1
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
3
|
Rödl W, Taschauer A, Schaffert D, Wagner E, Ogris M. Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. Methods Mol Biol 2019; 1943:83-99. [PMID: 30838611 DOI: 10.1007/978-1-4939-9092-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nucleic acid-based therapies offer the option to treat tumors in a highly selective way, while toxicity towards healthy tissue can be avoided when proper delivery vehicles are used. We have recently developed carrier systems based on linear polyethylenimine, which after chemical coupling of protein- or peptide-based ligands can form nanosized polyplexes with plasmid DNA (pDNA) or RNA and deliver their payload into target cells by receptor-mediated endocytosis. This chapter describes the synthesis of LPEI from a precursor polymer and the current coupling techniques and purification procedure for peptide conjugates with linear polyethylenimine. A protocol is also given for the formation and characterization of polyplexes formed with LPEI conjugate and pDNA.
Collapse
Affiliation(s)
- Wolfgang Rödl
- Pharmaceutical Biotechnology, Center for System Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Alexander Taschauer
- Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Chemistry, Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Schaffert
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Manfred Ogris
- Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Chemistry, Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
4
|
Luo L, Yang Y, Du T, Kang T, Xiong M, Cheng H, Liu Y, Wu Y, Li Y, Chen Y, Zhang Q, Liu X, Wei X, Mi P, She Z, Gao G, Wei Y, Gou M. Targeted Nanoparticle-Mediated Gene Therapy Mimics Oncolytic Virus for Effective Melanoma Treatment. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201800173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Li Luo
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Yuping Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Yujiao Wu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Qianqian Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Peng Mi
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Zhigang She
- Department of Cardiology; Renmin Hospital of Wuhan University and Cardiovascular Research Institute; Wuhan University; Wuhan 430060 China
| | - Guangping Gao
- Horae Gene Therapy Center; University of Massachusetts Medical School; Worcester MA 01605 USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 China
| |
Collapse
|
5
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
6
|
Raup A, Wang H, Synatschke CV, Jérôme V, Agarwal S, Pergushov DV, Müller AHE, Freitag R. Compaction and Transmembrane Delivery of pDNA: Differences between l-PEI and Two Types of Amphiphilic Block Copolymers. Biomacromolecules 2017; 18:808-818. [DOI: 10.1021/acs.biomac.6b01678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - Dmitry V. Pergushov
- Department
of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | |
Collapse
|
7
|
Abstract
There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.
Collapse
Affiliation(s)
- Gianluca Civenni
- Laboratory of Experimental Therapeutics, IOR, Institute of Oncology Research, Via Vela 6, Bellinzona, 6500, Switzerland.
| |
Collapse
|
8
|
Lü JM, Liang Z, Wang X, Gu J, Yao Q, Chen C. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery. Nanomedicine (Lond) 2016; 11:1971-91. [PMID: 27456396 DOI: 10.2217/nnm-2016-0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop an improved delivery system for nucleic acids. MATERIALS & METHODS We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. RESULTS The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. CONCLUSION The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Zhengdong Liang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Xiaoxiao Wang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Jianhua Gu
- AFM/SEM Core Facility, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| |
Collapse
|
9
|
Taschauer A, Geyer A, Gehrig S, Maier J, Sami H, Ogris M. Up-Scaled Synthesis and Characterization of Nonviral Gene Delivery Particles for TransientIn VitroandIn VivoTransgene Expression. Hum Gene Ther Methods 2016; 27:87-97. [DOI: 10.1089/hgtb.2016.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander Taschauer
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| | - Antonia Geyer
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| | - Sebastian Gehrig
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| | - Julia Maier
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| | - Haider Sami
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| | - Manfred Ogris
- MMCT Laboratory of Macromolecular Cancer Therapeutics, Department for Pharmaceutical Chemistry, Faculty Center for Pharmacy, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Mehrotra N, Tripathi RM. Short interfering RNA therapeutics: nanocarriers, prospects and limitations. IET Nanobiotechnol 2016; 9:386-95. [PMID: 26647816 DOI: 10.1049/iet-nbt.2015.0018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the first experiment depicting gene inhibition using RNA interference mechanism, extensive research has been carried out to design targeted delivery systems that use short interfering RNAs (siRNAs) for gene expression regulation. Although several siRNAs loaded nanoparticle systems have reached clinical trial stage, cellular uptake, reticuloendothelial entrapment and endosomal escape still limit the efficacy of these drugs considerably. This review discusses about the RNA interference mechanism, nanostructures being used as non-viral vectors for targeted delivery, limitations of the common delivery systems and the current siRNA-loaded nanoparticle formulations undergoing clinical testing.
Collapse
Affiliation(s)
- Neha Mehrotra
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida 201303, India.
| |
Collapse
|
11
|
Au JLS, Yeung BZ, Wientjes MG, Lu Z, Wientjes MG. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities. Adv Drug Deliv Rev 2016; 97:280-301. [PMID: 26686425 PMCID: PMC4829347 DOI: 10.1016/j.addr.2015.12.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 02/08/2023]
Abstract
Advances in molecular medicine have led to identification of worthy cellular and molecular targets located in extracellular and intracellular compartments. Effectiveness of cancer therapeutics is limited in part by inadequate delivery and transport in tumor interstitium. Parts I and II of this report give an overview on the kinetic processes in delivering therapeutics to their intended targets, the transport barriers in tumor microenvironment and extracellular matrix (TME/ECM), and the experimental approaches to overcome such barriers. Part III discusses new concepts and findings concerning nanoparticle-biocorona complex, including the effects of TME/ECM. Part IV outlines the challenges in animal-to-human translation of cancer nanotherapeutics. Part V provides an overview of the background, current status, and the roles of TME/ECM in immune checkpoint inhibition therapy, the newest cancer treatment modality. Part VI outlines the development and use of multiscale computational modeling to capture the unavoidable tumor heterogeneities, the multiple nonlinear kinetic processes including interstitial and transvascular transport and interactions between cancer therapeutics and TME/ECM, in order to predict the in vivo tumor spatiokinetics of a therapeutic based on experimental in vitro biointerfacial interaction data. Part VII provides perspectives on translational research using quantitative systems pharmacology approaches.
Collapse
Affiliation(s)
- Jessie L-S Au
- Optimum Therapeutics LLC, 1815 Aston Avenue, Carlsbad, CA 92008, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA; Medical University of South Carolina, Charleston, SC 29425, USA; Taipei Medical University, Taipei, Taiwan, ROC.
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA
| | | | - Ze Lu
- Optimum Therapeutics LLC, 1815 Aston Avenue, Carlsbad, CA 92008, USA
| | | |
Collapse
|
12
|
Yousefpour Marzbali M, Yari Khosroushahi A, Movassaghpour A, Yeganeh H. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection. Chem Biol Interact 2016; 244:27-36. [DOI: 10.1016/j.cbi.2015.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/29/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
|
13
|
Kaushal N, Durmaz YY, Bao L, Merajver SD, ElSayed MEH. "Smart" Nanoparticles Enhance the Cytoplasmic Delivery of Anti-RhoC Silencing RNA and Inhibit the Migration and Invasion of Aggressive Breast Cancer Cells. Mol Pharm 2015; 12:2406-17. [PMID: 26020100 DOI: 10.1021/acs.molpharmaceut.5b00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rho-GTPases are small GTP-binding proteins that contribute to the epithelial-to-mesenchymal transition by regulating several cellular processes including organization of the actin cytoskeleton, cell motility, transcription, and cell proliferation. Overexpression of RhoC-GTPases (RhoC) in breast cancer has been implicated in poor disease prognosis due to increased cancer cells invasion, migration, and motility, which warranted its consideration as a therapeutic target for inhibiting breast cancer metastasis. Using silencing RNA (siRNA) molecules to knockdown RhoC expression is a promising approach to inhibit breast cancer metastases. However, transforming anti-RhoC siRNA molecules into a viable therapy remains a challenge due to the lack of a biocompatible carrier that can selectively deliver the RNA cargo into breast cancer cells. We report the use of a degradable, pH-sensitive, β-cyclodextrin (βCD)-based polymeric carrier that condenses anti-RhoC siRNA forming "smart" particles. These smart anti-RhoC particles were efficiently internalized, successfully escaped the endosome, and delivered the RNA cargo into the cytoplasm of SUM149 and MDA-MB-231 breast cancer cells. Our results show that anti-RhoC particles used at a low N/P ratio of 2.5/1 suppressed RhoC protein levels by 100% and 90% in SUM149 and MDA-MB-231 cells, respectively. Further, anti-RhoC particles inhibited the invasion, motility, and migration of SUM149 and MDA-MB-231 cells by 40-47%, 57-60%, and 61.5-73%, respectively. Smart particles encapsulating the scrambled siRNA sequence did not affect RhoC protein expression or the invasion, motility, and migration of SUM149 and MDA-MB-231 cells, which indicate the biocompatibility of the polymeric carrier and selectivity of the observed RhoC knockdown. These results collectively indicate the therapeutic potential of smart anti-RhoC particles in arresting the metastatic spread of breast cancer cells.
Collapse
Affiliation(s)
| | | | - LeWei Bao
- ‡Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- ‡Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed E H ElSayed
- §Macromolecular Science and Engineering Program, University of Michigan, 2300 Hayward Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, Li J, Sun X, Han J, Jiang C, Wu M, Zhang Z. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res 2015; 25:237-53. [PMID: 25613571 PMCID: PMC4650577 DOI: 10.1038/cr.2015.9] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
Collapse
Affiliation(s)
- Xiawei Wei
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Bin Shao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Min Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yaxiong Sang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiao Liang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Wei Wang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuntao Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Changyang Gong
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Maling Gou
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hongxing Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yinglan Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hanshuo Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Senyi Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Li Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyong Qian
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Sun Z, Liu B, Ruan X, Liu Q. An enhanced immune response against G250, induced by a heterologous DNA prime‑protein boost vaccination, using polyethyleneimine as a DNA vaccine adjuvant. Mol Med Rep 2014; 10:2657-62. [PMID: 25190325 DOI: 10.3892/mmr.2014.2537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/09/2014] [Indexed: 11/05/2022] Open
Abstract
The heterologous DNA prime‑protein boost vaccination approach has been widely applied as an immune treatment for carcinoma. However, inefficient delivery of DNA remains a major issue. In the present study, polyethyleneimine (PEI) was used as a DNA vector carrier to improve the transfection efficiency of the DNA vaccine and stimulate the humoral and cellular immunity against the renal carcinoma‑associated antigen G250. A protein vaccine was included in the immunization strategy in order to produce a prime‑boost effect. A DNA plasmid encoding an antigen G250 fragment was constructed and complexed with PEI. A protein vaccine against G250 was expressed in BL21 (DE3) Escherichia coli cells, by transformation with a pET28a(+)/C‑G250 plasmid. The protein was purified using a nickel‑nitriloacetic acid purification system. The in vitro transfection efficiency of the DNA vaccine was analyzed in HEK293 human endothelial kidney cells. The in vitro transfection efficiency in HEK293 cells was highest 48 h after transfection. Furthermore, mice were primed with 200 µg pVAX1/C‑250 plasmid complexed with PEI, and boosted using 50 µg of purified C‑G250 protein. In order to evaluate the immune response the antibody titer, splenocyte response, and interferon‑γ levels from CD8+ T‑cell splenocytes were analyzed using ELISA, lymphocyte proliferation or enzyme‑linked immunosorbent spot assays. Firstly, the pVAX1/C‑G250 plasmid was shown to be constructed successfully. As compared with the DNA group, the antibody titer, lymphocyte proliferation percentage, and cytokine production level induced by the DNA‑PEI and DNA‑PEI+C‑G250 groups were significantly higher. Furthermore, the DNA‑PEI+C‑G250 group exhibited the strongest humoral and cellular response. Owing to the adjuvant effect of PEI, the pVAX1/C‑G250‑PEI prime plus C‑G250 protein boost regimen could induce a strong immune response, and has been proved to be a potent vaccine candidate against renal cell carcinoma.
Collapse
Affiliation(s)
- Zeqiang Sun
- Department of Urinary Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shangdong 250013, P.R. China
| | - Bo Liu
- Intensive Care Unit, Affiliated Hospital of Jinin Medical College, Jining, Shandong 272000, P.R. China
| | - Xiyun Ruan
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qingyong Liu
- Department of Urinary Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shangdong 250013, P.R. China
| |
Collapse
|
16
|
Ruan GX, Zhang TY, Li LM, Zhang XG, Shen YQ, Tabata Y, Gao JQ. Hepatic-Targeted Gene Delivery Using Cationic Mannan Vehicle. Mol Pharm 2014; 11:3322-9. [DOI: 10.1021/mp5000899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gui-Xin Ruan
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tian-Yuan Zhang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li-Ming Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing-Guo Zhang
- Department
of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, P. R. China
| | - You-Qing Shen
- Center
for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yasuhiko Tabata
- Department
of Biomaterials, Field of Tissue Engineering, Institute for Frontier
Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
17
|
Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring. Cytotechnology 2013; 66:493-514. [PMID: 23775287 DOI: 10.1007/s10616-013-9601-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022] Open
Abstract
Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium-free DMEM and the FreeStyle™ 293 Expression Medium. Maximum transfectability was achieved by adjusting the ratio for complex formation to one mass part of DNA and three parts of PEI corresponding to an N/P (nitrogen residues/DNA phosphates) ratio of 23 representing a minimum amount of DNA for the polycation-mediated gene delivery. Applying this method, maximum transfectabilities between 70 and 96 % and a rHuEPO concentration of 1.6 μg mL(-1) 72 h post transfection were reached, when rHuEPO gene was expressed from the first position of the bicistronic mRNA. This corresponded to 10 % of the total protein concentration in the cell-free supernatant of the cultures in protein-free medium. Up to 30 % higher transfectabilities were found for cells of early passages compared to those from late passages under protein-free culture conditions. In contrast, when the same cells were propagated in serum-containing medium, higher transfectabilities were found for late-passage cells, while up to 40 % lower transfectabilities were observed for early-passage cells. Nucleotide pools were measured during all cell cultivations and the nucleoside triphosphate/uridine ratios were calculated. These 'nucleotide ratios' changed in an age-dependent manner and could be used to distinguish early- from late-passage cells. The observed effects were also dependent on the presence of serum in the culture. Nucleotide ratios were shown being applied to investigate the optimal passage number of cultured cell lines for achieving a maximum productivity in cultures used for transient gene expression. Furthermore, these nucleotide ratios proved to be different for transfected and untransfected cells, providing a high potential tool to monitor the status of transfection under various culture conditions.
Collapse
|
18
|
Park K, Yang JA, Lee MY, Lee H, Hahn SK. Reducible hyaluronic acid-siRNA conjugate for target specific gene silencing. Bioconjug Chem 2013; 24:1201-9. [PMID: 23731084 DOI: 10.1021/bc4001257] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite wide applications of polymer-drug conjugates, there are only a few polymer-siRNA conjugates like poly(ethylene glycol) conjugated siRNA. In this work, reducible hyaluronic acid (HA)-siRNA conjugate was successfully developed for target specific systemic delivery of siRNA to the liver. The conjugation of siRNA to HA made it possible to form a compact nanocomplex of siRNA with relatively nontoxic linear polyethyleneimine (LPEI). After characterization of HA-siRNA conjugate by size exclusion chromatography (SEC) and gel electrophoresis, its complex formation with LPEI was investigated with a particle analyzer. The HA-siRNA/LPEI complex had a mean particle size of ca. 250 nm and a negative or neutral surface charge at physiological condition. The reducible HA-siRNA/LPEI complex showed a higher in vitro gene silencing efficiency than noncleavable HA-siRNA/LPEI complex. Furthermore, after systemic delivery, apolipoprotein B (ApoB) specific HA-siApoB/LPEI complex was target specifically delivered to the liver, which resulted in statistically significant reduction of ApoB mRNA expression in a dose dependent manner. The HA-siRNA conjugate can be effectively applied as a model system to the treatment of liver diseases using various siRNAs and relatively nontoxic polycations.
Collapse
Affiliation(s)
- Kitae Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
19
|
Polyethyleneimine and DNA nanoparticles-based gene therapy for acute lung injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1293-303. [PMID: 23727098 DOI: 10.1016/j.nano.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Acute lung injury (ALI) is a devastating clinical syndrome causing a substantial mortality, but to date without any effective pharmacological management in clinic. Here, we tested whether nanoparticles based on polyethylenimine (PEI) and DNA could be a potential treatment. In mouse model of ALI induced by lipopolysaccharide (LPS) (10mg/kg), intravenous injection of PEI/DNA mediated a rapid (in 6h) and short-lived transgene expression in lung, with alveolar epithelial cells as major targets. When β2-Adrenergic Receptor (β2AR) was applied as therapeutic gene, PEI/β2AR treatment significantly attenuated the severity of ALI, including alveolar fluid clearance, lung water content, histopathology, bronchioalveolar lavage cellularity, protein concentration, and inflammatory cytokines in mice with pre-existing ALI. In high-dose LPS (40 mg/kg)-induced ALI, post-injury treatment of PEI/β2AR significantly improved the 5-day survival of mice from 28% to 64%. These data suggest that PEI/DNA nanoparticles could be an effective agent in future clinical application for ALI treatment. FROM THE CLINICAL EDITOR In this novel study, PEI/DNA nanoparticles are presented as an effective agent for the treatment of the devastating and currently untreatable syndrome of acute lung injury, using a rodent model system.
Collapse
|
20
|
Li M, Jiang Y, Xu C, Zhang Z, Sun X. Enhanced immune response against HIV-1 induced by a heterologous DNA prime-adenovirus boost vaccination using mannosylated polyethyleneimine as DNA vaccine adjuvant. Int J Nanomedicine 2013; 8:1843-54. [PMID: 23690682 PMCID: PMC3656813 DOI: 10.2147/ijn.s43827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The heterologous deoxyribonucleic acid (DNA) prime-adenovirus (AdV) boost vaccination approach has been widely applied as a promising strategy against human immunodeficiency virus (HIV)-1. However, the problem of inefficient delivery and lack of specificity of DNA vaccine remains a major issue. In this paper, to improve the transfection of DNA vaccine and realize dendritic cell targeting, we used mannosylated polyethyleneimine (man-PEI) as a DNA vector carrier. Method The DNA plasmid encoding antigen HIV gag fragment was constructed by polymerase chain reaction. Then the DNA plasmid was complexed with man-PEI. The in vitro transfection efficiency of man-PEI/DNA was analyzed on DC 2.4 cells. Mice were primed with 25 μg pVAX1-HIV gag plasmid complexed with man-PEI, 100 μg naked pVAX1-HIV gag plasmid, or empty pVAX1 vector and boosted by AdV encoding the same antigen. The antibody titer, CD4+ and CD8+ T-cell response, as well as interferon-γ and interleukin-4 levels in serum and in splenocytes culture were analyzed using flow cytometry or enzyme-linked immunosorbent assay to evaluate the immune response. To test a long-term effect of the vaccination regimen, CD8+ memory T-cell was also detected by flow cytometry. Results The pVAX1-HIV gag was constructed successfully. The in vitro transfection efficiency in dendritic cells was significantly higher than naked DNA plasmid. Compared with 100 μg naked DNA/AdV group, the immunoglobulin G2a antibody titer, T-cell response percentage, and cytokine production level induced by man-PEI/DNA/AdV group were significantly higher at a lower DNA dose. Also, the man-PEI/DNA could stimulate a memory CD8+ T-cell response. Conclusion Owing to the adjuvant effect of man-PEI, the man-PEI/pVAX1-HIV gag priming plus AdV boosting strategy proved to be a potent vaccine candidate against HIV, which could induce a stronger immune response with a lower DNA dose.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Aerosol delivery of eukaryotic translation initiation factor 4E-binding protein 1 effectively suppresses lung tumorigenesis in K-rasLA1 mice. Cancer Gene Ther 2013; 20:331-5. [PMID: 23640516 DOI: 10.1038/cgt.2013.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conventional radiotherapy or chemotherapy for the long-term survival of patients with lung cancer is still difficult for treatment in metastatic and advanced tumors. Therefore, the safe and effective approaches to the treatment of lung cancer are needed. In this study, the effect of delivered eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) on lung cancer progression was evaluated. Recombinant adeno-associated virus (rAAV)-M3/4E-BP1 was delivered into 6-week-old K-rasLA1 lung cancer model mice through a nose-only inhalation system twice a week for 4 weeks. Long-term repeated delivery of 4E-BP1 effectively reduced tumor progression in the lungs of K-rasLA1 mice. Reduction of eIF4E by overexpression of 4E-BP1 resulted in suppression of cap-dependent protein expression of basic fibroblast growth factor (bFGF or FGF-2) and vascular endothelial growth factor (VEGF). In addition, delivered 4E-BP1 inhibited the proliferation of lung cancer cells in K-rasLA1 mice model. Our results suggest that long-term repeated viral delivery of 4E-BP1 may provide a useful tool for designing lung cancer treatment.
Collapse
|
22
|
Hwang SK, Chang SH, Minai-Tehrani A, Kim YS, Cho MH. Lentivirus-AIMP2-DX2 shRNA suppresses cell proliferation by regulating Akt1 signaling pathway in the lungs of AIMP2⁺/⁻ mice. J Aerosol Med Pulm Drug Deliv 2013; 26:165-73. [PMID: 23517169 DOI: 10.1089/jamp.2011.0959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The long-term survival of lung cancer patients treated with conventional therapies remains poor and has changed little in decades. The need for novel approaches remains urgent. Aerosol-mediated delivery of genes has potential for the treatment of a broad spectrum of pulmonary disorders and may offer numerous advantages over invasive modes of delivery. METHODS The potential effects of aerosol-delivered lentiviral-based short hairpin AIMP2 lacking exon 2 (shDX2) on lung tumorigenesis were studied. Lentiviral-based shDX2 was delivered into AIMP2(+/-) mice through a nose-only inhalation system twice a week for 4 weeks. RESULTS AND CONCLUSIONS The effects of shDX2 on lung cancer progression and the Akt1-mTOR-p70S6K signaling pathway were evaluated. Long-term repeated delivery of lentiviral-based shDX2 suppressed lung tumor progression significantly by inhibiting Akt1-related signals and decreasing both protein synthesis and angiogenesis. In vivo, the aerosol-mediated application of lentiviral-based short hairpin RNAs was successful in achieving potent and specific knockdown of the target. The collective results indicate the therapeutic potential of the repeated delivery of shDX2 for lung cancer treatment and prevention.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
23
|
Kardia E, Yusoff NM, Zakaria Z, Yahaya B. Aerosol-based delivery of fibroblast cells for treatment of lung diseases. J Aerosol Med Pulm Drug Deliv 2013; 27:30-4. [PMID: 23409833 DOI: 10.1089/jamp.2012.1020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cell-based therapy has great potential to treat patients with lung diseases. The administration of cells into an injured lung is one method of repairing and replacing lost lung tissue. However, different types of delivery have been studied and compared, and none of the techniques resulted in engraftment of a high number of cells into the targeted organ. In this in vitro study, a novel method of cell delivery was introduced to investigate the possibility of delivering aerosolized skin-derived fibroblasts. METHODS Skin-derived fibroblasts were trypsinized and resuspended in growth medium. A syringe filled with cells (10(5) cells/mL) was attached to MicroSprayer(®) Aerosolizer, a device that can modify a liquid into an aerosol. The tip of the MicroSprayer Aerosolizer was channeled into a T25 flask containing growth medium. Survivability following aerosolization was observed on a daily basis. HeLa cells were used for comparison. The same aerosolization and culture methods were used to treat HeLa cells. RESULTS One day following aerosolization, skin-derived fibroblasts showed no sign of vacuolation due to cell stress. They attached to the surface of the flask, indicating that most of them survived aerosolization. The surviving cells were also able to proliferate rapidly, forming a confluent monolayer of cells at day 4. In contrast, HeLa cells were unable to proliferate even after 21 days of culture. CONCLUSIONS This study provides the first evidence that cells can be aerosolized without the risk of low cell survivability and stress. The high survival rate of fibroblast cells following aerosolization illustrates the potential for delivering of such cells in future aerosol cell-based therapy to treat lung diseases.
Collapse
Affiliation(s)
- E Kardia
- 1 Cluster for Regenerative Medicine, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Pulau Pinang, Malaysia
| | | | | | | |
Collapse
|
24
|
Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals (Basel) 2013; 6:223-50. [PMID: 24275949 PMCID: PMC3816685 DOI: 10.3390/ph6020223] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/19/2013] [Accepted: 02/01/2013] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi) is rapidly becoming an important method for analyzing gene functions in many eukaryotes and holds promise for the development of therapeutic gene silencing. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, i.e. small interfering RNAs (siRNAs) and microRNAs (miRNAs), are central to RNAi. Drug discovery studies and novel treatments of siRNAs are currently targeting a wide range of diseases, including various viral infections and cancers. Lung diseases in general are attractive targets for siRNA therapeutics because of their lethality and prevalence. In addition, the lung is anatomically accessible to therapeutic agents via the intrapulmonary route. Recently, increasing evidence indicates that miRNAs play an important role in lung abnormalities, such as inflammation and oncogenesis. Therefore, miRNAs are being targeted for therapeutic purposes. In this review, we present strategies for RNAi delivery and discuss the current state-of-the-art RNAi-based therapeutics for various lung diseases.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 105-8461, Japan; E-Mail: (K.K.)
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 105-8461, Japan; E-Mail: (K.K.)
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; E-Mails: (Y.F.); (F.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3542-2511; Fax: +81-3-5565-0727
| |
Collapse
|
25
|
Stefanov AN, Fox J, Haston CK. Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice. PLoS Genet 2013; 9:e1003203. [PMID: 23341783 PMCID: PMC3547790 DOI: 10.1371/journal.pgen.1003203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/14/2012] [Indexed: 01/30/2023] Open
Abstract
Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes. Of these genes, Trim16 was identified to have strain-dependent expression in the lung, which we determined was due to sequence variation in the promoter. Over-expression of Trim16 by plasmid injection increased pulmonary fibrosis, and bronchoalveolar lavage levels of both interleukin 12/23-p40 and neutrophils, in bleomycin treated B6.C3H-Blmpf2 subcongenic mice compared to subcongenic mice treated with bleomycin only, which follows the C57BL/6J versus C3H/HeJ strain difference in these traits. In summary we demonstrate that genetic variation in Trim16 leads to its strain-dependent expression, which alters susceptibility to bleomycin-induced pulmonary fibrosis in mice. Genetic differences within the population influence an individual's susceptibility to the lung disease pulmonary fibrosis. As environmental factors also have a tremendous effect on the development of this disease, investigations in an animal model can reveal the genetic basis of this trait, under controlled circumstances. Starting from previous work that had identified a genomic region linked to fibrosis susceptibility in mice, we assayed the fibrosis response of lines of mice specifically bred to contain reduced portions of the original genetic interval, and we narrowed our study to 13 genes. Genetic evaluation pointed to the gene Trim16 as a prime candidate for affecting fibrosis, and we identified genetic variations to alter its transcription. Our functional studies showed that Trim16 injected into the specifically bred, and bleomcyin-treated, mice significantly increased their pulmonary fibrosis levels. Further evaluation of the mice showed the increase to be associated with known enhancers of fibrosis, neutrophils and interleukin12/23-p40. This study shows that genetic variation in Trim16 affects both the lung tissue inflammatory response and the development of pulmonary fibrosis in mice and thus provides a novel pathway to fibrosis development for subsequent clinical investigation.
Collapse
Affiliation(s)
- Anguel N. Stefanov
- Meakins-Christie Laboratories and Department of Medicine, McGill University, Montreal, Canada
| | - Jessica Fox
- Meakins-Christie Laboratories and Department of Medicine, McGill University, Montreal, Canada
| | - Christina K. Haston
- Meakins-Christie Laboratories and Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
26
|
Rödl W, Schaffert D, Wagner E, Ogris M. Synthesis of polyethylenimine-based nanocarriers for systemic tumor targeting of nucleic acids. Methods Mol Biol 2013; 948:105-20. [PMID: 23070766 DOI: 10.1007/978-1-62703-140-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleic acid-based therapies offer the option to treat tumors in a highly selective way, while toxicity towards healthy tissue can be avoided when proper delivery vehicles are used. We have recently developed carrier systems based on linear polyethylenimine, which after chemical coupling of proteinous or peptidic ligands can form nanosized polyplexes with plasmid DNA or RNA and deliver their payload into target cells by receptor-mediated endocytosis. This chapter describes the synthesis of linear PEI (LPEI) from a precursor polymer and the current coupling techniques and purification procedure for peptide conjugates with linear polyethylenimine. A protocol is also given for the formation and characterization of polyplexes formed with LPEI conjugate and plasmid DNA.
Collapse
Affiliation(s)
- Wolfgang Rödl
- Department of Pharmacy, Center for System Based Drug Research, Pharmaceutical Biotechnology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
27
|
Grant EV, Thomas M, Fortune J, Klibanov AM, Letvin NL. Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur J Immunol 2012; 42:2937-48. [DOI: 10.1002/eji.201242410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/05/2012] [Accepted: 08/01/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Evita V. Grant
- Division of Viral Pathogenesis; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts USA
| | - Mini Thomas
- Department of Chemistry; Purdue University; West Lafayette Indiana USA
| | - Jennifer Fortune
- Department of Chemistry and Division of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - Alexander M. Klibanov
- Department of Chemistry and Division of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - Norman L. Letvin
- Division of Viral Pathogenesis; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
28
|
Minai-Tehrani A, Park YC, Hwang SK, Kwon JT, Chang SH, Park SJ, Yu KN, Kim JE, Shin JY, Kim JH, Kang B, Hong SH, Cho MH. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice. J Vet Sci 2012; 12:309-17. [PMID: 22122896 PMCID: PMC3232389 DOI: 10.4142/jvs.2011.12.4.309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barnes PF, Samten B, Shams H, Vankayalapatib R. Progress in understanding the human immune responses to Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 89 Suppl 1:S5-9. [PMID: 20006306 DOI: 10.1016/s1472-9792(09)70004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of an effective vaccine against tuberculosis hinges on an improved understanding of the human immune response to Mycobacterium tuberculosis. Work in this area at the University of Texas Health Science Center at Tyler has led to advances in four areas: (1) natural killer cells contribute to innate immunity by lysing M. tuberculosis-infected mononuclear phagocytes, and to adaptive immunity by enhancing the CD8+ T-cell effector function and inhibiting expansion of T regulatory cells; (2) Interferon-gamma plays a central role in resistance to many intracellular pathogens, including M. tuberculosis, and we have identified three transcription factors that bind to the Interferon-gamma proximal promoter and increase Interferon-gamma transcription in live T-cells that are activated by M. tuberculosis antigens; (3) A DNA vaccine that encodes the M. tuberculosis 10fts;kDa culture filtrate protein and the lysosomal integral membrane protein-2 was produced to direct vaccine antigens to the MHC class II processing and presentation pathway. When this vaccine was coated with polyethylenimine and administered to mice, it yielded a remarkably potent pulmonary immune response that reduced the bacillary burden by 90% after M. tuberculosis challenge; (4) The early secreted antigenic target of 6fts;kDa (ESAT-6) is a putative vaccine antigen. We found that high concentrations of this antigen markedly inhibit Interferon-gamma production by T-cells and are working to understand the molecular mechanisms underlying this effect. Developing methods to enhance NK cell functions that favor protective immunity, increase interferon-gamma transcription, elicit protective pulmonary immune responses and prevent ESAT-6 from inhibiting T-cell function will contribute significantly to development of antituberculosis vaccines.
Collapse
Affiliation(s)
- Peter F Barnes
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | | | | | | |
Collapse
|
30
|
Mohammadi Z, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T, Najafabadi AR, Tehrani MR. In vivo transfection study of chitosan-DNA-FAP-B nanoparticles as a new non viral vector for gene delivery to the lung. Int J Pharm 2011; 421:183-8. [PMID: 21979252 DOI: 10.1016/j.ijpharm.2011.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
Gene therapy targeted at the respiratory epithelium holds therapeutic potential for diseases such as cystic fibrosis and lung cancer. We recently reported that Chitosan-DNA-FAP-B nanoparticles are good candidates for targeted gene delivery to fibronectin molecules (FAP-B receptors) of lung epithelial cell membrane. In this study Chitosan-DNA-FAP-B nanoparticles were nebulized to mice using air jet nebulizer. The effect of nebulization on size, zeta potential and DNA binding ability of nanoparticles were studied. The level of gene expression in the mice lungs was evaluated. Nebulization did not affect the physicochemical properties of nanoparticles. Aerosol delivery of Chitosan-DNA-FAP-B nanoparticles resulted in 16-fold increase of gene expression in the mice lungs compared with Chitosan-DNA nanoparticles. This study suggested that Chitosan-FAP-B nanoparticle can be a promising carrier for targeted gene delivery to the lung.
Collapse
Affiliation(s)
- Z Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
31
|
Richard-Fiardo P, Cambien B, Pradelli E, Beilvert F, Pitard B, Schmid-Antomarchi H, Schmid-Alliana A. Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Ther 2011; 18:761-72. [DOI: 10.1038/cgt.2011.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Abstract
IMPORTANCE OF THE FIELD Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. AREAS COVERED IN THIS REVIEW The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. WHAT THE READER WILL GAIN This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. TAKE HOME MESSAGE A thorough understanding of biological barriers and the structure-activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 South Manassas St, Cancer Research Building RM 226, Memphis, TN 38103, USA
| | | |
Collapse
|
33
|
Yu KN, Minai-Tehrani A, Chang SH, Hwang SK, Hong SH, Kim JE, Shin JY, Park SJ, Kim JH, Kwon JT, Jiang HL, Kang B, Kim D, Chae CH, Lee KH, Yoon TJ, Beck GR, Cho MH. Aerosol delivery of small hairpin osteopontin blocks pulmonary metastasis of breast cancer in mice. PLoS One 2010; 5:e15623. [PMID: 21203518 PMCID: PMC3008732 DOI: 10.1371/journal.pone.0015623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background Metastasis to the lung may be the final step in the breast cancer-related morbidity. Conventional therapies such as chemotherapy and surgery are somewhat successful, however, metastasis-related breast cancer morbidity remains high. Thus, a novel approach to prevent breast tumor metastasis is needed. Methodology/Principal Finding Aerosol of lentivirus-based small hairpin osteopontin was delivered into mice with breast cancer twice a week for 1 or 2 months using a nose-only inhalation system. The effects of small hairpin osteopontin on breast cancer metastasis to the lung were evaluated using near infrared imaging as well as diverse molecular techniques. Aerosol-delivered small hairpin osteopontin significantly decreased the expression level of osteopontin and altered the expression of several important metastasis-related proteins in our murine breast cancer model. Conclusion/Significance Aerosol-delivered small hairpin osteopontin blocked breast cancer metastasis. Our results showed that noninvasive targeting of pulmonary osteopontin or other specific genes responsible for cancer metastasis could be used as an effective therapeutic regimen for the treatment of metastatic epithelial tumors.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Jin Park
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hye Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Taek Kwon
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hu-Lin Jiang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bitna Kang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Duyeol Kim
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chan-Hee Chae
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kee-Ho Lee
- Laboratory of Molecular Oncology, Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jong Yoon
- Department of Applied BioScience, CHA University, Seoul, Republic of Korea
| | - George R. Beck
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Günther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm 2010; 77:438-49. [PMID: 21093588 DOI: 10.1016/j.ejpb.2010.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 12/01/2022]
Abstract
RNA interference (RNAi) is a promising strategy to inhibit the expression of pathologically relevant genes, which show aberrant (over-)expression, e.g. in tumors or other pathologies. The induction of RNAi relies on small interfering RNAs (siRNAs), which trigger the specific mRNA degradation. Their instability and poor delivery into target tissues including the lung, however, so far severely limits the therapeutic use of siRNAs and requires the development of nanoscale delivery systems. Polyethylenimines (PEIs) are synthetic polymers, which are able to form non-covalent complexes with siRNAs. These nanoscale complexes ('nanoplexes') allow the protection of siRNAs from nucleolytic degradation, their efficient cellular uptake through endocytosis and intracellular release through the 'proton sponge effect'. Chemical modifications of PEIs as well as the coupling of cell/tissue-specific ligands are promising approaches to increase the biocompatibility, specificity and efficacy of PEI-based nanoparticles. This review article gives a comprehensive overview of pre-clinical in vivo studies on the PEI-mediated delivery of therapeutic siRNAs in various animal models. It discusses the chemical properties of PEIs and PEI modifications, and their influences on siRNA knockdown efficacy, on adverse effects of the polymer or the nanoplex and on siRNA biodistribution in vivo. Beyond systemic application, PEI-based complexation allows the local siRNA application to the lung. Biodistribution studies demonstrate cellular uptake of PEI-complexed, but not of naked siRNAs in the lung with little systemic availability of the siRNAs, indicating the usefulness of this approach for the targeting of genes, which are pathologically relevant in lung tumors or lung metastases. Taken together, (i) PEI and PEI derivatives may represent an efficient delivery platform for siRNAs, (ii) siRNA-mediated induction of RNAi is a promising approach for the knockdown of pathologically relevant genes, and (iii) when sufficiently addressing biocompatibility issues, the locoregional delivery of PEI/siRNA complexes may become an attractive therapeutic strategy for the treatment of lung diseases with little systemic side effects.
Collapse
Affiliation(s)
- Melanie Günther
- Institute of Pharmacology, Philipps-University, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Maasch C, Vater A, Buchner K, Purschke WG, Eulberg D, Vonhoff S, Klussmann S. Polyetheylenimine-polyplexes of Spiegelmer NOX-A50 directed against intracellular high mobility group protein A1 (HMGA1) reduce tumor growth in vivo. J Biol Chem 2010; 285:40012-8. [PMID: 20961861 DOI: 10.1074/jbc.m110.178533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High mobility group A1 (HMGA1) proteins belong to a group of architectural transcription factors that are overexpressed in a range of human malignancies, including pancreatic adenocarcinoma. They promote anchorage-independent growth and epithelial-mesenchymal transition and are therefore suggested as potential therapeutic targets. Employing in vitro selection techniques against a chosen fragment of HMGA1, we have generated biostable l-RNA oligonucleotides, so-called Spiegelmers, that specifically bind HMGA1b with low nanomolar affinity. We demonstrate that the best binding Spiegelmers, NOX-A50 and NOX-f33, compete HMGA1b from binding to its natural binding partner, AT-rich double-stranded DNA. We describe a formulation method based on polyplex formation with branched polyethylenimine for efficient delivery of polyethylene glycol-modified Spiegelmers and show improved tissue distribution and persistence in mice. In a xenograft mouse study using the pancreatic cancer cell line PSN-1, subcutaneous administration of 2 mg/kg per day NOX-A50 formulated in polyplexes showed an enhanced delivery of NOX-A50 to the tumor and a significant reduction of tumor volume. Our results demonstrate that intracellular targets can be successfully addressed with a Spiegelmer using polyethylenimine-based delivery and underline the importance of HMGA1 as a therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Christian Maasch
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, D-10589 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang J, Lu Z, Wientjes MG, Au JLS. Delivery of siRNA therapeutics: barriers and carriers. AAPS JOURNAL 2010; 12:492-503. [PMID: 20544328 DOI: 10.1208/s12248-010-9210-4] [Citation(s) in RCA: 539] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/01/2010] [Indexed: 12/29/2022]
Abstract
RNA interference is a naturally occurring endogenous regulatory process where short double-stranded RNA causes sequence-specific posttranscriptional gene silencing. Small interference RNA (siRNA) represents a promising therapeutic strategy. Clinical evaluations of siRNA therapeutics in locoregional treatment settings began in 2004. Systemic siRNA therapy is hampered by the barriers for siRNA to reach their intended targets in the cytoplasm and to exert their gene silencing activity. The three goals of this review were to provide an overview of (a) the barriers to siRNA delivery, from the perspectives of physicochemical properties of siRNA, pharmacokinetics and biodistribution, and intracellular trafficking; (b) the non-viral siRNA carriers including cell-penetrating peptides, polymers, dendrimers, siRNA bioconjugates, and lipid-based siRNA carriers; and (c) the current status of the clinical trials of siRNA therapeutics.
Collapse
Affiliation(s)
- Jie Wang
- Optimum Therapeutics LLC, The Ohio State University Science Tech Village, Columbus, 43212, USA.
| | | | | | | |
Collapse
|
37
|
Aneja MK, Geiger J, Imker R, Uzgun S, Kormann M, Hasenpusch G, Maucksch C, Rudolph C. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells. Exp Mol Med 2010; 41:919-34. [PMID: 19745601 DOI: 10.3858/emm.2009.41.12.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.
Collapse
Affiliation(s)
- Manish Kumar Aneja
- Division of Molecular Pulmonology, Department of Pediatrics, Ludwig-Maximilians University, Lindwurmstrasse 2A, 80337 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Arote RB, Lee ES, Jiang HL, Kim YK, Choi YJ, Cho MH, Cho CS. Efficient Gene Delivery with Osmotically Active and Hyperbranched Poly(ester amine)s. Bioconjug Chem 2009; 20:2231-41. [DOI: 10.1021/bc900184k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rohidas B. Arote
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Eun-Sun Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Hu-Lin Jiang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - You-Kyoung Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Myung-Haing Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, South Korea
| |
Collapse
|
39
|
Vectors for pulmonary gene therapy. Int J Pharm 2009; 390:84-8. [PMID: 19825403 DOI: 10.1016/j.ijpharm.2009.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 10/03/2009] [Indexed: 11/22/2022]
Abstract
The success of gene transfer in preclinical animal models and proof of principle clinical studies has made gene therapy an attractive concept for disease treatment. A variety of diseases affecting the lung are candidates for gene therapy. Delivery of genes to the lungs seems to be straightforward, because of the easy accessibility of epithelial cells via the airways. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of the diseased state have proven elusive. This review presents a brief summary about current status and future prospects in the development of viral and non-viral strategies for pulmonary gene therapy.
Collapse
|
40
|
Glud SZ, Bramsen JB, Dagnaes-Hansen F, Wengel J, Howard KA, Nyengaard JR, Kjems J. Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides 2009; 19:163-8. [PMID: 19441893 DOI: 10.1089/oli.2008.0175] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of systemic siRNA therapeutics for RNA interference-mediated silencing of disease genes is limited by serum instability and inadequate biodistribution. We have previously reported on the EGFP gene silencing effect of chitosan/siRNA nanoparticles in the bronchoepithelium of mice lungs following intranasal delivery and improved serum stability and reduced off-targeting effects in vitro by incorporation of locked nucleic acid (LNA). In this study, we examine the pulmonary gene silencing effect of siLNAs targeting enhanced-green-fluorescent-protein (EGFP) in lung bronchoepithelium upon intravenous delivery of naked siLNAs and upon intranasal delivery of either naked siLNA or chitosan/siLNA nanoparticles. We show that naked siLNA administered intravenously efficiently reduces the EGFP protein expression. A similar effect is obtained with intranasal delivery of chitosan nanoparticles containing siLNA whereas intranasally instilled naked siLNA did not cause a knockdown.
Collapse
Affiliation(s)
- Sys Zoffmann Glud
- Interdisciplinary Nanoscience Center, Arhus University, Arhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 2009; 61:710-20. [PMID: 19356738 DOI: 10.1016/j.addr.2009.04.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/01/2009] [Indexed: 12/19/2022]
Abstract
RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.
Collapse
Affiliation(s)
- Kenneth Alan Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, 8000 Aarhus C, Denmark.
| |
Collapse
|
42
|
Klucar P, Barnes PF, Kong Y, Howard ST, Pang X, Huang FF, Tvinnereim AR, Samten B, Shams H. Vaccination strategies to enhance local immunity and protection against Mycobacteriun tuberculosis. Vaccine 2009; 27:1816-24. [PMID: 19402204 PMCID: PMC2768422 DOI: 10.1016/j.vaccine.2009.01.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To determine the immunogenicity and protective efficacy of the Mycobacterium tuberculosis 10 kD culture filtrate protein (CFP10), and to evaluate strategies that enhance local immunity, we used C57Bl/6 DR4 mice that were transgenic for human HLA DRB1 0401, because CFP10 contains epitopes for DRB1 0401 but not for C57Bl/6 mice. Intramuscular immunization with a DNA vaccine encoding CFP10 elicited production of IFN-gamma by systemic CD4+ T cells, and one intravenous dose of the CFP10-based DNA vaccine coated with polyethylenimine (PEI) stimulated IFN-gamma production by lung CD4+ cells and reduced the pulmonary bacillary burden. We conclude that CFP10 is a potential vaccine candidate and that coating vaccines with PEI enhances local protective immunity to tuberculosis
Collapse
Affiliation(s)
- Peter Klucar
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Peter F. Barnes
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Ying Kong
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Susan T. Howard
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Xiuhua Pang
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Fang-Fang Huang
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Amy R. Tvinnereim
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Buka Samten
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Homayoun Shams
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| |
Collapse
|
43
|
Hwang SK, Lim HT, Minai-Tehrani A, Lee ES, Park J, Park SB, Beck GR, Cho MH. Repeated aerosol delivery of carboxyl-terminal modulator protein suppresses tumor in the lungs of K-rasLA1 mice. Am J Respir Crit Care Med 2009; 179:1131-40. [PMID: 19286625 DOI: 10.1164/rccm.200810-1553oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Difficulties in achieving long-term survival of patients with lung cancer treated with conventional therapies suggest that novel approaches are required. Recent advances in aerosol-mediated gene delivery have provided the possibility of an alternative for the safe and effective treatment of lung cancer. OBJECTIVES To investigate the repeated effect of carboxyl-terminal modulator protein (CTMP) on multistage lung tumorigenesis. In this study, we addressed this question by studying the effects of lentivirus-based CTMP in the lungs of 9- and 13-week-old K-ras(LA1) mice, a model of lung cancer. METHODS An aerosol of lentivirus-based CTMP was delivered into 9- and 13-week-old K-ras(LA1) mice, a model of lung cancer, through a nose-only inhalation system twice a week for 4 weeks. The effects of CTMP on lung cancer progression and Akt-related signals were evaluated. MEASUREMENTS AND MAIN RESULTS Long-term repeated delivery of CTMP effectively reduced tumor progression in the lungs at different stages of development. Lentiviral-CTMP inhibited protein synthesis and cell cycle and altered Akt signaling pathway in the lungs of 9-week-old K-ras(LA1) mice, and increased apoptosis was observed in the lungs of 13-week-old K-ras(LA1) mice. CONCLUSIONS Long-term repeated viral delivery of CTMP may provide a useful tool for designing lung tumor treatment.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 2009; 10:119-27. [PMID: 19061333 DOI: 10.1021/bm800985e] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A core-shell-type polyion complex (PIC) micelle with a disulfide cross-linked core was prepared through the assembly of iminothiolane-modified poly(ethylene glycol)-block-poly(L-lysine) [PEG-b-(PLL-IM)] and siRNA at a characteristic optimum mixing ratio. The PIC micelles showed a spherical shape of approximately 60 nm in diameter with a narrow distribution. The micellar structure was maintained at physiological ionic strength but was disrupted under reductive conditions because of the cleavage of disulfide cross-links, which is desirable for siRNA release in the intracellular reductive environment. Importantly, environment-responsive PIC micelles achieved 100-fold higher siRNA transfection efficacy compared with non-cross-linked PICs prepared from PEG-b-poly(L-lysine), which were not stable at physiological ionic strength. PICs formed with PEG-b-(PLL-IM) at nonoptimum ratios did not assemble into micellar structure and did not achieve gene silencing following siRNA transfection. These findings show the feasibility of core cross-linked PIC micelles as carriers for therapeutic siRNA and show that stable micellar structure is critical for effective siRNA delivery into target cells.
Collapse
Affiliation(s)
- Satoru Matsumoto
- Department of Materials Engineering, Graduate School of Engineering, Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Di Gioia S, Conese M. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:163-88. [PMID: 19920904 PMCID: PMC2761186 DOI: 10.2147/dddt.s2708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI) has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane) and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Biomedical Sciences, University of Foggia, Viale L. Pinto 1, Foggia, Italy
| | | |
Collapse
|
46
|
Shim MS, Kwon YJ. Acid-Responsive Linear Polyethylenimine for Efficient, Specific, and Biocompatible siRNA Delivery. Bioconjug Chem 2009; 20:488-99. [DOI: 10.1021/bc800436v] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Suk Shim
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, and Department of Chemical Engineering and Materials Science, Department of Pharmaceutical Sciences, and Department of Biomedical Engineering, University of California, Irvine, California 92697
| | - Young Jik Kwon
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, and Department of Chemical Engineering and Materials Science, Department of Pharmaceutical Sciences, and Department of Biomedical Engineering, University of California, Irvine, California 92697
| |
Collapse
|
47
|
Saito Y, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Immunostimulatory Characteristics Induced by Linear Polyethyleneimine–Plasmid DNA Complexes in Cultured Macrophages. Hum Gene Ther 2009; 20:137-45. [DOI: 10.1089/hum.2008.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yasunori Saito
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
48
|
Rejman J, Conese M, Hoekstra D. Gene Transfer by Means of Lipo- and Polyplexes: Role of Clathrin and Caveolae-Mediated Endocytosis. J Liposome Res 2008; 16:237-47. [PMID: 16952878 DOI: 10.1080/08982100600848819] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.
Collapse
Affiliation(s)
- Joanna Rejman
- Institute for Experimental Treatment of Cystic Fibrosis, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| | | | | |
Collapse
|
49
|
Erbacher P, Bettinger T, Brion E, Coll JL, Plank C, Behr JP, Remy JS. Genuine DNA/polyethylenimine (PEI) Complexes Improve Transfection Properties and Cell Survival. J Drug Target 2008; 12:223-36. [PMID: 15506171 DOI: 10.1080/10611860410001723487] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polyethylenimine (PEI) has been described as one of the most efficient cationic polymers for in vitro gene delivery. Systemic delivery of PEI/DNA polyplexes leads to a lung-expression tropism. Selective in vivo gene transfer would require targeting and stealth particles. Here, we describe two strategies for chemically coupling polyethylene glycol (PEG) to PEI, to form protected ligand-bearing particles. Pre-grafted PEG-PEI polymers lost their DNA condensing property, hence their poor performances. Coupling PEG to pre-formed PEI/DNA particles led to the expected physical properties. However, low transfection efficacies raised the question of the fate of excess free polymer in solution. We have developed a straightforward a purification assay, which uses centrifugation-based ultrafiltration. Crude polyplexes were purified, with up to 60% of the initial PEI dose being removed. The resulting purified and unshielded PEI/DNA polyplexes are more efficient for transfection and less toxic to cells in culture than the crude ones. Moreover, the in vivo toxicity of the polyplexes was greatly reduced, without affecting their efficacy.
Collapse
Affiliation(s)
- Patrick Erbacher
- Polyplus Transfection, Faculty of Pharmacy, B.P. 24, F-67401 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Reina R, Barbezange C, Niesalla H, de Andrés X, Arnarson H, Biescas E, Mazzei M, Fraisier C, McNeilly TN, Liu C, Perez M, Carrozza ML, Bandecchi P, Solano C, Crespo H, Glaria I, Huard C, Shaw DJ, de Blas I, de Andrés D, Tolari F, Rosati S, Suzan-Monti M, Andrésdottir V, Torsteinsdottir S, Petursson G, Lujan L, Pepin M, Amorena B, Blacklaws B, Harkiss GD. Mucosal immunization against ovine lentivirus using PEI-DNA complexes and modified vaccinia Ankara encoding the gag and/or env genes. Vaccine 2008; 26:4494-505. [PMID: 18606204 DOI: 10.1016/j.vaccine.2008.06.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 06/04/2008] [Accepted: 06/13/2008] [Indexed: 11/25/2022]
Abstract
Sheep were immunized against Visna/Maedi virus (VMV) gag and/or env genes via the nasopharynx-associated lymphoid tissue (NALT) and lung using polyethylenimine (PEI)-DNA complexes and modified vaccinia Ankara, and challenged with live virus via the lung. env immunization enhanced humoral responses prior to but not after VMV challenge. Systemic T cell proliferative and cytotoxic responses were generally low, with the responses following single gag gene immunization being significantly depressed after challenge. A transient reduction in provirus load in the blood early after challenge was observed following env immunization, whilst the gag gene either alone or in combination with env resulted in significantly elevated provirus loads in lung. However, despite this, a significant reduction in lesion score was observed in animals immunized with the single gag gene at post-mortem. Inclusion of IFN-gamma in the immunization mixture in general had no significant effects. The results thus showed that protective effects against VMV-induced lesions can be induced following respiratory immunization with the single gag gene, though this was accompanied by an increased pulmonary provirus load.
Collapse
Affiliation(s)
- R Reina
- CSIC-Public University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|