1
|
Rajendran AP, Morales LC, Meenakshi Sundaram DN, Kucharski C, Uludağ H. Tuning the Potency of Farnesol-Modified Polyethylenimine with Polyanionic Trans-Booster to Enhance DNA Delivery. ACS Biomater Sci Eng 2024; 10:1589-1606. [PMID: 38336625 DOI: 10.1021/acsbiomaterials.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Low molecular weight polyethylenimine (PEI) based lipopolymers become an attractive strategy to construct nonviral therapeutic carriers with promising transfection efficiency and minimal toxicity. Herein, this paper presents the design and synthesis of novel farnesol (Far) conjugated PEI, namely PEI1.2k-SA-Far7. The polymers had quick DNA complexation, effective DNA unpacking (dissociation), and cellular uptake abilities when complexed with plasmid DNA. However, they were unable to provide robust transfection in culture, indicating inability of Far grafting to improve the transfection efficacy significantly. To overcome this limitation, the commercially available polyanionic Trans-Booster additive, which is capable of displaying electrostatic interaction with PEI1.2k-SA-Far7, has been used to enhance the uptake of pDNA polyplexes and transgene expression. pDNA condensation was successfully achieved in the presence of the Trans-Booster with more stable polyplexes, and in vitro transfection efficacy of the polyplexes was improved to be comparable to that obtained with an established reference reagent. The PEI1.2k-SA-Far7/pDNA/Trans-Booster ternary complex exhibited good compatibility with cells and minimal hemolysis activity. This work demonstrates the exemplary potency of using additives in polyplexes and the potential of resultant ternary complexes for effective pDNA delivery.
Collapse
Affiliation(s)
- Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Biomedical Engineering and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
2
|
Rao MFS, Ahmed B, Qadir MI. Oncolytic Virotherapy: An Advanced Microbial Approach for the Management of Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:1-13. [PMID: 37824388 DOI: 10.1615/critreveukaryotgeneexpr.2023048962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Destruction of the tumor (cancerous) cells may be caused by live viruses, which have replicative ability and replicate selectively in tumor cells, known as oncolytic virotherapy. In comparison of conservative cancer therapy, tumor-selective replicating viruses have more advantages. These viruses have introduced new methodologies for the human cancer treatment. Numerous strategies are used in development of virotherapeutics. Virotherapy is not unusual concept, but modern advances in technology of genetic modification of oncolytic viruses have improved the ability of targeting tumor cells more specifically, it triggered the development of novel ammunition to fight cancer. An effective virotherapeutic approach with oncolytic viruses exhibits the feasibility and safety under clinical approach. New strategies are being explored to overcome basic obstacles and challenges in virotherapy. Administration of oncolytic viruses, logically, will successfully augment new treatments against many kinds of tumors. Some encouraging antitumor responses shown by combination therapy are provoking strong immunity against established cancer. Chief developments in oncolytic virotherapy have seen in past several years. Significant understandings have been provided by findings on the interface among immune comebacks and viruses, whereas potential results have shown in clinical trials.
Collapse
Affiliation(s)
| | - Bilal Ahmed
- University of Science And Technology of Fujairah, UAE; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
3
|
Efficient Messenger RNA Delivery to the Kidney Using Renal Pelvis Injection in Mice. Pharmaceutics 2021; 13:pharmaceutics13111810. [PMID: 34834225 PMCID: PMC8619888 DOI: 10.3390/pharmaceutics13111810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Renal dysfunction is often associated with the inflammatory cascade, leading to non-reversible nephrofibrosis. Gene therapy has the ability to treat the pathology. However, the difficulty in introducing genes into the kidney, via either viral vectors or plasmid DNA (pDNA), has hampered its extensive clinical use. Messenger RNA (mRNA) therapeutics has recently attracted attention as alternative gene therapies. mRNA allows protein production into post-mitotic cells without the need for transport to the nuclei in the target cells. However, few studies have reported the delivery of mRNA to the kidney. In this study, we attempted to deliver mRNA to the kidney based on the principle of pressure stimulation, by administering mRNA-loaded polyplex nanomicelles via a renal pelvis injection, directly into the kidney. Compared with the administration of naked plasmid DNA (pDNA) and naked mRNA, the mRNA-loaded nanomicelles diffusely induced protein expression in a greater number of cells at the tubular epithelium for some days. The plasma creatinine (Cre) and blood urea nitrogen (BUN) levels after the administration remained similar to those of the sham-operated controls, without marked changes in histological sections. The safety and efficacy of mRNA-loaded nanomicelles would make distinct contributions to the development of mRNA therapeutics for the kidney.
Collapse
|
4
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
5
|
Abstract
The optimal clinical exploitation of viruses as gene therapy or oncolytic vectors will require them to be administered intravenously. Strategies must therefore be deployed to enable viruses to survive the harsh neutralizing environment of the bloodstream and achieve deposition within and throughout target tissues or tumor deposits. This chapter describes the genetic and chemical engineering approaches that are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Claudia A P Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Morys S, Urnauer S, Spitzweg C, Wagner E. EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequence-Defined PEG Agent. Macromol Biosci 2017; 18. [PMID: 28877405 DOI: 10.1002/mabi.201700203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Indexed: 12/20/2022]
Abstract
For successful nonviral gene delivery, cationic polymers are promising DNA carrier, which need to comprise several functionalities. The current work focuses on the postincorporation of epidermal growth factor receptor (EGFR) targeted PEGylation agents onto lipopolyplexes for pDNA delivery. T-shaped lipo-oligomers are previously found to be effective sequence-defined carriers for pDNA and siRNA. Here, the bis-oleoyl-oligoaminoethanamide 454 containing tyrosine trimer-cysteine ends is applied for complex formation with pDNA coding for luciferase or sodium iodide symporter (NIS). In a second step, the lipopolyplexes are modified via disulfide formation with sequence-defined monovalent or bivalent PEGylation agents containing one or two 3-nitro-2-pyridinesulfenyl (NPys)-activated cysteines, respectively. For targeting, the polyethylene glycol (PEG) agents comprise the EGFR targeting peptide GE11. In comparison of all transfection complexes, 454 lipopolyplexes modified with the bidentate PEG-GE11 agent show the best, EGFR-dependent uptake as well as luciferase and NIS gene expression into receptor-positive tumor cells.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| |
Collapse
|
7
|
Zhang W, Rödl W, He D, Döblinger M, Lächelt U, Wagner E. Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J Gene Med 2015; 17:161-72. [DOI: 10.1002/jgm.2838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Markus Döblinger
- Department of Chemistry; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| |
Collapse
|
8
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
9
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
10
|
Kos P, Lächelt U, He D, Nie Y, Gu Z, Wagner E. Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. J Pharm Sci 2015; 104:464-75. [DOI: 10.1002/jps.24194] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
|
11
|
Abstract
For the last five decades cationic polymers have been used for nucleic acids transfection. Our understanding of polymer-nucleic acid interactions and their rational use in delivery has continuously increased. The great improvements in macromolecular chemistry and the recognition of distinct biological extra- and intracellular delivery hurdles triggered several breakthrough developments, including the discovery of natural and synthetic polycations for compaction of nucleic acids into stable nanoparticles termed polyplexes; the incorporation of targeting ligands and surface-shielding of polyplexes to enable receptor-mediated gene delivery into defined target tissues; and strongly improved intracellular transfer efficacy by better endosomal escape of vesicle-trapped polyplexes into the cytosol. These experiences triggered the development of second-generation polymers with more dynamic properties, such as endosomal pH-responsive release mechanisms, or biodegradable units for improved biocompatibility and intracellular release of the nucleic acid pay load. Despite a better biological understanding, significant challenges such as efficient nuclear delivery and persistence of gene expression persist. The therapeutic perspectives widened from pDNA-based gene therapy to application of novel therapeutic nucleic acids including mRNA, siRNA, and microRNA. The finding that different therapeutic pay loads require different tailor-made carriers complicates preclinical developments. Convincing evidence of medical efficacy still remains to be demonstrated. Bioinspired multifunctional polyplexes resembling "synthetic viruses" appear as attractive opportunity, but provide additional challenges: how to identify optimum combinations of functional delivery units, and how to prepare such polyplexes reproducibly in precise form? Design of sequence-defined polymers, screening of combinatorial polymer and polyplex libraries are tools for further chemical evolution of polyplexes.
Collapse
Affiliation(s)
- Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-University Munich, and Nanosystems Initiative Munich (NIM), Munich, Germany
| |
Collapse
|
12
|
Chu DSH, Schellinger JG, Bocek MJ, Johnson RN, Pun SH. Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Biomaterials 2013; 34:9632-7. [PMID: 24041424 DOI: 10.1016/j.biomaterials.2013.08.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/17/2013] [Indexed: 12/21/2022]
Abstract
Targeted gene delivery vectors can enhance cellular specificity and transfection efficiency. We demonstrated previously that conjugation of Tet1, a peptide that binds to the GT1b ganglioside, to polyethylenimine results in preferential transfection of neural progenitor cells in vivo. In this work, we investigate the effect of Tet1 ligand density on gene delivery to neuron-like, differentiated PC-12 cells. A series of statistical, cationic peptide-based polymers containing various amounts (1-5 mol%) of Tet1 were synthesized via one-pot reversible addition-fragmentation chain transfer (RAFT) polymerization by copolymerization of Tet1 and oligo-l-lysine macromonomers with N-(2-hydroxypropyl)methacrylamide (HPMA). When complexed with plasmid DNA, the resulting panel of Tet1-functionalized polymers formed particles with similar particle size as particles formed with untargeted HPMA-oligolysine copolymers. The highest cellular uptake in neuron-like differentiated PC-12 cells was observed using polymers with intermediate Tet1 peptide incorporation. Compared to untargeted polymers, polymers with optimal incorporation of Tet1 increased gene delivery to neuron-like PC-12 cells by over an order of magnitude but had no effect compared to control polymers in transfecting NIH/3T3 control cells.
Collapse
Affiliation(s)
- David S H Chu
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
13
|
Buckway B, Wang Y, Ray A, Ghandehari H. In Vitro Evaluation of HPMA-Copolymers Targeted to HER2 Expressing Pancreatic Tumor Cells for Image Guided Drug Delivery. Macromol Biosci 2013; 14:92-9. [DOI: 10.1002/mabi.201300167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/11/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry; Utah Center for Nanomedicine; Nano Institute of Utah University of Utah; 36 S Wasatch Dr., SMBB 5515 Salt Lake City UT 84112 USA
- Center for Nanomedicine; Nano Institute of Utah, University of Utah; Salt Lake City UT 84112 USA
| | - Yongjian Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry; Utah Center for Nanomedicine; Nano Institute of Utah University of Utah; 36 S Wasatch Dr., SMBB 5515 Salt Lake City UT 84112 USA
- College of Life Sciences; Nankai University; Tianjin 300071 China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Abhijit Ray
- Department of Pharmaceutics and Pharmaceutical Chemistry; Utah Center for Nanomedicine; Nano Institute of Utah University of Utah; 36 S Wasatch Dr., SMBB 5515 Salt Lake City UT 84112 USA
- Center for Nanomedicine; Nano Institute of Utah, University of Utah; Salt Lake City UT 84112 USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry; Utah Center for Nanomedicine; Nano Institute of Utah University of Utah; 36 S Wasatch Dr., SMBB 5515 Salt Lake City UT 84112 USA
- Center for Nanomedicine; Nano Institute of Utah, University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
14
|
Li H, Sun X, Zhao D, Zhang Z. A Cell-Specific Poly(ethylene glycol) Derivative with a Wheat-like Structure for Efficient Gene Delivery. Mol Pharm 2012; 9:2974-85. [PMID: 22957964 DOI: 10.1021/mp300321n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanmei Li
- Key Laboratory of Drug Targeting
and Drug Delivery
Systems, Ministry of Education, West China School of Pharmacy, Sichuan
University, Chengdu, Sichuan, P. R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting
and Drug Delivery
Systems, Ministry of Education, West China School of Pharmacy, Sichuan
University, Chengdu, Sichuan, P. R. China
| | - Dong Zhao
- Key Laboratory of Drug Targeting
and Drug Delivery
Systems, Ministry of Education, West China School of Pharmacy, Sichuan
University, Chengdu, Sichuan, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting
and Drug Delivery
Systems, Ministry of Education, West China School of Pharmacy, Sichuan
University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
15
|
|
16
|
Laga R, Koňák Č, Šubr V, Ulbrich K, Suthiwangcharoen N, Niu Z, Wang Q. Chemical Conjugation of Cowpea Mosaic Viruses with Reactive HPMA-Based Polymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1669-85. [DOI: 10.1163/092050609x12547435571131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richard Laga
- a Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Square 2, 162 06 Prague 6, Czech Republic
| | - Čestmír Koňák
- b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Square 2, 162 06 Prague 6, Czech Republic
| | - Vladimír Šubr
- c Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Square 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- d Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Square 2, 162 06 Prague 6, Czech Republic
| | - Nisaraporn Suthiwangcharoen
- e Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Zhongwei Niu
- f Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- g Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Polymer coatings for delivery of nucleic acid therapeutics. J Control Release 2012; 161:537-53. [PMID: 22366547 DOI: 10.1016/j.jconrel.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 12/15/2022]
Abstract
Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.
Collapse
|
18
|
García L, Urbiola K, Düzgüneş N, Tros de Ilarduya C. Lipopolyplexes as nanomedicines for therapeutic gene delivery. Methods Enzymol 2012; 509:327-38. [PMID: 22568913 DOI: 10.1016/b978-0-12-391858-1.00016-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe an efficient, nonviral gene transfer system that employs polyethylenimine (PEI 800, 25, 22 kDa), and 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and cholesterol (Chol) as lipids (lipopolyplex), at three different lipid/DNA molar ratios (2/1, 5/1, and 17/1), employing five different formulation strategies. PEIs of 800, 25, and 22 kDa are highly effective in condensing plasmid DNA, leading to a complete condensation at N/P⁺/⁻ ratios above 4. Increasing the molar ratio lipid/DNA in the complex results in higher positive values of the zeta potential, while the particle size increases in some protocols, but not in others. PEI of molecular weight 800 kDa used in the formulation of lipopolyplexes results in bigger particles compared to that obtained with the smaller PEI species. Transfection activity is measured using pCMVLuc expressing luciferase is maximal by using strategies 3 and 4 and an N/P molar ratio of 17/1. These complexes have a high efficiency of gene delivery to liver cancer cells, even in the presence of a high serum concentration. Complexes formed with linear PEI are more effective than lipopolyplexes containing branched PEI. The ternary complexes are much more efficient than conventional lipoplexes (cationic lipid and DNA) and polyplexes (cationic polymer and DNA). The same behavior is observed for complexes prepared with the therapeutic gene pCMVIL-12 expressing interleukin-12.
Collapse
Affiliation(s)
- Leire García
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
19
|
Li Y, Wang J, Gao Y, Zhu J, Wientjes MG, Au JLS. Relationships between liposome properties, cell membrane binding, intracellular processing, and intracellular bioavailability. AAPS JOURNAL 2011; 13:585-97. [PMID: 21904966 DOI: 10.1208/s12248-011-9298-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
Abstract
Positive surface charge enhances liposome uptake into cells. Pegylation, used to confer stealth properties to enable in vivo applications of cationic liposomes, compromises internalization. The goal of this study was to determine the quantitative relationships between these two liposome properties (separately and jointly), liposomes binding to cell membrane, and the subsequent internalization and residence in intracellular space (referred to as intracellular bioavailability). The results, obtained in pancreatic Hs-766T cancer cells, revealed nonlinear and inter-dependent relationships, as well as substantial qualitative and quantitative differences. The proportionality constant K of intracellular and membrane-bound liposomes at equilibrium (i.e., I(eq) and B(eq)) showed a positive triphasic relationship with surface charge and a negative biphasic relationship with pegylation. Near-neutral liposomes showed little internalization of the membrane-bound moiety, increasing to a constant K value for medium charge liposomes (+15 to +35 mV zeta potential), followed by a further increase for highly charged liposomes (greater than or equal to +46 mV). The decline of pegylation with K value showed a breakpoint at 2%. The negative consequences of pegylation (%PEG) were partially offset by increasing charge (ZP). The best-fitting regression equations are: B(eq) = -1.36 × %PEG + 0.33 × ZP; I(eq) = -1.52 × %PEG + 0.34 × ZP. It suggested that 1% pegylation increase can be offset with 4 mV ZP. The differences are such that it may be possible to balance these parameters to simultaneously maximize the stealth property and intracellular bioavailability of cationic liposomes.
Collapse
Affiliation(s)
- Yinghuan Li
- Division of Pharmaceutics, College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery. POLYMERS IN NANOMEDICINE 2011. [DOI: 10.1007/12_2011_148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Hönig D, DeRouchey J, Jungmann R, Koch C, Plank C, Rädler JO. Biophysical characterization of copolymer-protected gene vectors. Biomacromolecules 2010; 11:1802-9. [PMID: 20672861 DOI: 10.1021/bm1002569] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copolymer-protected gene vector (COPROG) is a three-component gene delivery system consisting of a preformed DNA and branched polyethylenimine (bPEI) complex subsequently modified by the addition of a copolymer (P6YE5C) incorporating both poly(ethylene glycol) (PEG) and anionic peptides. Using fluorescence correlation spectroscopy (FCS) and atomic force microscopy (AFM), we characterized and compared the self-assembly of bPEI/DNA particles and COPROG complexes. In low salt buffer, both bPEI/DNA and COPROG formulations form stable nanoparticles with hydrodynamic radii between 60-120 nm. COPROG particles, as compared to bPEI/DNA, show greatly improved particle stability to both physiological salt as well as low pH conditions. Binding stoichiometry of the three-component COPROG system was investigated by dual-color fluorescence cross-correlation spectroscopy (FCCS). It was found that a significant fraction of P6YE5C copolymer aggregates with excess bPEI forming bPEI/P6YE5C "ghost complexes" with no DNA inside. The ratio of ghost particles to COPROG complexes is about 4:1. In addition, we find a large fraction of excess P6YE5C copolymer, which remains unbound in solution. We observe a 2-4-fold enhanced reporter gene expression with COPROG formulations at various equivalents as compared to bPEI-DNA alone. We believe that both complex stabilization as well as the capture of excess bPEI into ghost particles induced by the copolymer is responsible for the improvement in gene expression.
Collapse
Affiliation(s)
- Daniel Hönig
- Soft Condensed Matter Group, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Tros de Ilarduya C, García L, Düzgünes N. Liposomes and lipopolymeric carriers for gene delivery. J Microencapsul 2010; 27:602-8. [DOI: 10.3109/02652048.2010.501396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Mitchell AM, Nicolson SC, Warischalk JK, Samulski RJ. AAV's anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther 2010; 10:319-340. [PMID: 20712583 PMCID: PMC3920455 DOI: 10.2174/156652310793180706] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/20/2010] [Indexed: 12/14/2022]
Abstract
Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success.
Collapse
Affiliation(s)
- Angela M. Mitchell
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Nicolson
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayme K. Warischalk
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R. Jude Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Edinger D, Wagner E. Bioresponsive polymers for the delivery of therapeutic nucleic acids. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:33-46. [DOI: 10.1002/wnan.97] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Edinger
- Pharmaceutical Biotechnology, LMU University, Butenandtstrasse 5‐13, D‐81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, LMU University, Butenandtstrasse 5‐13, D‐81377 Munich, Germany
| |
Collapse
|
26
|
Ho YC, Wu SJ, Mi FL, Chiu YL, Yu SH, Panda N, Sung HW. Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor. Bioconjug Chem 2010; 21:28-38. [PMID: 20000719 DOI: 10.1021/bc900208t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of chitosan (CS) derivatives, the 6-O-carboxymethylchitosan (6-O-CC), 2-N sulfated 6-O-carboxymethylchitosan (N-SOCC) and the 2-N and 3,6-O sulfated 6-O-carboxymethyl chitosan (N,O-SOCC) were synthesized in this study. The chemical structures and the degrees of substituted carboxymethyl and sulfate groups of the synthesized compounds were respectively determined by FT-IR spectra and elemental analysis. N,O-SOCC displayed the highest protective efficiency for basic fibroblast growth factor (bFGF) as examined by the L929 fibroblast culture test and docking simulation. N,O-SOCC-4-thio-butylamidine (TBA) conjugates prepared by modification of N,O-SOCC with 2-iminothiolane were in situ cross-linkable. The degrees of thiol substitution of the 2-iminothiolane modified N,O-SOCC polymers were determined to be in the ranges of 45.9 +/- 3.7 and 415.6 +/- 12.5 micromol SH/g SOCC by quantifying the amount of thiol groups on the thiolated polymers with Ellman's reagent. The 2-iminothiolane modified N,O-SOCC and CS complex could be used for preparing nanoparticles by a polyelectrolyte self-assembly method, and the release of bFGF from the nanoparticles was successfully controlled. L929 fibroblast culture tests showed that the thiol modified N,O-SOCC/CS nanoparticles could effectively protect bFGF from inactivation over a 120 h period. The results of this study suggest that the thiol modified N,O-SOCC/CS nanoparticles may be useful as novel materials for specific delivery of bFGF with mitogenic activity.
Collapse
Affiliation(s)
- Yi-Cheng Ho
- Department of Biotechnology, Vanung University, Chung-Li, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Ito T, Yoshihara C, Hamada K, Koyama Y. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials 2010; 31:2912-8. [DOI: 10.1016/j.biomaterials.2009.12.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/14/2009] [Indexed: 01/25/2023]
|
28
|
Üzgün S, Akdemir Ö, Hasenpusch G, Maucksch C, Golas MM, Sander B, Stark H, Imker R, Lutz JF, Rudolph C. Characterization of Tailor-Made Copolymers of Oligo(ethylene glycol) Methyl Ether Methacrylate and N,N-Dimethylaminoethyl Methacrylate as Nonviral Gene Transfer Agents: Influence of Macromolecular Structure on Gene Vector Particle Properties and Transfection Efficiency. Biomacromolecules 2009; 11:39-50. [DOI: 10.1021/bm9008759] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Senta Üzgün
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Özgür Akdemir
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Günther Hasenpusch
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Christof Maucksch
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Monika M. Golas
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Bjoern Sander
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Holger Stark
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Rabea Imker
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Jean-François Lutz
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| | - Carsten Rudolph
- Department of Pediatrics, Ludwig-Maximilians University, 80337 Munich, Germany, Department of Pharmaceutical Technology, Free University of Berlin, 12169 Berlin, Germany, Fraunhofer Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany, MPI for Biophysical Chemistry, 37077 Goettingen, Germany, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark, Stereology and EM Research Laboratory, University of Aarhus, 8000 Aarhus C, Denmark, and Göttinger Zentrum für Molekulare Biologie,
| |
Collapse
|
29
|
Oba M, Aoyagi K, Miyata K, Matsumoto Y, Itaka K, Nishiyama N, Yamasaki Y, Koyama H, Kataoka K. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm 2009; 5:1080-92. [PMID: 19434856 DOI: 10.1021/mp800070s] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiolated c(RGDfK)-poly(ethylene glycol)-block-poly(lysine) (PEG-PLys), a novel block polymer that has a cyclic RGD peptide in the PEG terminus and thiol groups in the PLys side chain, was prepared and applied to the preparation of targetable disulfide cross-linked polyplex micelles through ion complexation with plasmid DNA (pDNA). The obtained polyplex micelles achieved remarkably enhanced transfection efficiency against cultured HeLa cells possessing alpha(v)beta(3) integrin receptors, which are selectively recognized by cyclic RGD peptides, demonstrating the synergistic effect of cyclic RGD peptide ligands on the micelle surface and disulfide cross-links in the core to exert the smooth release of pDNA in the intracellular environment via reductive cleavage. This enhancement was not due to an increase in the uptake amount of polyplex micelles but to a change in their intracellular trafficking route. Detailed confocal laser scanning microscopic observation revealed that polyplex micelles with cyclic RGD peptide ligands were distributed in the perinuclear region in the early stages preferentially through caveolae-mediated endocytosis, which may be a desirable pathway for avoiding the lysosomal degradation of delivered genes. Hence, this approach to introducing ligands and cross-links into the polyplex micelles is promising for the construction of nonviral gene vectors that enhance transfection by controlling intracellular distribution.
Collapse
Affiliation(s)
- Makoto Oba
- Department of Clinical Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm 2009; 71:475-83. [DOI: 10.1016/j.ejpb.2008.09.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 01/29/2023]
|
31
|
Ito T, Iida-Tanaka N, Koyama Y. Efficientin vivogene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J Drug Target 2008; 16:276-81. [DOI: 10.1080/10611860801900728] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
The silent (R)evolution of polymeric nucleic acid therapeutics. Pharm Res 2008; 25:2920-3. [PMID: 18679773 DOI: 10.1007/s11095-008-9689-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
33
|
Jiang HL, Kwon JT, Kim EM, Kim YK, Arote R, Jere D, Jeong HJ, Jang MK, Nah JW, Xu CX, Park IK, Cho MH, Cho CS. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release 2008; 131:150-7. [PMID: 18706946 DOI: 10.1016/j.jconrel.2008.07.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/24/2008] [Accepted: 07/22/2008] [Indexed: 11/26/2022]
Abstract
Chitosan and chitosan derivatives have been proposed as alternative and biocompatible cationic polymers for non-viral gene delivery. However, the low transfection efficiency and low specificity of chitosan is an aspect of this approach that must be addressed prior to any clinical applications. In the present study a chitosan derivative, galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine (Gal-PEG-CHI-g-PEI), was investigated as a potential hepatocyte-targeting gene carrier. The composition of Gal-PEG-CHI-g-PEI was characterized using (1)H nuclear magnetic resonance ((1)H NMR), and the particle size and zeta potential of Gal-PEG-CHI-g-PEI/DNA complexes were measured using dynamic light scattering (DLS). The Gal-PEG-CHI-g-PEI exhibited lower cytotoxicity compared to PEI 25K as a control. Likewise, Gal-PEG-CHI-g-PEI/DNA complexes showed good hepatocyte specificity. Furthermore, Gal-PEG-CHI-g-PEI/DNA complexes transfected liver cells more effectively than PEI 25K in vivo after intravenous (i.v.) administration. Together, these results suggest that Gal-PEG-CHI-g-PEI, which has improved transfection efficiency and hepatocyte specificity both in vitro and in vivo, may be useful for gene therapy.
Collapse
Affiliation(s)
- Hu-Lin Jiang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
DeRouchey J, Schmidt C, Walker GF, Koch C, Plank C, Wagner E, Rädler JO. Monomolecular Assembly of siRNA and Poly(ethylene glycol)−Peptide Copolymers. Biomacromolecules 2008; 9:724-32. [DOI: 10.1021/bm7011482] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason DeRouchey
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Claudia Schmidt
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Greg F. Walker
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Christian Koch
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Christian Plank
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Ernst Wagner
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| | - Joachim O. Rädler
- Department of Physics, Department of Chemistry and Pharmacy, and Center for NanoScience, Ludwig-Maximilians-Universität, 80539 Munich, Germany, Institute of Experimental Oncology, Technische Universität, 81675 Munich, Germany, and National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20692
| |
Collapse
|
35
|
Zhang X, Pan SR, Hu HM, Wu GF, Feng M, Zhang W, Luo X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J Biomed Mater Res A 2008; 84:795-804. [PMID: 17635020 DOI: 10.1002/jbm.a.31343] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An ideal gene carrier is required both in safety and efficiency for transfection. Polyethylenimine (PEI), a well-studied cationic polymer, has been proved with high transfection efficiency, but is reported as toxicity in many cell lines. In this study, PEI was coupled with polyethylene glycol (PEG) to reduce its cytotoxicity. PEG-PEI copolymers were synthesized with isoporon diisocyanate (IPDI) in two steps. A set of PEG-PEI with different PEG molecular weights (MWs) and amounts of PEG were synthesized. The molecular structure of the resulting copolymers was evaluated by nuclear magnetic resonance spectroscopy ((1)H NMR), infrared spectroscopy (IR), and gel permeation chromatography (GPC), all of which had successfully verified formation of the copolymers. The particle size and zeta potential of polymer/DNA complexes were measured, and their cytotoxicity and transfection efficiency in Hela cells were evaluated. We found that the copolymer block structure significantly influenced not only the physicochemical properties of complexes, but also their cytotoxicity and transfection efficiency. PEG (5 kDa) significantly reduced the diameter of the spherical complexes. The zeta potential of complexes was reduced with increasing amount of PEG grafting. Cytotoxicity was dependent not on PEG MW but on the amount of PEG grafting. Copolymer PEG-PEI (2-25-1) with 1.89 PEG (2 kDa) was proved to be more efficient for in vitro gene transfer. In conclusion, PEG MW and the degree of PEGylation were found to significantly influence the biological activity of PEG-PEI/DNA complexes. These results provide new sights into the studies using block copolymer as gene delivery systems.
Collapse
Affiliation(s)
- Xuan Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional Nanoparticulate Polyelectrolyte Complexes. Pharm Res 2007; 24:2353-69. [DOI: 10.1007/s11095-007-9459-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
|
37
|
|
38
|
Laga R, Koňák Č, Šubr V, Ulbrich K. Coating of nanoparticles bearing amino groups on the surface with hydrophilic HPMA-based polymers. Colloid Polym Sci 2007. [DOI: 10.1007/s00396-007-1719-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Theoharis S, Manunta M, Tan PH. Gene delivery to vascular endothelium using chemical vectors: implications for cardiovascular gene therapy. Expert Opin Biol Ther 2007; 7:627-43. [PMID: 17477801 DOI: 10.1517/14712598.7.5.627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular endothelium is an attractive target for gene therapy because of its accessibility and its importance in the pathophysiology of a wide range of cardiovascular conditions. In general, viral methods have been shown to be very effective at delivering genes to endothelium. The immunogenicity and pathogenicity associated with viral vectors have led increased efforts to seek alternative means of 'ferrying' therapeutic genes to endothelium or to decrease the short-comings of viral vectors. This paper reviews developments in non-viral technology. In addition, discussion also covers the mechanisms whereby existing chemical vectors deliver DNA to cells. Understanding the pathways of vector internalisation and intracellular traffic is important in developing strategies to improve vector technology. The authors propose that the chemical vector may represent a robust and versatile technology to 'ferry' therapeutic genes to vascular endothelium in order to modify the endothelial dysfunction associated with many cardiovascular diseases.
Collapse
Affiliation(s)
- Stefanos Theoharis
- Imperial College London, Department of Immunology, Division of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
40
|
Hartig SM, Greene R, Carlesso G, Higginbotham JN, Khan WN, Prokop A, Davidson JM. Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. Biomaterials 2007; 28:3843-55. [PMID: 17560645 PMCID: PMC2000344 DOI: 10.1016/j.biomaterials.2007.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
A non-toxic, nanoparticulate polyelectrolyte complex (PEC) drug delivery system was formulated to maintain suitable physicochemical properties at physiological pH. Toxicity, binding, and internalization were evaluated in relevant microvascular endothelial cells. PEC were non-toxic, as indicated by cell proliferation studies and propidium iodide staining. Inhibitor studies revealed that PEC were bound, in part, via heparan sulfate proteoglycans and internalized through macropinocytosis. A novel, flow cytometric, Scatchard protocol was established and showed that PEC, in the absence of surface modification, bind cells non-specifically with positive cooperativity, as seen by graphical transformations.
Collapse
Affiliation(s)
- Sean M. Hartig
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Rachel Greene
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Gianluca Carlesso
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - James N. Higginbotham
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - Ales Prokop
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Jeffrey M. Davidson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
- Research Service, Tennessee Valley Healthcare System, Nashville, TN 37212-2637
- *To whom correspondence should be addressed.
| |
Collapse
|
41
|
Liu Y, Koziol J, Deisseroth A, Borgstrom P. Methods for delivery of adenoviral vectors to tumor vasculature. Hum Gene Ther 2007; 18:151-60. [PMID: 17326726 DOI: 10.1089/hum.2006.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The discovery that the luminal membrane of tumor vascular endothelial cells contains antigens different from those on the luminal membrane of endothelial cells in the vessels of normal tissues has opened the door to the use of adenoviral vectors for tumor vascular targeting as a form of cancer treatment. Other laboratories have shown that introduction of the RGD peptide increases binding of the adenoviral vector to dividing endothelial cells and to tumor cells. The major obstacle to achieving delivery of intravenously administered adenoviral vectors to tumor vascular endothelial cells and tumor cells is the nonspecific uptake of adenoviral vectors in the liver and other organs. Another obstacle is the low level of the coxsackievirus-adenovirus receptor, to which the adenoviral fiber protein binds, on tumor vascular endothelial cells and tumor cells. We therefore introduced the RGD peptide into the adenoviral vector fiber protein and then tested the effect of intravenous 6% hetastarch on the delivery to adenoviral vector to tumor tissue. Our results show that pretreatment with hetastarch increases the delivery of the adenoviral vector to tumor cells and their vasculature, reduces up-take by normal tissues, reduces vector-mediated toxicity to the liver, and intensifies vector-induced suppression of tumor cell growth.
Collapse
Affiliation(s)
- Yanzheng Liu
- Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
42
|
Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 2007; 7:992-1009. [PMID: 15920783 DOI: 10.1002/jgm.773] [Citation(s) in RCA: 653] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The continually increasing wealth of knowledge about the role of genes involved in acquired or hereditary diseases renders the delivery of regulatory genes or nucleic acids into affected cells a potentially promising strategy. Apart from viral vectors, non-viral gene delivery systems have recently received increasing interest, due to safety concerns associated with insertional mutagenesis of retro-viral vectors. Especially cationic polymers may be particularly attractive for the delivery of nucleic acids, since they allow a vast synthetic modification of their structure enabling the investigation of structure-function relationships. Successful clinical application of synthetic polycations for gene delivery will depend primarily on three factors, namely (1) an enhancement of the transfection efficiency, (2) a reduction in toxicity and (3) an ability of the vectors to overcome numerous biological barriers after systemic or local administration. Among the polycations presently used for gene delivery, poly(ethylene imine), PEI, takes a prominent position, due to its potential for endosomal escape. PEI as well as derivatives of PEI currently under investigation for DNA and RNA delivery will be discussed. This review focuses on structure-function relationships and the physicochemical aspects of polyplexes which influence basic characteristics, such as complex formation, stability or in vitro cytotoxicity, to provide a basis for their application under in vivo conditions. Rational design of optimized polycations is an objective for further research and may provide the basis for a successful cationic polymer-based gene delivery system in the future.
Collapse
Affiliation(s)
- Michael Neu
- Department of Pharmaceutics and Biopharmacy, Philipps University, Ketzerbach 63, 35037 Marburg, Germany
| | | | | |
Collapse
|
43
|
Carlisle RC, Briggs SS, Hale AB, Green NK, Fisher KD, Etrych T, Ulbrich K, Mautner V, Seymour LW. Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA. Gene Ther 2006; 13:1579-86. [PMID: 16810196 DOI: 10.1038/sj.gt.3302814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of synthetic vectors to deliver genomes of conditionally replicating lytic viruses combines the strengths of viral and non-viral approaches by enabling neutralising antibody resistant deployment of cancer virotherapy. Adenovirus is particularly suitable for this application since all proteins essential for replication can be expressed from the input DNA, although the presence of terminal protein (TP) covalently linked to the 5' termini of the input virus genomes both improves expression of transgenes encoded in the input DNA and also enhances replication. These roles of TP were distinguished in experiments where E1-deleted Ad(GFP)DNA bearing TP (Ad(GFP)DNA-TP), delivered with DOTAP, gave a two-fold greater frequency of transduction than Ad(GFP)DNA(without TP) in non-complementing A549 cells, while in 293 cells (which support replication of E1-deleted viruses) the presence of TP mediated a much greater differential transgene expression, commensurate with its ability to promote replication. Subsequent studies using AdDNA for virotherapy, therefore, included covalently linked TP. AdDNA-TP delivered to A549 cells using a synthetic polyplex vector was shown to be resistant to levels of neutralising antisera that completely ablated infection by wild-type adenovirus, enabling polyplex/Ad(wild type)DNA-TP to mediate a powerful cytopathic effect. Similarly in vivo, direct injection of a polyplex/Ad(wild type)DNA-TP into A549 tumours was neutralising antibody-resistant and enabled virus replication, whereas intact virus was neutralised by the antibody and failed to infect. The delivery of adenovirus genomes-TP using synthetic vectors should provide a strategy to bypass neutralising antibodies and facilitate clinical application of replicating adenovirus for cancer virotherapy.
Collapse
Affiliation(s)
- R C Carlisle
- Department of Clinical Pharmacology, Oxford University, Radcliffe Infirmary, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ito T, Iida-Tanaka N, Niidome T, Kawano T, Kubo K, Yoshikawa K, Sato T, Yang Z, Koyama Y. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: Protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J Control Release 2006; 112:382-8. [PMID: 16647780 DOI: 10.1016/j.jconrel.2006.03.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 11/26/2022]
Abstract
Hyaluronic acid (HA), a natural anionic mucopolysaccharide, can be deposited onto the cationic surface of DNA/polyethyleneimine (PEI) complexes to recharge the surface potential and reduce nonspecific interactions with proteins. HA can also be used as a ligand to target specific cell receptors. Furthermore, HA-coating enhanced the transcriptional activity of the plasmid/PEI complexes, probably by loosening the tight binding between DNA and PEI, which facilitated the approach of transcription factors. Amphoteric HA derivative having spermine side chains (Spn-HA) with a structure similar to HMG protein showed higher transcription-enhancing activity than HA. Plasmid/PEI/Spn-HA ternary complex exhibited 29-fold higher transgene expression efficiency than naked plasmid/PEI complexes in CHO cells.
Collapse
Affiliation(s)
- Tomoko Ito
- Department of Textile Science, Otsuma Women's University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Subr V, Konák C, Laga R, Ulbrich K. Coating of DNA/Poly(l-lysine) Complexes by Covalent Attachment of Poly[N-(2-hydroxypropyl)methacrylamide]. Biomacromolecules 2006; 7:122-30. [PMID: 16398506 DOI: 10.1021/bm050524x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) containing 4-nitrophenyl ester (ONp) or thiazolidine-2-thione (TT) reactive groups in side chains and telechelic/semitelechelic pHPMA with TT groups were designed as highly hydrophilic biocompatible polymers suitable for chemical coating of polyelectrolyte-based DNA-containing nanoparticles bearing amino groups on the surface. The course of the coating reaction carried out in aqueous solution was evaluated on model self-assembling polyelectrolyte DNA/poly(L-lysine) (DNA/PLL) complexes either by monitoring the amount of residual polymer reactive groups by UV spectroscopy or by monitoring changes in the weight-average molecular weight and hydrodynamic size of the complexes using light scattering methods. Physicochemical stability of the coated complexes in buffered saline solution was also investigated. Contrary to uncoated particles, the coated complexes showed remarkable stability to aggregate in 0.15 M NaCl. Coating with pHPMA had practically no effect on the size distribution of the most stable complexes prepared by complexation of DNA with high-molecular-weight PLL (M(w) = 134 000) as shown by dynamic light scattering. The coating reaction was faster and more efficient with multivalent HPMA copolymers containing TT reactive groups than that with HPMA copolymers containing ONp groups.
Collapse
Affiliation(s)
- Vladimír Subr
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
46
|
Abstract
Tumor angiogenesis is crucial for the progression and metastasis of cancer. The vasculature of tumor tissue is different from normal vasculature. Therefore, tumor vascular targeting therapy could represent an effective therapeutic strategy with which to suppress both primary tumor growth and tumor metastasis. The use of viral vectors for tumor vascular targeting therapy is a promising strategy based on the unique properties of viral vectors. In order to circumvent the potential problems of antiviral neutralizing antibodies, poor access to extravascular tumor tissue, and toxicities to normal tissue, viral vectors need to be modified to target the tumor endothelial cells. Viral vectors that could be used for tumor vascular targeting therapy include adenoviral vectors, adeno-associated viral vectors, retroviral vectors, lentiviral vectors, measles virus, and herpes simplex viral vectors. In this review, we will summarize the strategies available for targeting viral vectors for tumor vascular targeting therapy.
Collapse
Affiliation(s)
- Yanzheng Liu
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | | |
Collapse
|
47
|
Oupicky D, Bisht HS, Manickam DS, Zhou QH. Stimulus-controlled delivery of drugs and genes. Expert Opin Drug Deliv 2005; 2:653-65. [PMID: 16296792 DOI: 10.1517/17425247.2.4.653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Macromolecular and colloidal systems used for the systemic delivery of drugs and genes promise to improve the way we treat and prevent numerous diseases. New generations of drug and gene delivery systems (DGDS) are being designed to enhance further efficiency by using a range of endogenous and external stimuli. This review focuses on three qualitatively distinct ways a stimulus can improve the efficiency of DGDS; namely, by selectively triggering release of the therapeutic agent from the DGDS, by modulating physical properties of DGDS and by favourably altering physiological properties of tissues to enhance DGDS transport. Recent developments in these areas are discussed to illustrate the potential of stimulus-controlled DGDS in the development of new generations of therapeutics.
Collapse
Affiliation(s)
- David Oupicky
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
48
|
Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Moghimi SM. Low and high molecular weight poly(l-lysine)s/poly(l-lysine)-DNA complexes initiate mitochondrial-mediated apoptosis differently. FEBS Lett 2005; 579:6191-8. [PMID: 16243317 DOI: 10.1016/j.febslet.2005.09.092] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Poly(L-lysine)s, PLLs, are commonly used for DNA compaction and cell transfection. We report that, although PLLs of low (2.9 kDa), L-PLL, and high (27.4 kDa), H-PLL, Mw in free form and DNA-complexed cannot only cause rapid plasma membrane damage in human cell lines, phosphatidylserine "scrambling" and loss of membrane integrity, but later (24 h) initiate stress-induced cell death via mitochondrial permeabilization without the involvement of processed caspase-2. Mitochondrially mediated apoptosis was confirmed by detection of cytochrome c (Cyt c) release, activation of caspases-9 and -3, and subsequent changes in mitochondrial membrane potential. Plasma membrane damage and apoptosis were most prominent with H-PLL. Cytoplasmic level of Cyt c was more elevated following H-PLL treatment, but unlike L-PLL case, inhibition of Bax channel-forming activity reduced the extent of Cyt c release from mitochondria by half. Inhibition of Bax channel-forming activity had no modulatory effect on L-PLL-mediated Cyt c release. Further, functional studies of isolated mitochondria indicate that H-PLL, but not L-PLL, can directly induce Cyt c release, membrane depolarization, and a progressive decline in the rate of uncoupled respiration. Combined, our data suggest that H-PLL and L-PLL are capable of initiating mitochondrially mediated apoptosis differently. The observed PLL-mediated late-phase apoptosis may provide an explanation for previously reported transient gene expression associated with PLL-based transfection vectors. The importance of our data in relation to design of novel and safer cationic non-viral vectors for human gene therapy is discussed.
Collapse
Affiliation(s)
- Peter Symonds
- Cancer Research-UK, Tumour Cytokine Biology Group, University Hospital, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
49
|
Zhou QH, Miller DL, Carlisle RC, Seymour LW, Oupicky D. Ultrasound-enhanced transfection activity of HPMA-stabilized DNA polyplexes with prolonged plasma circulation. J Control Release 2005; 106:416-27. [PMID: 15967534 DOI: 10.1016/j.jconrel.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/25/2022]
Abstract
Cancer gene therapy would greatly benefit from the possibility to deliver therapeutic genes via tumor-targeted systemic intravenous delivery. The main objective of this study was to determine biophysical, transfection, and pharmacokinetic properties of DNA complexes with reducible polycations that are reversibly stabilized by surface coating with multivalent HPMA copolymers. The specific goals were to evaluate compatibility of these polyplexes with extended plasma circulation, molecular targeting, and ultrasound-enhanced transfection activity. It was demonstrated that using polyplexes based on reducible polycations allows increasing transfection activity and preserving extended plasma circulation half-life observed for control polyplexes based on non-reducible polycations. In addition, the reversibly stabilized polyplexes were compatible with both molecular targeting using protein ligands as well as physical targeting using ultrasound-directed cavitation in vitro. As such, the described gene delivery vectors have the potential to permit efficient systemic delivery of therapeutic genes targeted by a local focused ultrasound treatment.
Collapse
Affiliation(s)
- Qing-Hui Zhou
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
50
|
Parker AL, Fisher KD, Oupicky D, Read ML, Nicklin SA, Baker AH, Seymour LW. Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. J Drug Target 2005; 13:39-51. [PMID: 15848953 DOI: 10.1080/10611860400020449] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have evaluated the capacity of the cell-binding heptapeptide SIGYPLP to enhance transgene expression using non-viral and viral gene delivery vectors. Targeted polyplex based vectors showed good levels of DNA uptake in freshly isolated human umbilical vein endothelial cells (HUVECs) compared to untargeted controls, whilst displaying only modest increases in reporter gene activity. The targeted polyplexes showed reduced levels of DNA uptake in cells of a none endothelial origin although they mediated higher levels of transgene expression. The enhanced efficiency of transgene expression may relate to the more rapid rate of cell division. However, since in vivo application of polyplexes is compromised by instability to serum proteins, serum-resistant polyplexes (surface modified with multivalent reactive hydrophilic polymers based on poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA)) were also evaluated for their ability to mediate transgene expression. Surface modification of polyplexes with pHPMA ablates non-specific cell entry, reducing levels of transgene expression, whilst the incorporation of the SIGYPLP peptide into the hydrophilic polymer resulted in restored transgene expression in all formulations tested. The technology of surface modification using pHPMA can also be applied in the context of viruses, masking receptor-binding epitopes and enabling the linkage of novel cell targeting ligands, enabling construction of a virus with receptor-specific infectivity. Retargeting of adenovirus based vectors using the same polymer-peptide construct enhanced levels of transgene expression in HUVECs to greater than 15 times that observed using parental (unmodified) virus, whilst restoring levels of transgene expression in non-endothelial cell lines tested. The use of constructs based on conjugates between hydrophilic polymers and small receptor-binding oligopeptides as agents for retargeting viral or non-viral vectors to cellular receptors represents a simple alternative to the use of antibodies as targeting ligands for cell specific gene delivery.
Collapse
Affiliation(s)
- Alan L Parker
- Department of Clinical Sciences, The Rayne Institute, King's College London 123 Coldharbour Lane, Denmark Hill, London SE5 9NU, UK.
| | | | | | | | | | | | | |
Collapse
|