the yeast Candida albicans.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | |
Collapse
|
19
|
Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. EUKARYOTIC CELL 2013; 13:329-40. [PMID: 24376002 DOI: 10.1128/ec.00336-13] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyroptosis is an inflammasome-mediated programmed cell death pathway triggered in macrophages by a variety of stimuli, including intracellular bacterial pathogens. Activation of pyroptosis leads to the secretion of interleukin-1β (IL-1β) and pore-mediated cell lysis. Although not considered an intracellular pathogen, Candida albicans is able to kill and, thereby, escape from macrophages. Here, we show that C. albicans-infected bone marrow-derived macrophages (BMDM) and murine J774 macrophages undergo pyroptotic cell death that is suppressed by glycine and pharmacologic inhibition of caspase-1. Infection of BMDM harvested from mice lacking components of the inflammasome revealed that pyroptosis was dependent on caspase-1, ASC, and NLRP3 and independent of NLRC4. In contrast to its role during intracellular bacterial infection, pyroptosis does not restrict C. albicans replication. Nonfilamentous Candida spp. did not trigger pyroptosis, while Candida krusei, which forms pseudohyphae in macrophages, triggered much lower levels than did C. albicans. Interestingly, a Saccharomyces cerevisiae strain from the filamentous background Σ1278 also triggered low, but significant, levels of pyroptosis. We have found that deletion of the transcription factor UPC2 decreases pyroptosis but has little effect on filamentation in the macrophage. In addition, a gain-of-function mutant of UPC2 induces higher levels of pyroptosis than does a matched control strain. Taken together, these data are most consistent with a model in which filamentation is necessary but not sufficient to trigger NLRP3 inflammasome-mediated pyroptosis. This is the first example of a fungal pathogen triggering pyroptosis and indicates that C. albicans-mediated macrophage damage is not solely due to hypha-induced physical disruption of cellular integrity.
Collapse
|
20
|
Bao S, Zhou X, Zhang L, Zhou J, To KKW, Wang B, Wang L, Zhang X, Song YQ. Prioritizing genes responsible for host resistance to influenza using network approaches. BMC Genomics 2013; 14:816. [PMID: 24261899 PMCID: PMC4046670 DOI: 10.1186/1471-2164-14-816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 11/06/2013] [Indexed: 01/17/2023] Open
Abstract
Background The genetic make-up of humans and other mammals (such as mice) affects their resistance to influenza virus infection. Considering the complexity and moral issues associated with experiments on human subjects, we have only acquired partial knowledge regarding the underlying molecular mechanisms. Although influenza resistance in inbred mice has been mapped to several quantitative trait loci (QTLs), which have greatly narrowed down the search for host resistance genes, only few underlying genes have been identified. Results To prioritize a list of promising candidates for future functional investigation, we applied network-based approaches to leverage the information of known resistance genes and the expression profiles contrasting susceptible and resistant mouse strains. The significance of top-ranked genes was supported by different lines of evidence from independent genetic associations, QTL studies, RNA interference (RNAi) screenings, and gene expression analysis. Further data mining on the prioritized genes revealed the functions of two pathways mediated by tumor necrosis factor (TNF): apoptosis and TNF receptor-2 signaling pathways. We suggested that the delicate balance between TNF’s pro-survival and apoptotic effects may affect hosts’ conditions after influenza virus infection. Conclusions This study considerably cuts down the list of candidate genes responsible for host resistance to influenza and proposed novel pathways and mechanisms. Our study also demonstrated the efficacy of network-based methods in prioritizing genes for complex traits. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-816) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Alaish SM, Smith AD, Timmons J, Greenspon J, Eyvazzadeh D, Murphy E, Shea-Donahue T, Cirimotich S, Mongodin E, Zhao A, Fasano A, Nataro JP, Cross AS. Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host. Gut Microbes 2013; 4:292-305. [PMID: 23652772 PMCID: PMC3744514 DOI: 10.4161/gmic.24706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-γ mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis.
Collapse
Affiliation(s)
- Samuel M. Alaish
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA,Correspondence to: Samuel M. Alaish,
| | - Alexis D. Smith
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jennifer Timmons
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jose Greenspon
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Daniel Eyvazzadeh
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Ebony Murphy
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Terez Shea-Donahue
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Shana Cirimotich
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Aiping Zhao
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Alessio Fasano
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA,Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - James P. Nataro
- Department of Pediatrics; University of Virginia School of Medicine; Charlottesville, VA USA
| | - Alan S Cross
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
22
|
Dual effects of exercise in dysferlinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2298-309. [PMID: 23624156 DOI: 10.1016/j.ajpath.2013.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 02/05/2023]
Abstract
Dysferlinopathy refers to a group of autosomal recessive muscular dystrophies due to mutations in the dysferlin gene causing deficiency of a membrane-bound protein crucially involved in plasma membrane repair. The condition is characterized by marked clinical heterogeneity, the different phenotypes/modes of presentation being unrelated to the genotype. For unknown reasons, patients are often remarkably active before the onset of symptoms. Dysferlin deficiency-related persistence of mechanically induced sarcolemma disruptions causes myofiber damage and necrosis. We postulate that limited myodamage may initially remain hidden with well-preserved resistance to physical strains. By subjecting dysferlin-deficient B6.A/J-Dysf(prmd) mice to long-term swimming exercise, we observed that concentric/isometric strain improved muscle strength and alleviated muscular dystrophy by limiting the accumulation of membrane lesions. By contrast, eccentric strain induced by long-term running in a wheel worsened the dystrophic process. Myofiber damage induced by eccentric strain increased with age, reflecting the accumulation of non-necrotic membrane lesions up to a critical threshold. This phenomenon was modulated by daily spontaneous activity. Transposed to humans, our results may suggest that the past activity profile shapes the clinical phenotype of the myopathy and that patients with dysferlinopathy should likely benefit from concentric exercise-based physiotherapy.
Collapse
|
23
|
Mustafi D, Maeda T, Kohno H, Nadeau JH, Palczewski K. Inflammatory priming predisposes mice to age-related retinal degeneration. J Clin Invest 2012; 122:2989-3001. [PMID: 22797304 DOI: 10.1172/jci64427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/07/2012] [Indexed: 12/22/2022] Open
Abstract
Disruption of cellular processes affected by multiple genes and accumulation of numerous insults throughout life dictate the progression of age-related disorders, but their complex etiology is poorly understood. Postmitotic neurons, such as photoreceptor cells in the retina and epithelial cells in the adjacent retinal pigmented epithelium, are especially susceptible to cellular senescence, which contributes to age-related retinal degeneration (ARD). The multigenic and complex etiology of ARD in humans is reflected by the relative paucity of effective compounds for its early prevention and treatment. To understand the genetic differences that drive ARD pathogenesis, we studied A/J mice, which develop ARD more pronounced than that in other inbred mouse models. Although our investigation of consomic strains failed to identify a chromosome associated with the observed retinal deterioration, pathway analysis of RNA-Seq data from young mice prior to retinal pathological changes revealed that increased vulnerability to ARD in A/J mice was due to initially high levels of inflammatory factors and low levels of homeostatic neuroprotective factors. The genetic signatures of an uncompensated preinflammatory state and ARD progression identified here aid in understanding the susceptible genetic loci that underlie pathogenic mechanisms of age-associated disorders, including several human blinding diseases.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
24
|
Trammell RA, Cox L, Pikora J, Murphy LL, Toth LA. Evaluation of an extract of North American ginseng (Panax quinquefolius L.) in Candida albicans-infected complement-deficient mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:414-421. [PMID: 22138349 DOI: 10.1016/j.jep.2011.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a widely consumed aromatic herb that is purported to have health benefits. Several studies report a beneficial impact of ginseng or its derivatives on Candida albicans infection in mice and suggest that its immune-modulatory properties contribute to this effect. However, these studies generally administered ginseng to experimental animals by injection, whereas people typically ingest ginseng. Furthermore, although disseminated candiasis is typically a disease of immune-impaired hosts, previous studies have generally used immune competent host species in the assessments. MATERIALS AND METHODS We evaluated the efficacy of an ingested extract of ginseng against Candida albicans infection in DBA/2J mice, which are highly susceptible to Candida albicans infection. A ginseng extract was added to the drinking water for two days before and for the remainder of the study after intravenous inoculation of mice with Candida albicans. Mice were evaluated for morbidity, mortality, Candida albicans titers, and concentrations of inflammatory cytokines and chemokines. RESULTS Ingestion of the ginseng extract did not significantly affect overall morbidity or mortality. However, ingestion of the extract was associated with significantly lower renal titers of Candida albicans and with significantly lower concentrations of some inflammatory cytokines in kidney and/or serum. CONCLUSIONS Assessment of morbidity, mortality, inflammatory markers, and renal titers after spontaneous ingestion of ginseng by susceptible hosts represents a comprehensive approach to characterizations of therapeutic efficacy against infectious agents. Our findings extend previous reports of the efficacy of ginseng against Candida albicans by demonstrating significant reductions in infectious load and some markers of inflammation in susceptible mice. Our data therefore support further assessment of the immune-modulatory properties of this widely consumed herb and its components.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | |
Collapse
|
25
|
Ramirez-Aquino R, Radovanovic I, Fortin A, Sciutto-Conde E, Fragoso-González G, Gros P, Aguilar-Delfin I. Identification of loci controlling restriction of parasite growth in experimental Taenia crassiceps cysticercosis. PLoS Negl Trop Dis 2011; 5:e1435. [PMID: 22206032 PMCID: PMC3243719 DOI: 10.1371/journal.pntd.0001435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022] Open
Abstract
Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a critical role in early protective inflammatory response to infection with T. crassiceps. Infection with the cestode Taenia solium causes cysticercosis in humans and pigs. Neurocysticercosis is a severe manifestation of T. solium infection that constitutes an important health concern in developing countries. Studies in humans living in areas of endemic disease and in pigs experimentally infected have suggested a large spectrum of permissiveness to T. solium multiplication, with the possible contribution of genetic factors. In the present report, we have used an experimental mouse model of intraperitoneal infection with Taenia crassiceps to study the potential role of genetic factors in regulating replication of this parasite. Our study focused on two inbred mouse strains A/J and C57BL/6J that are respectively permissive and non-permissive to intraperitoneal multiplication of T. crassiceps. We have used a set of AcB/BcA recombinant congenic strains of mice along with standard F2 crosses to decipher the complexity and nature of the genetic component of the A/J vs. C57BL/6J interstrain difference in permissiveness. Our results point to a major role of the complement component 5 (C5) in early response and protection against T. crassiceps infection.
Collapse
Affiliation(s)
- Ruben Ramirez-Aquino
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Anny Fortin
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Edda Sciutto-Conde
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso-González
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Canada
- * E-mail:
| | - Irma Aguilar-Delfin
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
26
|
Mullick A, Tremblay J, Leon Z, Gros P. A novel role for the fifth component of complement (C5) in cardiac physiology. PLoS One 2011; 6:e22919. [PMID: 21829669 PMCID: PMC3148243 DOI: 10.1371/journal.pone.0022919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/09/2011] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that C5-deficient A/J and recombinant congenic BcA17 mice suffer from cardiac dysfunction when infected with C. albicans blastospores intravenously. During these studies we had observed that, even in the control un-infected state, BcA17 hearts displayed alterations in gene expression that have been associated with pathological cardiac hypertrophy in comparison to parental C5-sufficient C57Bl/6J (B6) mice. Of note was an increase in the expression of Nppb, a member of the fetal gene program and a decrease in the expression of Rgs2, an inhibitor of the hypertrophic response. We now report that C5-deletion has also affected the expression of other elements of the fetal gene program. Moreover deleting the C5a receptor, C5aR, has essentially the same effect as deleting C5, indicating a key role for C5a-C5aR signaling in the phenotype. Having noted a pathological phenotype in the un-infected state, we investigated the role of C5 in the response to cardiac stress. In previous studies, comparison of the expression profiles of C. albicans-infected BcA17 and similarly infected B6 hearts had revealed a paucity of cardioprotective genes in the C5-deficient heart. To determine whether this was also directly linked to C5-deficiency, we tested the expression of 5 such genes in the C. albicans-infected C5aR(-/-) mice. We found again that deletion of C5aR recapitulated the alterations in stress response of BcA17. To determine whether our observations were relevant to other forms of cardiac injury, we tested the effect of C5-deficiency on the response to isoproterenol-induced hypertrophic stimulation. Consistent with our hypothesis, A/J, BcA17 and C5aR(-/-) mice responded with higher levels of Nppa expression than B6 and BALB/c mice. In conclusion, our results suggest that an absence of functional C5a renders the heart in a state of distress, conferring a predisposition to cardiac dysfunction in the face of additional injury.
Collapse
Affiliation(s)
- Alaka Mullick
- Biotechnology Research Institute, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
27
|
Ferreira RBR, Gill N, Willing BP, Antunes LCM, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One 2011; 6:e20338. [PMID: 21633507 PMCID: PMC3102097 DOI: 10.1371/journal.pone.0020338] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/29/2011] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota is composed of hundreds of species of bacteria, fungi
and protozoa and is critical for numerous biological processes, such as nutrient
acquisition, vitamin production, and colonization resistance against bacterial
pathogens. We studied the role of the intestinal microbiota on host resistance
to Salmonella enterica serovar Typhimurium-induced colitis.
Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that
disruption of the intestinal microbiota alters host susceptibility to infection.
Although all antibiotic treatments caused similar increases in pathogen
colonization, the development of enterocolitis was seen only when streptomycin
or vancomycin was used; no significant pathology was observed with the use of
metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice
developed severe pathology. We hypothesized that the intestinal microbiota
confers resistance to infectious colitis without affecting the ability of
S. Typhimurium to colonize the intestine. Indeed, different
antibiotic treatments caused distinct shifts in the intestinal microbiota prior
to infection. Through fluorescence in situ hybridization,
terminal restriction fragment length polymorphism, and real-time PCR, we showed
that there is a strong correlation between the intestinal microbiota composition
before infection and susceptibility to Salmonella-induced
colitis. Members of the Bacteroidetes phylum were present at significantly
higher levels in mice resistant to colitis. Further analysis revealed that
Porphyromonadaceae levels were also increased in these mice. Conversely, there
was a positive correlation between the abundance of
Lactobacillus sp. and predisposition to colitis. Our data
suggests that different members of the microbiota might be associated with
S. Typhimurium colonization and colitis. Dissecting the
mechanisms involved in resistance to infection and inflammation will be critical
for the development of therapeutic and preventative measures against enteric
pathogens.
Collapse
Affiliation(s)
- Rosana B. R. Ferreira
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
| | - Navkiran Gill
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin P. Willing
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The
University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew A. Croxen
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of
British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The
University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
28
|
Radovanovic I, Mullick A, Gros P. Genetic control of susceptibility to infection with Candida albicans in mice. PLoS One 2011; 6:e18957. [PMID: 21533108 PMCID: PMC3080400 DOI: 10.1371/journal.pone.0018957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/15/2011] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts, representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant) and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5 (P value = 2.43×10(-11)) and a novel effect on distal chromosome 11 (P value = 7.63×10(-9)). Compared to other C5-deficient strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival, concomitant with uniquely high levels of serum IFNγ. C5-independent genetic effects were further investigated by linkage analysis in an [A/JxAKR/J]F2 cross (n = 158) where the mutant Hc allele is fixed. These studies identified a chromosome 11 locus (Carg4, Candida albicans resistance gene 4; LOD = 4.59), and a chromosome 8 locus (Carg3; LOD = 3.95), both initially detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which regulate resistance to C. albicans infection in a C5-independent manner.
Collapse
Affiliation(s)
- Irena Radovanovic
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Alaka Mullick
- Biotechnology Research Institute, Montréal, Québec, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| |
Collapse
|
29
|
Abstract
Millions of people harbor latent infections of the fungus Histoplasma capsulatum. Such persistent infections represent a stalemate between mechanisms of virulence and the immune response. The differing responses of inbred mouse strains to the same pathogen reflect variation in the genes that control the outcome of infection. Here we show that a 250-fold difference in H. capsulatum susceptibility between inbred mouse strains is attributable to the genotype at the MHC H2 locus. Gene expression analysis of strains varying only at the H2 locus identified genotype-specific and genotype-independent expression signatures, including infection-induced genes such as the fungal pattern recognition receptor Clec7a. Surprisingly, B-cell-specific gene expression was negatively correlated with fungal burden, whereas neutrophil-specific genes were correlated with superior disease outcome. Indeed, disease outcome improved when B cells were eliminated and neutrophils were more active, a previously unknown aspect of the host response. These data refine the understanding of genetic influences on histoplasmosis, reveal how shifts in the composition of immune cell populations compel different disease outcomes, and uncover how innate immunity modulation alters histoplasmosis.
Collapse
|
30
|
Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16:774-80. [PMID: 20601951 DOI: 10.1038/nm.2175] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.
Collapse
|
31
|
Epp E, Walther A, Lépine G, Leon Z, Mullick A, Raymond M, Wendland J, Whiteway M. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 2010; 75:1182-98. [PMID: 20141603 DOI: 10.1111/j.1365-2958.2009.07038.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2 Delta/Delta and arp2 Delta/Delta arp3 Delta/Delta mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Meunier C, Cai J, Fortin A, Kwan T, Marquis JF, Turbide C, Van Der Kraak L, Jothy S, Beauchemin N, Gros P. Characterization of a major colon cancer susceptibility locus (Ccs3) on mouse chromosome 3. Oncogene 2009; 29:647-61. [PMID: 19915610 DOI: 10.1038/onc.2009.369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment of mice with the carcinogen azoxymethane (AOM) induces a number of lesions in the colon, including hyperplastic lesions, as well adenomas and carcinomas in situ. Inbred strains of mice show different responses to AOM-induced carcinogenesis. A/J mice are highly susceptible and develop a greater number of hyperplastic lesions and tumors (15-70 tumors per mouse) than resistant C57BL/6J mice (0-6 tumors per mouse). Susceptibility to AOM-induced tumors segregates as a co-dominant trait in (A x B6)F1 hybrids. Using a set of 23 AcB and BcA recombinant congenic mouse strains derived from A/J (susceptible) and B6 (resistant) parents, we observed that the number of hyperplastic lesions and tumors induced by AOM was under different genetic controls in AcB/BcA strains. The multiplicity of AOM-induced tumors is controlled by a major locus that we have mapped on the distal portion of chromosome 3, to which we have given the temporary designation colon cancer susceptibility locus 3 (Ccs3). B6 and A/J alleles at Ccs3 are associated with resistance and susceptibility, respectively. Haplotype analysis in key informative AcB/BcA strains restricts the size of the Ccs3 locus to a 14 Mb segment that contains 94 annotated genes. The expression level of all these genes in normal colon has been established by transcript profiling with microarrays, and has led to the identification of a subset of positional candidates that are expressed at high levels in this tissue. The 4q and 1p human chromosomal segments sharing syntenic homology with the mouse Ccs3 segment are known to be associated with inflammatory bowel diseases and colorectal tumors in humans, suggesting that the study of the mouse Ccs3 locus may help further the pathogenesis of these human conditions.
Collapse
Affiliation(s)
- C Meunier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Svirshchevskaya EV, Shevchenko MA, Huet D, Femenia F, Latgé JP, Boireau P, Berkova NP. Susceptibility of mice to invasive aspergillosis correlates with delayed cell influx into the lungs. Int J Immunogenet 2009; 36:289-99. [DOI: 10.1111/j.1744-313x.2009.00869.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol 2009; 83:10417-26. [PMID: 19706712 DOI: 10.1128/jvi.00514-09] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the prevalence of H5N1 influenza viruses in global avian populations, comparatively few cases have been diagnosed in humans. Although viral factors almost certainly play a role in limiting human infection and disease, host genetics most likely contribute substantially. To model host factors in the context of influenza virus infection, we determined the lethal dose of a highly pathogenic H5N1 virus (A/Hong Kong/213/03) in C57BL/6J and DBA/2J mice and identified genetic elements associated with survival after infection. The lethal dose in these hosts varied by 4 logs and was associated with differences in replication kinetics and increased production of proinflammatory cytokines CCL2 and tumor necrosis factor alpha in susceptible DBA/2J mice. Gene mapping with recombinant inbred BXD strains revealed five loci or Qivr (quantitative trait loci for influenza virus resistance) located on chromosomes 2, 7, 11, 15, and 17 associated with resistance to H5N1 virus. In conjunction with gene expression profiling, we identified a number of candidate susceptibility genes. One of the validated genes, the hemolytic complement gene, affected virus titer 7 days after infection. We conclude that H5N1 influenza virus-induced pathology is affected by a complex and multigenic host component.
Collapse
|
35
|
Qiu H, KuoLee R, Harris G, Chen W. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect 2009; 11:946-55. [PMID: 19573619 DOI: 10.1016/j.micinf.2009.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/28/2009] [Accepted: 06/16/2009] [Indexed: 11/17/2022]
Abstract
Acinetobacter baumannii is an important cause of both community-associated and nosocomial pneumonia, which have become increasingly difficult to treat because of the rapid development of resistance to multiple antibiotics. Despite its clinical importance, the pathogenesis of and host defense against respiratory A. baumannii infection remains largely unknown. To examine host factors that could contribute to the defense, we compared the susceptibilities of A/J and C57BL/6 mice to intranasal (i.n.) inoculation with A. baumannii. We found that A/J mice were significantly more susceptible to infection with higher mortality (P<0.05) and tissue bacterial burdens (P<0.01) as well as greater histopathology in the lung and spleen than C57BL/6 mice. More importantly, the high susceptibility of A/J mice was associated with a reduced local proinflammatory cytokine/chemokine (particularly IL-1beta, MIP-2 and TNF-alpha) responses and a significant delay and reduction in the early influx of neutrophils in the lung (P<0.05). Intranasal administration of neutrophil-inducing chemokine MIP-2 to A/J mice enhanced pulmonary neutrophil influx and partially restored host resistance to A. baumannii to a level comparable to the more resistant C57BL/6 mice. Our results imply that the early recruitment of neutrophils into the lung is critical for initiating an efficient host defense against respiratory A. baumannii infection.
Collapse
Affiliation(s)
- Hongyu Qiu
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | |
Collapse
|
36
|
Valdez Y, Grassl GA, Guttman JA, Coburn B, Gros P, Vallance BA, Finlay BB. Nramp1 drives an accelerated inflammatory response during Salmonella-induced colitis in mice. Cell Microbiol 2008; 11:351-62. [PMID: 19016783 DOI: 10.1111/j.1462-5822.2008.01258.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A recently developed model for enterocolitis in mice involves pre-treatment with the antibiotic streptomycin prior to infection with Salmonella enterica serovar Typhimurium (S. Typhimurium). The contribution of Nramp1/Slc11a1 protein, a critical host defence mechanism against S. Typhimurium, to the development of inflammation in this model has not been studied. Here, we analysed the impact of Nramp1 expression on the early development of colitis using isogenic Nramp1(+/+) and Nramp1(-/-) mice. We hypothesized that Nramp1 acts by rapidly inducing an inflammatory response in the gut mucosa creating an antibacterial environment and limiting spread of S. Typhimurium to systemic sites. We observed that Nramp1(+/+) mice showed lower numbers of S. Typhimurium in the caecum compared with Nramp1(-/-) mice at all times analysed. Acute inflammation was much more pronounced in Nramp1(+/+) mice 1 day after infection. The effect of Nramp1 on development of colitis was characterized by higher secretion of the pro-inflammatory cytokines IFN-gamma, TNF-alpha and MIP-1alpha and a massive infiltration of neutrophils and macrophages, compared with Nramp1(-/-) animals. These data show that an early and rapid inflammatory response results in protection against pathological effects of S. Typhimurium infection in Nramp1(+/+) mice.
Collapse
Affiliation(s)
- Yanet Valdez
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
37
|
Comparison of the susceptibilities of C57BL/6 and A/J mouse strains to Streptococcus suis serotype 2 infection. Infect Immun 2008; 76:3901-10. [PMID: 18573893 DOI: 10.1128/iai.00350-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important swine and human pathogen. Assessment of susceptibility to S. suis using animal models has been limited to monitoring mortality rates. We recently developed a hematogenous model of S. suis infection in adult CD1 outbred mice to study the in vivo development of an early septic shock-like syndrome that leads to death and a late phase that clearly induces central nervous system damage, including meningitis. In the present study, we compared the severities of septic shock-like syndrome caused by S. suis between adult C57BL/6J (B6) and A/J inbred mice. Clinical parameters, proinflammatory mediators, and bacterial clearance were measured to dissect potential immune factors associated with genetic susceptibility to S. suis infection. Results showed that A/J mice were significantly more susceptible than B6 mice to S. suis infection, especially during the acute septic phase of infection (100% of A/J and 16% of B6 mice died before 24 h postinfection). The greater susceptibility of A/J mice was associated with an exaggerated inflammatory response, as indicated by their higher production of tumor necrosis factor alpha, interleukin-12p40/p70 (IL-12p40/p70), gamma interferon, and IL-1beta, but not with different bacterial loads in the blood. In addition, IL-10 was shown to be responsible, at least in part, for the higher survival in B6 mice. Our findings demonstrate that A/J mice are very susceptible to S. suis infection and provide evidence that the balance between pro- and anti-inflammatory mediators is crucial for host survival during the septic phase.
Collapse
|
38
|
Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes Immun 2008; 9:536-45. [PMID: 18563168 DOI: 10.1038/gene.2008.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cryptococcus neoformans is a major cause of fungal pneumonia, meningitis and disseminated disease in the immune compromised host. Here we have used a clinically relevant model to investigate the genetic determinants of susceptibility to progressive cryptococcal pneumonia in C57BL/6J and CBA/J inbred mice. At 5 weeks after infection, the lung fungal burden was over 1000-fold higher in C57BL/6J compared to CBA/J mice. A genome-wide scan performed on 210 male and 203 female (CBA/J x C57BL/6J) F2 progeny using lung colony-forming units as a quantitative trait revealed a sex difference in genetic architecture with three loci (designated Cnes1-Cnes3) associated with susceptibility to cryptococcal pneumonia. Single locus analysis identified significant loci on chromosomes 3 (Cnes1) and 17 (Cnes2) with logarithm of the odds (LOD) scores of 4.09 (P=0.0110) and 7.30 (P<0.0001) that explained 8.9 and 15.9% of the phenotypic variance, respectively, in female CBAB6F2 and one significant locus on chromosome 17 (Cnes3) with a LOD score of 4.04 (P=0.010) that explained 8.6% of the phenotypic variance in male CBAB6F2 mice. Genome-wide pair-wise analysis revealed significant quantitative trait locus interactions in both the female and male CBAB6F2 progeny that collectively explained 43.8 and 19.5% of phenotypic variance in each sex, respectively.
Collapse
|
39
|
Vidal SM, Malo D, Marquis JF, Gros P. Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 2008; 26:81-132. [PMID: 17953509 DOI: 10.1146/annurev.immunol.26.021607.090304] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Forward genetics is an experimental approach in which gene mapping and positional cloning are used to elucidate the molecular mechanisms underlying phenotypic differences between two individuals for a given trait. This strategy has been highly successful for the study of inbred mouse strains that show differences in innate susceptibility to bacterial, parasitic, fungal, and viral infections. Over the past 20 years, these studies have led to the identification of a number of cell populations and critical biochemical pathways and proteins that are essential for the early detection of and response to invading pathogens. Strikingly, the macrophage is the point of convergence for many of these genetic studies. This has led to the identification of diverse pathways involved in extracellular and intracellular pathogen recognition, modification of the properties and content of phagosomes, transcriptional response, and signal transduction for activation of adaptive immune mechanisms. In models of viral infections, elegant genetic studies highlighted the pivotal role of natural killer cells in the detection and destruction of infected cells.
Collapse
Affiliation(s)
- S M Vidal
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
40
|
Marquis JF, Gros P. Genetic analysis of resistance to infections in mice: A/J meets C57BL/6J. Curr Top Microbiol Immunol 2008; 321:27-57. [PMID: 18727486 DOI: 10.1007/978-3-540-75203-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Susceptibility to infectious diseases has long been known to have a genetic component in human populations. This genetic effect is often complex and difficult to study as it is further modified by environmental factors including the disease-causing pathogen itself. The laboratory mouse has proved a useful alternative to implement a genetic approach to study host defenses against infections. Our laboratory has used genetic analysis and positional cloning to characterize single and multi-gene effects regulating inter-strain differences in the susceptibility of A/J and C57BL/6J mice to infection with several bacterial and parasitic pathogens. This has led to the identification of several proteins including Nrampl (Slc11a1), Birc1e, Icsbp, C5a, and others that play critical roles in the antimicrobial defenses of macrophages against intracellular pathogens. The use of AcB/BcA recombinant congenic strains has further facilitated the characterization of single gene effects in complex traits such as susceptibility to malaria. The genetic identification of erythrocyte pyruvate kinase (Pklr) and myeloid pantetheinase enzymes (Vnn1/3) as key regulators of blood-stage parasitemia has suggested that cellular redox potential may be a key biochemical determinant of Plasmodium parasite replication. Expanding these types of studies to additional inbred strains and to emerging stocks of mutagenized mice will undoubtedly continue to unravel the molecular basis of host defense against infections.
Collapse
Affiliation(s)
- J-F Marquis
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, QC H3G 1Y6, Canada
| | | |
Collapse
|
41
|
Roy MF, Riendeau N, Bédard C, Hélie P, Min-Oo G, Turcotte K, Gros P, Canonne-Hergaux F, Malo D. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. ACTA ACUST UNITED AC 2007; 204:2949-61. [PMID: 17998386 PMCID: PMC2118530 DOI: 10.1084/jem.20062606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mouse response to acute Salmonella typhimurium infection is complex, and it is under the influence of several genes, as well as environmental factors. In a previous study, we identified two novel Salmonella susceptibility loci, Ity4 and Ity5, in a (AcB61 × 129S6)F2 cross. The peak logarithm of odds score associated with Ity4 maps to the region of the liver and red blood cell (RBC)–specific pyruvate kinase (Pklr) gene, which was previously shown to be mutated in AcB61. During Plasmodium chabaudi infection, the Pklr mutation protects the mice against this parasite, as indicated by improved survival and lower peak parasitemia. Given that RBC defects have previously been associated with resistance to malaria and susceptibility to Salmonella, we hypothesized that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice. Using a fine mapping approach combined with complementation studies, comparative studies, and functional analysis, we show that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice through its effect on the RBC turnover and iron metabolism.
Collapse
Affiliation(s)
- Marie-France Roy
- Department of Human Genetics, McGill University Health Center, Montréal, Québec, H3G 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Raska M, Bĕláková J, Krupka M, Weigl E. Candidiasis--do we need to fight or to tolerate the Candida fungus? Folia Microbiol (Praha) 2007; 52:297-312. [PMID: 17702470 DOI: 10.1007/bf02931313] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Candidiases, infections caused by germination forms of the Candida fungus, represent a heterogeneous group of diseases from systemic infection, through mucocutaneous form, to vulvovaginal form. Although caused by one organism, each form is controlled by distinct host immune mechanisms. Phagocytosis by polymorphonuclears and macrophages is generally accepted as the host immune mechanism for Candida elimination. Phagocytes require proinflammatory cytokine stimulation which could be harmful and must be regulated during the course of infection by the activity of CD8+ and CD4+ T cells. In the vaginal tissue the phagocytes are inefficient and inflammation is generally an unwanted reaction because it could damage mucosal tissue and break the tolerance to common vagina antigens including the otherwise saprophyting Candida yeast. Recurrent form of vulvovaginal candidiasis is probably associated with breaking of such tolerance. Beside the phagocytosis, specific antibodies, complement, and mucosal epithelial cell comprise Candida eliminating immune mechanisms. They are regulated by CD4+ and CD8+ T cells which produce cytokines IL-12, IFN-gamma, IL-10, TGF-beta, etc. as the response to signals from dendritic cells specialized to sense actual Candida morphotypes. During the course of Candida infection proinflammatory signals (if initially necessary) are replaced successively by antiinflammatory signals. This balance is absolutely distinct during each candidiasis form and it is crucial to describe and understand the basic principles before designing new therapeutic and/or preventive approaches.
Collapse
Affiliation(s)
- M Raska
- Department of Immunology, Medical Faculty, Palacký University, 772 00 Olomouc, Czechia.
| | | | | | | |
Collapse
|
43
|
Mullick A, Leon Z, Min-Oo G, Berghout J, Lo R, Daniels E, Gros P. Cardiac failure in C5-deficient A/J mice after Candida albicans infection. Infect Immun 2006; 74:4439-51. [PMID: 16861630 PMCID: PMC1539620 DOI: 10.1128/iai.00159-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effect of a deficiency in the C5 component of complement on the pathophyisology of infection with the fungal pathogen Candida albicans was studied by using the A/J inbred mouse strain and the BcA17 congenic mouse strain. Acute infection caused by intravenous injection of C. albicans blastospores is associated with rapid fungal replication in the heart, brain, and, in particular, kidneys of C5-deficient mice. Histological studies and analysis of markers for tissue damage indicated that the heart is the organ that is most affected and that it ultimately fails in C5-deficient mice. In A/J and BcA17 mice, tissue damage is associated with (i) cellular infiltration in the heart, which is not seen in the kidney despite the higher fungal load in the latter organ, and (ii) a very strong inflammatory response, including elevated levels of many cytokines and chemokines. This results in cardiomyopathy, which is associated with elevated levels of creatine kinase and cardiac troponin I in the circulation. Damage to the cardiac muscle is associated with metabolic changes, including hypoglycemia, decreased lipid utilization resulting in elevated levels of cardiac triglycerides, and unproductive glucose utilization linked to a dramatic increase in the level of pyruvate dehydrogenase kinase 4 (Pdk4), a negative regulator of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Alaka Mullick
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2.
| | | | | | | | | | | | | |
Collapse
|
44
|
|