1
|
Liu C, Lv X, Kong X, Meng L, Wei K, Wei R, Tang M, Li J, Cao G. Ultrasound-mediated HGF Gene Microbubbles Mitigate Hyperkinetic Pulmonary Arterial Hypertension in Rabbits. Heart Lung Circ 2024; 33:251-259. [PMID: 38307791 DOI: 10.1016/j.hlc.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024]
Abstract
AIM Hyperkinetic pulmonary arterial hypertension (PAH) is a complication of congenital heart disease. Gene therapy is a new experimental treatment for PAH, and ultrasound-mediated gene-carrying microbubble targeted delivery is a promising development for gene transfer. METHODS This study successfully established a hyperkinetic PAH rabbit model by a common carotid artery and jugular vein shunt using the cuff style method. Liposome microbubbles carrying the hepatocyte growth factor (HGF) gene were successfully constructed. An in vitro experiment evaluated the appropriate intensity of ultrasonic radiation by Western blots and 3H-TdR incorporation assays. In an in vivo experiment, after transfection of ultrasound-mediated HGF gene microbubbles, catheterisation was applied to collect haemodynamic data. Hypertrophy of the right ventricle was evaluated by measuring the right ventricle hypertrophy index. Western blot and immunohistochemistry analyses were used to detect the expression of human (h)HGF and angiogenic effects, respectively. RESULTS The most appropriate ultrasonic radiation intensity was 1.0 W/cm2 for 5 minutes. Two weeks after transfection, both systolic pulmonary arterial pressure and mean pulmonary arterial pressure were attenuated. Hypertrophy of the right ventricle was reversed. hHGF was transplanted into the rabbits, resulting in a high expression of hHGF protein and an increase in the number of small pulmonary arteries. Ultrasound-mediated HGF gene microbubble therapy was more effective at attenuating PAH and increasing the density of small pulmonary arteries than single HGF plasmid transfection. CONCLUSIONS Ultrasound-mediated HGF gene microbubbles significantly improved the target of gene therapy in a rabbit PAH model and enhanced the tropism and transfection rates. Thus, the technique can effectively promote small pulmonary angiogenesis and play a role in the treatment of PAH without adverse reactions.
Collapse
Affiliation(s)
- Chuanzhen Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China; Shandong University, Shandong, China; Pantheum Biotechnology Co., Ltd, Shandong, China
| | - Xin Lv
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Xiangjin Kong
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Lingwei Meng
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Kaiming Wei
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Ruyuan Wei
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Mengmeng Tang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Jianhua Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Guangqing Cao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong, China.
| |
Collapse
|
2
|
Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A. Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision. Curr Pharm Des 2023; 29:3532-3545. [PMID: 38151837 DOI: 10.2174/0113816128282478231219044000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. OBJECTIVE The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery. METHODS The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution. RESULTS Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites. CONCLUSION The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| |
Collapse
|
3
|
Ji J, Qin H, Yang Y, Wu J, Wu J. The targeting imaging and treatment capacity of gelsolin-targeted and paclitaxel-loaded PLGA nanoparticles in vitro and in vivo. Front Bioeng Biotechnol 2022; 10:933856. [PMID: 36338135 PMCID: PMC9632342 DOI: 10.3389/fbioe.2022.933856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
As a vital sign of carcinomas, lymph node metastasis is closely related to poor prognosis due to a lack of identification and effective treatment in the early stage. Nanoscale contrast agents targeting specific tumor antigens are expected to identify tumor metastasis in the early stage and achieve precise treatment. As a biomarker in the early stage of tumor invasion and metastasis, gelsolin (GSN) might be a promising molecular target to identify and screen tumor metastasis through the lymphatic system. Therefore, GSN-targeted paclitaxel-loaded poly(lactic-co-glycolic acid) nanoparticles (GSN-PTX-PLGA NPs) were prepared, and their physicochemical properties, encapsulation efficiency, drug loading, and dissolution were determined. Besides, uptake experiments and the fluorescent imaging system were used to evaluate their targeting capability. The targeting imaging and treatment capacity were also assessed by experiments in vitro and in vivo. The diameter of the GSN-PTX-PLGA NPs was 328.59 ± 3.82 nm. Hca-F cells with GSN-PLGA NPs showed stronger green fluorescence than Hca-P cells. DiI-labeled GSN-PLGA NPs in tumor-bearing mice and isolated organs exhibited more prominent fluorescence aggregation. The imaging of GSN-PLGA NPs was satisfactory in vitro, and the echo intensity gradually increased with increasing concentrations of GSN-PLGA NPs. After treatment with GSN-PTX-PLGA NPs, there was an obvious decrease in tumor volume and lymph node metastasis rate compared to the other groups (p < 0.05). In conclusion, GSN-PTX-PLGA NPs have a remarkable targeting capacity in vivo and in vitro, and they effectively inhibit tumor growth and lymph node metastasis in vivo.
Collapse
Affiliation(s)
- Jiamei Ji
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haocheng Qin
- Department of Ultrasound, Lianyungang First People’s Hospital, Lianyungang, Jiangsu, China
| | - Yan Yang
- Department of Ultrasound, Huainan First People’s Hospital, Huainan, Anhui, China
| | - Jun Wu
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Jun Wu,
| | - Juan Wu
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173051. [PMID: 36080088 PMCID: PMC9458162 DOI: 10.3390/nano12173051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 05/11/2023]
Abstract
Efficient conventional chemotherapy is limited by its nonspecific nature, which causes severe systemic toxicity that can lead to patient discomfort and low therapeutic efficacy. The emergence of smart drug delivery systems (SDDSs) utilizing nanoparticles as drug nanocarriers has shown great potential in enhancing the targetability of anticancer agents and limiting their side effects. Liposomes are among the most investigated nanoplatforms due to their promising capabilities of encapsulating hydrophilic, lipophilic, and amphiphilic drugs, biocompatibility, physicochemical and biophysical properties. Liposomal nanodrug systems have demonstrated the ability to alter drugs' biodistribution by sufficiently delivering the entrapped chemotherapeutics at the targeted diseased sites, sparing normal cells from undesired cytotoxic effects. Combining liposomal treatments with ultrasound, as an external drug release triggering modality, has been proven effective in spatially and temporally controlling and stimulating drug release. Therefore, this paper reviews recent literature pertaining to the therapeutic synergy of triggering nanodrugs from liposomes using ultrasound. It also highlights the effects of multiple physical and chemical factors on liposomes' sonosensetivity, several ultrasound-induced drug release mechanisms, and the efficacy of ultrasound-responsive liposomal systems in cancer therapy. Overall, liposomal nanodrug systems triggered by ultrasound are promising cancer therapy platforms that can potentially alleviate the detriments of conventional cancer treatments.
Collapse
Affiliation(s)
- Wafa N. Bahutair
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
5
|
Yang CD, Jessen J, Lin KY. Ultrasound-assisted ocular drug delivery: A review of current evidence. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:685-693. [PMID: 35474512 DOI: 10.1002/jcu.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Efficient ocular drug delivery is a challenging clinical problem with various therapeutic options but no clearly preferred methodology. Given the ubiquity of ultrasound as a diagnostic technique, the safety profile of ultrasound in an ocular context, and the prospect of custom-made ultrasound-sensitive contrast agents, ultrasound presents an attractive ocular drug delivery modality. In this review, we evaluate our present understanding of ultrasound as it relates to ocular drug delivery and significant knowledge gaps in the field. In doing so, we hope to call attention to a potentially novel drug delivery pathway that could be manipulated to treat or cure ocular diseases.
Collapse
Affiliation(s)
- Christopher D Yang
- Department of Ophthalmology, University of California, Irvine School of Medicine, Irvine, California, USA
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Jordan Jessen
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Ken Y Lin
- Department of Ophthalmology, University of California, Irvine School of Medicine, Irvine, California, USA
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Wear KA, Shah A, Baker C. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1257-1267. [PMID: 35143394 PMCID: PMC9136594 DOI: 10.1109/tuffc.2022.3150179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This article reports experimental validation for spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. The method was validated using linear and nonlinear beams transmitted by seven single-element spherically focusing transducers (2-10 MHz; F /#: 1-3) and measured with five hydrophones (sensitive element diameters dg : 85-1000 [Formula: see text]), resulting in 35 transducer/hydrophone combinations. Exponential functions, exp( -αx ), where x = dg /( λ1F /#) and λ1 is the fundamental wavelength, were used to model focal pressure ratios p'/p (where p' is the measured value subjected to spatial averaging and p is the true axial value that would be obtained with a hypothetical point hydrophone). Spatiotemporal deconvolution reduced α (followed by root mean squared difference between data and fit) from 0.29-0.30 (7%) to 0.01 (8%) (linear signals) and from 0.29-0.40 (8%) to 0.04 (14%) (nonlinear signals), indicating successful spatial averaging correction. Linear functions, Cx + 1, were used to model FWHM'/FWHM, where FWHM is full-width half-maximum. Spatiotemporal deconvolution reduced C from 9% (4%) to -0.6% (1%) (linear signals) and from 30% (10%) to 6% (5%) (nonlinear signals), indicating successful spatial averaging correction. Spatiotemporal deconvolution resulted in significant improvement in accuracy even when the hydrophone geometrical sensitive element diameter exceeded the beam FWHM. Responsible reporting of hydrophone-based pressure measurements should always acknowledge spatial averaging considerations.
Collapse
|
7
|
Wang J, Mo J, Xie Y, Wang C. Ultrasound microbubbles-mediated miR-216b affects MALAT1-miRNA axis in non-small cell lung cancer cells. Tissue Cell 2021; 74:101703. [PMID: 34896788 DOI: 10.1016/j.tice.2021.101703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
MiR-216b is ectopically expressed in various cancers. Ultrasound microbubbles (UTMBs) are an effective method for miRNA delivery. This article mainly explored the involvement of lncRNA in the effects of UTMBs-mediated miR-216b on non-small cell lung cancer (NSCLC) progression. Expressions and relationship of miR-216b and MALAT1 were examined using quantitative real-time polymerase chain reaction (qRT-PCR), Pearson, TargetScan, and dual-luciferase reporter assay. After the transfection with liposome- or UTMBs-mediated miR-216b mimic (M) or MALAT1 overexpression plasmid alone or together, levels of miR-216b and MALAT1, cell biological behaviors, as well as expressions of apoptosis- and epithelial mesenchymal transition (EMT)-related markers were examined using qRT-PCR, cell functional experiments, and western blot. Besides, we used qRT-PCR to quantify the expressions of multiple downstream miRNAs of MALAT1. MiR-216b expression was weakened yet MALAT1 expression was enhanced in NSCLC tissues, and miR-216b was negatively bound to MALAT1. TargetScan analysis manifested that miR-216b, targeted by MALAT1, was down-regulated in NSCLC cells. UTMBs-mediated miR-216b M further intensified miR-216b level yet weakened cell biological behaviors. The inhibitory effect of UTMBs-mediated miR-216b M on cell biological behaviors and MALAT1 expression was greatly better relative to that of miR-216b M. Moreover, miR-216b restrained the cell biological behaviors by repressing MALAT1 expression. We further manifested that miR-216b facilitated the expressions of apoptosis-related markers, but restrained those of EMT-related markers by repressing MALAT1 expression. Moreover, UTMBs-mediated miR-216b M enhanced the expressions of downstream multiple miRNAs of MALAT1, but this tendency was reversed by co-transfection of overexpressed MALAT1 and miR-216b M. Collectively, UTMBs-mediated miR-216b M restrained NSCLC cell growth by modulating the MALAT1-miRNA axis.
Collapse
Affiliation(s)
- Jian Wang
- Thoracic Surgery Department, Shenzhen People's Hospital, China
| | - Jianming Mo
- Pulmonary and Critical Care Medicine Department, Peking University Shenzhen Hospital, China
| | - Yuancai Xie
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, China.
| | - Chunguang Wang
- Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
8
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Su X, Rakshit M, Das P, Gupta I, Das D, Pramanik M, Ng KW, Kwan J. Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24422-24430. [PMID: 34019376 DOI: 10.1021/acsami.1c01161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For site-specific diseases such as atherosclerosis, it is desirable to noninvasively and locally deliver therapeutics for extended periods of time. High-intensity focused ultrasound (HIFU) provides targeted drug delivery, yet remains unable to sustain delivery beyond the HIFU treatment time. Furthermore, methods to validate HIFU-enhanced drug delivery remain limited. In this study, we report on HIFU-targeted implantation of degradable drug-loaded sound-sensitive multicavity PLGA microparticles (mcPLGA MPs) as a theranostic agent for the treatment of arterial lesions. Once implanted into the targeted tissue, mcPLGA MPs eluted dexamethasone for several days, thereby reducing inflammatory markers linked to oxidized lipid uptake in a foam cell spheroid model. Furthermore, implanted mcPLGA MPs created hyperechoic regions on diagnostic ultrasound images, and thus noninvasively verified that the target region was treated with the theranostic agents. This novel and innovative multifunctional theranostic platform may serve as a promising candidate for noninvasive imaging and treatment for site-specific diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Prativa Das
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Ipshita Gupta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, CleanTech One, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
10
|
Ruan JL, Browning RJ, Yildiz YO, Bau L, Kamila S, Gray MD, Folkes L, Hampson A, McHale AP, Callan JF, Vojnovic B, Kiltie AE, Stride E. Evaluation of Loading Strategies to Improve Tumor Uptake of Gemcitabine in a Murine Orthotopic Bladder Cancer Model Using Ultrasound and Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1596-1615. [PMID: 33707089 DOI: 10.1016/j.ultrasmedbio.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In this study we compared three different microbubble-based approaches to the delivery of a widely used chemotherapy drug, gemcitabine: (i) co-administration of gemcitabine and microbubbles (Gem+MB); (ii) conjugates of microbubbles and gemcitabine-loaded liposomes (GemlipoMB); and (iii) microbubbles with gemcitabine directly bound to their surfaces (GembioMB). Both in vitro and in vivo investigations were carried out, respectively, in the RT112 bladder cancer cell line and in a murine orthotopic muscle-invasive bladder cancer model. The in vitro (in vivo) ultrasound exposure conditions were a 1 (1.1) MHz centre frequency, 0.07 (1.0) MPa peak negative pressure, 3000 (20,000) cycles and 100 (0.5) Hz pulse repetition frequency. Ultrasound exposure produced no significant increase in drug uptake either in vitro or in vivo compared with the drug-only control for co-administered gemcitabine and microbubbles. In vivo, GemlipoMB prolonged the plasma circulation time of gemcitabine, but only GembioMB produced a statistically significant increase in cleaved caspase 3 expression in the tumor, indicative of gemcitabine-induced apoptosis.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Richard J Browning
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yesna O Yildiz
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sukanta Kamila
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Michael D Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Lisa Folkes
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alix Hampson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Borivoj Vojnovic
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anne E Kiltie
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Li C, Hu S, Yue Y. Ultrasound Microbubble-Mediated VHL Regulates the Biological Behavior of Ovarian Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:723-732. [PMID: 33261909 DOI: 10.1016/j.ultrasmedbio.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
According to the literature, the von Hippel-Lindau (VHL) gene has a certain correlation with ovarian cancer. In this study, we investigated the effect and mechanism of ultrasound microbubble-mediated VHL on the biological function of ovarian cancer cells. Non-targeting lipid microbubbles and targeted lipid microbubbles were prepared. OVCAR-3 cells were treated with VHL mediated by ultrasound and microbubbles alone or together. Expressions of VHL, Akt, epithelial-mesenchymal-transition-related proteins and apoptosis-related proteins were detected by Western blot and quantitative real-time polymerase chain reaction as needed. The effect of ultrasound microbubble-mediated VHL on the proliferation, apoptosis, cell cycle, migration and invasion of OVCAR-3 cells was examined by Cell Counting Kit-8, flow cytometry, wound-healing assay and Transwell. Compared with other treatment methods, ultrasound microbubble mediation enhanced VHL expression in OVCAR-3 cells. Overexpression of liposome-mediated VHL inhibited the proliferation and migration; caused cell-cycle arrest; promoted apoptosis: downregulated the expressions of MMP2, MMP9, E-cadherin, Akt and Bcl-2; and upregulated the expressions of VHL and BCL2-associated X protein (BAX) in OVCAR-3 cells. The effect of microbubble-treated VHL was similar to liposome-mediated regulation, while ultrasound treatment enhanced the effect of VHL on OVCAR-3 cells. More interestingly, ultrasound microbubble-mediated VHL had the most obvious regulatory effect on OVCAR-3 cells. Ultrasound microbubble technology increases the transfection efficiency of VHL into OVCAR-3 cells and enhances the effect of VHL gene on the biological function of OVCAR-3 cells.
Collapse
Affiliation(s)
- Cong Li
- Ultrasonography Department, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Suling Hu
- Functional Department, Baoding Infectious Disease Hospital, Baoding, Hebei Province, China
| | - Yan Yue
- Department of Gynaecology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
12
|
Ghosh S, Ranjan AD, Das S, Sen R, Roy B, Roy S, Banerjee A. Directed Self-Assembly Driven Mesoscale Lithography Using Laser-Induced and Manipulated Microbubbles: Complex Architectures and Diverse Applications. NANO LETTERS 2021; 21:10-25. [PMID: 33296219 DOI: 10.1021/acs.nanolett.0c03839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A microbubble nucleated due to the absorption of a tightly focused laser at the interface of a liquid-solid substrate enables directed and irreversible self-assembly of mesoscopic particles dispersed in the liquid at the bubble base. This phenomenon has facilitated a new microlithography technique which has grown rapidly over the past decade and can now reliably pattern a vast range of soft materials and colloids, ranging from polymers to metals to proteins. In this review, we discuss the science behind this technology and the present state-of-the-art. Thus, we describe the physics of the self-assembly driven by the bubble, the techniques for generating complex mesoarchitectures, both discrete and continuous, and their properties, and the various applications demonstrated in plastic electronics, site-specific catalysis, and biosensing. Finally, we describe a roadmap for the technique to achieve its potential of successfully patterning "everything" mesoscopic and the challenges that lie therein.
Collapse
Affiliation(s)
- Subhrokoli Ghosh
- Light Matter Lab, Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anand Dev Ranjan
- Light Matter Lab, Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Santu Das
- EFAML, Materials Science Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rakesh Sen
- EFAML, Materials Science Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soumyajit Roy
- EFAML, Materials Science Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ayan Banerjee
- Light Matter Lab, Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
13
|
Wear KA, Shah A, Baker C. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2674-2691. [PMID: 32746206 PMCID: PMC8325168 DOI: 10.1109/tuffc.2020.3007808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article reports an investigation of an inverse-filter method to correct for experimental underestimation of pressure due to spatial averaging across a hydrophone sensitive element. The spatial averaging filter (SAF) depends on hydrophone type (membrane, needle, or fiber-optic), hydrophone geometrical sensitive element diameter, transducer driving frequency, and transducer F number (ratio of focal length to diameter). The absolute difference between theoretical and experimental SAFs for 25 transducer/hydrophone pairs was 7% ± 3% (mean ± standard deviation). Empirical formulas based on SAFs are provided to enable researchers to easily correct for hydrophone spatial averaging errors in peak compressional pressure ( pc ), peak rarefactional pressure ( pr ), and pulse intensity integral. The empirical formulas show, for example, that if a 3-MHz, F /2 transducer is driven to moderate nonlinear distortion and measured at the focal point with a 500- [Formula: see text] membrane hydrophone, then spatial averaging errors are approximately 16% ( pc ), 12% ( pr ), and 24% (pulse intensity integral). The formulas are based on circular transducers but also provide plausible upper bounds for spatial averaging errors for transducers with rectangular-transmit apertures, such as linear and phased arrays.
Collapse
|
14
|
Cui X, Zhao Q, Huang Z, Xiao Y, Wan Y, Li S, Lee CS. Water-Splitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004551. [PMID: 33125185 DOI: 10.1002/smll.202004551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Water-splitting has been extensively studied especially for energy applications. It is often not paid with enough attention for biomedical applications. In fact, several innovative breakthroughs have been achieved in the past few years by employing water-splitting for treating cancer and other diseases. Interestingly, among these important works, only two reports have mentioned the term "water-splitting." For this reason, the importance of water-splitting for biomedical applications is significantly underestimated. This progress work is written with the aims to explain and summarize how the principle of water-splitting is employed to achieve therapeutic results not offered by conventional approaches. It is expected that this progress report will not only explain the importance of water-splitting to scientists in the biomedical fields, it should also draw attention from scientists working on energy applications of water-splitting.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qi Zhao
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhongming Huang
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yafang Xiao
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yingpeng Wan
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
15
|
Ilovitsh T, Feng Y, Foiret J, Kheirolomoom A, Zhang H, Ingham ES, Ilovitsh A, Tumbale SK, Fite BZ, Wu B, Raie MN, Zhang N, Kare AJ, Chavez M, Qi LS, Pelled G, Gazit D, Vermesh O, Steinberg I, Gambhir SS, Ferrara KW. Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proc Natl Acad Sci U S A 2020; 117:12674-12685. [PMID: 32430322 PMCID: PMC7293655 DOI: 10.1073/pnas.1914906117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-β, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-β). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-β plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Yi Feng
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Josquin Foiret
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Azadeh Kheirolomoom
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Hua Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Asaf Ilovitsh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Brett Z Fite
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Bo Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Marina N Raie
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Nisi Zhang
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Aris J Kare
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Idan Steinberg
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Radiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
16
|
Takeoka Y, Yurube T, Nishida K. Gene Therapy Approach for Intervertebral Disc Degeneration: An Update. Neurospine 2020; 17:3-14. [PMID: 32252149 PMCID: PMC7136116 DOI: 10.14245/ns.2040042.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration is the primary cause of back pain and associated with neurological disorders including radiculopathy, myelopathy, and paralysis. The currently available surgical treatments predominantly include the excision of pathological discs, resulting in the function loss, immobilization, and potential additional complications due to the altered biomechanics. Gene therapy approach involves gene transfer into cells, affects RNA and protein synthesis of the encoded genes in the recipient cells, and facilitates biological treatment. Relatively long-exerting therapeutic effects by gene therapy are potentially advantageous to treat slow progressive degenerative disc disease. In gene therapy, the delivery method and selection of target gene(s) are essential. Although gene therapy was first mediated by viral vectors, technological progress has enabled to apply nonviral vectors and polyplex micelles for the disc. While RNA interference successfully provides specific downregulation of multiple genes in the disc, clustered regularly interspaced short palindromic repeats (CRISPR) system has increased attention to alter the process of intervertebral disc degeneration. Then, more recent findings of our studies have suggested autophagy, the intracellular self-digestion, and recycling system under the negative regulation by the mammalian target of rapamycin (mTOR), as a gene therapy target in the disc. Here we briefly review backgrounds and applications of gene therapy for the disc, introducing strategies of autophagy and mTOR signaling modulation through selective RNA interference.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
17
|
Experimental and Numerical Study on Flow Resistance and Bubble Transport in a Helical Static Mixer. ENERGIES 2020. [DOI: 10.3390/en13051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flow resistance and bubble transport in a helical static mixer were studied experimentally and numerically. The inline mixer increases the volume fraction of gas in liquids by breaking bubbles into smaller sizes with a micrometer size in the flow experiments. The gas–liquid flow was simulated by a combination of computational fluid dynamics and Taylor expansion methods of moments. The friction factor of the helical static mixer is much smaller than that of the Kenics static mixers. The pressure drop increases with the Reynolds number, and the increment is larger when the Reynolds number is higher. The equidistant pressure drop increases with the argument of Reynolds number, and increases when the pitch decreases from upstream to downstream. The energy expenditure increases significantly when the variable-pitch coefficient is too small. The bubble geometric mean diameter decreases and the geometric standard deviation increases when the gas–liquid fluid flows through the mixer. The variable pitch structure enhances the bubble breakup effectively. The change of the bubble size decreases with the argument of the Reynolds number. The effect of the mixer has a limitation on breaking the bubbles.
Collapse
|
18
|
Karki A, Giddings E, Carreras A, Champagne D, Fortner K, Rincon M, Wu J. Sonoporation as an Approach for siRNA delivery into T cells. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3222-3231. [PMID: 31540758 DOI: 10.1016/j.ultrasmedbio.2019.06.406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Delivery of small interfering RNAs (siRNAs) into primary T cells is quite challenging because they are non-proliferating cells and are difficult to transfect with non-viral approaches. Because sonoporation is independent of the proliferation status of cells and siRNA acts in the cell cytoplasm, we investigated whether sonoporation could be used to deliver siRNA into mouse and human T cells. Cells mixed with Definity microbubbles and siRNA were sonicated with a non-focused transducer of center frequency 2.20 MHz producing ultrasound at a 10% duty cycle, pulse repetition frequency of 2.20 kHz and spatial average temporal average ultrasound intensity of 1.29 W/cm2 for 5 s and then examined for siRNA fluorescence by flow cytometry analysis. These sonoporation conditions resulted in high-efficiency transfection of siRNA in mouse and human T cells. Further, the efficacy of siRNA delivery by sonoporation was illustrated by the successful visualization of decreased methylation-controlled J protein expression in mouse and human CD8 T cells via Western blot analysis. The results provide the first evidence that sonoporation is a novel approach to delivery of siRNA into fresh isolated mouse and human T cells in vitro, and might be used for in vivo studies in the future.
Collapse
Affiliation(s)
- Alina Karki
- Department of Physics, University of Vermont, Burlington, Vermont, USA
| | - Emily Giddings
- Division of Immunobiology, University of Vermont, Burlington, Vermont, USA
| | - Ana Carreras
- Division of Immunobiology, University of Vermont, Burlington, Vermont, USA
| | - Devin Champagne
- Division of Immunobiology, University of Vermont, Burlington, Vermont, USA
| | - Karen Fortner
- Division of Immunobiology, University of Vermont, Burlington, Vermont, USA
| | - Mercedes Rincon
- Division of Immunobiology, University of Vermont, Burlington, Vermont, USA
| | - Junru Wu
- Department of Physics, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
19
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
20
|
Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019; 10:413. [PMID: 31068814 PMCID: PMC6491501 DOI: 10.3389/fphar.2019.00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bone defects are challenging to treat in musculoskeletal system due to the lack of vascularization. Biomaterials with internal vascularization ability and osteoinduction bioactivity are promising strategies for orthopedic applications. Vascular endothelial growth factor (VEGF) has been widely used for angiogenesis and osteogenesis. Here, we developed VEGF-loaded PLGA microbubbles (MBs) for improvement of angiogenesis and osteogenesis in bone defect repair in combination with ultrasound-targeted microbubble destruction (UTMD). Release profile showed UTMD promoted the burst release of VEGF from PLGA MBs. We subsequently investigated the combination of ultrasound application with VEGF MBs for in vitro osteogenesis. The results demonstrated that the expression of osteogenesis-related genes and calcium deposits were increased by VEGF MBs in combination of UTMD. Micro-computed tomography (micro-CT) and histological analysis were conducted 4 and 8 weeks post-surgery. In vivo results show that VEGF MBs in combination of UTMD could significantly enhance new bone formation and vascular ingrowth at the defect site in a rat calvarial defect model. In summary, VEGF MBs in combination of UTMD could augment bone regeneration and vascularization at calvarial bone defects and hold huge potential for clinical translation.
Collapse
Affiliation(s)
- Yong Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zeng
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Wang F, Shi T, Su C. Ultrasound with Microbubble Contrast Agent and Urokinase for Thrombosis. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:859-866. [PMID: 30594424 DOI: 10.1016/j.ultrasmedbio.2018.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
This study was aimed at assessing the effects of urokinase (UK) in combination with ultrasound and microbubbles in in vitro and in vivo thrombolytic therapy for the treatment of deep vein thrombosis (DVT). Thrombi with formation times of 1, 3, 7, 14 and 21 d were used for thrombolysis. Forty-five adult mongrel dogs were used to evaluate thrombosis in vivo. Both in vitro and in vivo analyses revealed that UK + microbubbles had the best effect among the combinations. Thrombolysis <7 d was more effective at a thrombolysis rate of about 50%, but the thrombolytic effect of thrombi >7 d was poor at thrombolysis rates <30%. Ultrasound + UK significantly increased the thrombolysis rate of thrombi <7 d. These results suggest that the combination of ultrasound with microbubble contrast agents and UK may have a synergistic effect on thrombolysis.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiemei Shi
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Chang Su
- Department of Ultrasound, People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Wang L, Tang X, Xiang X, Tang Y, Qiu L. Experimental study of TNF-α receptor gene transfection by ultrasound-targeted microbubble destruction to treat collagen-induced arthritis in rats in vivo. Exp Ther Med 2019; 17:1601-1610. [PMID: 30783427 PMCID: PMC6364218 DOI: 10.3892/etm.2019.7158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a novel method for gene transfection. The aim of the present study was to identify the most suitable method of tumor necrosis factor (TNF)-α receptor (TNFR) gene transfection using UTMD for systemically treating a rat model of collagen-induced arthritis (CIA). Plasmids encoding the TNFR and enhanced green fluorescent protein (EGFP) with or without microbubbles were locally injected into the skeletal muscle and synovial membrane of CIA rats. The rats were divided into the following 6 groups: i) Group 1, plasmid + microbubble + ultrasound (muscle group); ii) group 2, plasmid + microbubble + ultrasound (joint group); iii) group 3, plasmid + ultrasound; iv) group 4, plasmid + microbubble; v) group 5, plasmid only and; vi) group 6, untreated controls. Rats were sacrificed at 2, 4 and 8 weeks of treatment. The transfection efficiency of the plasmids in the muscle or synovium was observed by fluorescence microscopy. Arthritis scores were calculated and serum levels of TNF-α were measured prior to and following treatment. Bilateral ankle joints were obtained and stained to observe synovial inflammation and the expression of TNF-α. EGFP expression was detected in all treated groups at each time point, and the fluorescence intensity of groups 1 and 2 was significantly greater than that of the other groups (P<0.05). For groups 1 and 2, the reductions in joint scores and serum levels of TNF-α were significant compared with the other groups (P<0.05). The number of synovial inflammatory cells and the synovial expression of TNF-α presented similar results among all experimental groups and no significant difference was observed between groups 1 and 2. Therefore, the results of the present study suggest that UTMD significantly enhanced the efficiency of TNFR gene transfection in the muscle and inflamed synovium of rats with. Regardless of whether the transfected TNFR gene was injected into the muscle or joint, it was continuously expressed in the rats for at least 8 weeks, which may improve arthritic symptoms and reduce the levels of inflammatory factors in the synovial tissues and peripheral blood.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaolan Tang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xi Xiang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuanjiao Tang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Qiu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
24
|
Zilonova E, Solovchuk M, Sheu TWH. Dynamics of bubble-bubble interactions experiencing viscoelastic drag. Phys Rev E 2019; 99:023109. [PMID: 30934281 DOI: 10.1103/physreve.99.023109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/09/2023]
Abstract
The subject of the present theoretical study is the dynamics of bubble-bubble interactions in a viscoelastic medium. First, new equations for calculating the viscoelastic drag exerted on bubbles during their translational motion in a viscoelastic medium are derived. The drag equations are incorporated in the bubble-bubble interaction model in which, thereby, both the translational and radial motions of the bubbles are affected by the viscoelastic features of the medium. Second, the derived equations are applied to investigate how the viscoelastic properties of the medium can affect the dynamics of multiple bubbles, as well as how the bubbles can affect each other. It was discovered that the bubble-bubble interaction can significantly influence the dynamics of a single bubble. As the distance between the bubbles increases, their effect on each other decreases, and at a distance of several millimeters, this effect can be neglected. Moreover, it was concluded that with increasing elasticity and viscosity of the medium, as well with decreasing relaxation time, the effects of other bubbles on the current bubble's radial motion can become negligible. The translational motion of the bubbles was investigated for different viscoelastic models. The elasticity resists the motion of bubbles in space, resulting in a dynamical steady state of the distance between the bubbles at high elasticity values. The relaxation time of the medium was also found to be important in terms of the bubbles' translational movement.
Collapse
Affiliation(s)
- Ekaterina Zilonova
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
| | - Maxim Solovchuk
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China and Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan 35053, Taiwan, Republic of China
| | - T W H Sheu
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China; Center of Advanced Study in Theoretical Science (CASTS), National Taiwan University, Taiwan 106, Republic of China; and Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
25
|
Courrol LC, de Oliveira Gonçalves K, Vieira DP. Emerging Role of Aminolevulinic Acid and Gold Nanoparticles Combination in Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Do HD, Couillaud BM, Doan BT, Corvis Y, Mignet N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv Drug Deliv Rev 2019; 138:3-17. [PMID: 30321618 DOI: 10.1016/j.addr.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Nucleic acids (NAs) have been considered as promising therapeutic agents for various types of diseases. However, their clinical applications still face many limitations due to their charge, high molecular weight, instability in biological environment and low levels of transfection. To overcome these drawbacks, therapeutic NAs should be carried in a stable nanocarrier, which can be viral or non-viral vectors, and released at specific target site. Various controllable gene release strategies are currently being evaluated with interesting results. Endogenous stimuli-responsive systems, for example pH-, redox reaction-, enzymatic-triggered approaches have been widely studied based on the physiological differences between pathological and normal tissues. Meanwhile, exogenous triggered release strategies require the use of externally non-invasive physical triggering signals such as light, heat, magnetic field and ultrasound. Compared to internal triggered strategies, external triggered gene release is time and site specifically controllable through active management of outside stimuli. The signal induces changes in the stability of the delivery system or some specific reactions which lead to endosomal escape and/or gene release. In the present review, the mechanisms and examples of exogenous triggered gene release approaches are detailed. Challenges and perspectives of such gene delivery systems are also discussed.
Collapse
|
27
|
Abstract
For gene therapy to work in vivo, nucleic acids need to reach the target cells without causing major side effects to the patient. In many cases the gene only has to reach a subset of cells in the body. Therefore, targeted delivery of genes to the desired tissue is a major issue in gene delivery. Many different possibilities of targeted gene delivery have been studied. A physical approach to target nucleic acids and other drugs to specific regions in the body is the use of ultrasound and microbubbles. Microbubbles are gas filled spheres with a stabilizing lipid, protein, or polymer shell. When these microbubbles enter an ultrasonic field, they start to oscillate. The bubbles' expansion and compression are inversely related to the pressure phases in the ultrasonic field. When microbubbles are exposed to high-intensity ultrasound the microbubbles will eventually implode and fragment. This generates shockwaves and microjets which can temporarily permeate cell membranes and blood vessels. Nucleic acids or (non)viral vectors can as a result gain direct access to either the cytoplasm of neighboring cells, or extravasate to the surrounding tissue. The nucleic acids can either be mixed with the microbubbles or loaded on the microbubbles. Nucleic acid loaded microbubbles can be obtained by coupling nucleic acid-containing particles (i.e., lipoplexes) to the microbubbles. Upon ultrasound-mediated implosion of the microbubbles, the nucleic acid-containing particles will be released and will deliver their nucleic acids in the ultrasound-targeted region.
Collapse
|
28
|
Alford A, Tucker B, Kozlovskaya V, Chen J, Gupta N, Caviedes R, Gearhart J, Graves D, Kharlampieva E. Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers (Basel) 2018; 10:E1342. [PMID: 30961267 PMCID: PMC6401949 DOI: 10.3390/polym10121342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
Nucleic acid therapeutics have the potential to be the most effective disease treatment strategy due to their intrinsic precision and selectivity for coding highly specific biological processes. However, freely administered nucleic acids of any type are quickly destroyed or rendered inert by a host of defense mechanisms in the body. In this work, we address the challenge of using nucleic acids as drugs by preparing stimuli responsive poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules loaded with ~7 kDa G-quadruplex DNA. The capsules are shown to release their DNA cargo on demand in response to both enzymatic and ultrasound (US)-triggered degradation. The unique structure adopted by the G-quadruplex is essential to its biological function and we show that the controlled release from the microcapsules preserves the basket conformation of the oligonucleotide used in our studies. We also show that the (PMAA/PVPON) multilayer hydrogel capsules can encapsulate and release ~450 kDa double stranded DNA. The encapsulation and release approaches for both oligonucleotides in multilayer hydrogel microcapsules developed here can be applied to create methodologies for new therapeutic strategies involving the controlled delivery of sensitive biomolecules. Our study provides a promising methodology for the design of effective carriers for DNA vaccines and medicines for a wide range of immunotherapies, cancer therapy and/or tissue regeneration therapies in the future.
Collapse
Affiliation(s)
- Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Brenna Tucker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jun Chen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jenna Gearhart
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - David Graves
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Center of Nanoscale Materials and Biointegration, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
DU J, Sun Y, Li FH, DU LF, Duan YR. Enhanced delivery of biodegradable mPEG-PLGA-PLL nanoparticles loading Cy3-labelled PDGF-BB siRNA by UTMD to rat retina. J Biosci 2018; 42:299-309. [PMID: 28569253 DOI: 10.1007/s12038-017-9677-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-L-lysine (mPEG-PLGA-PLL) nanoparticles (NPs) loading Cy3-labelled platelet-derived growth factor BB (PDGF-BB) siRNA to rat retina in vivo. Eighty Wistar rats were divided into five groups (G). The right eyes, respectively, received an intravitreal injection as follows: normal saline (NS) (G1), NPs and NS (G2), NPs and MBs (G3), NPs and NS (G4) and NPs and MBs (G5). In G4 and G5, the eyes were exposed to US for 5 mins. Twenty-four hours after transfection, the uptake and distribution of Cy3-labelled siRNA in rat retina were observed by fluorescent microscope. The percentage of Cy3- labelled siRNA-positive cells was evaluated by flow cytometer. The levels of PDGF-BB mRNA in retinal pigment epithelium (RPE) cells and secreted PDGF-BB proteins were also measured. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage. Our results showed that the number of Cy3-labelled siRNApositive cells in G5 was significantly higher than those of the other groups (P less than 0.05 for all comparisons). The maximum efficiency of siRNA uptake in neural retina was 18.22 +/_ 1.67%. In G4 and G5, a small number of Cy3- labelled siRNA-positive cells were also detected in the pigmented cell layer of the retina. NPs loading siRNA delivered with UTMD could more effectively down-regulate the mRNA and protein expression of PDGF-BB than NPs plus US (P=0.014 and P=0.007, respectively). Histology showed no evident tissue damage after UTMDmediated NPs loading siRNA transfection. UTMD could be used safely to enhance the delivery of mPEG-PLGAPLL NPs loading siRNA into rat retina.
Collapse
Affiliation(s)
- Jing DU
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pu Jian Road, Shanghai 200127, China
| | | | | | | | | |
Collapse
|
30
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
31
|
Delivery of the gene encoding the tumor suppressor Sef into prostate tumors by therapeutic-ultrasound inhibits both tumor angiogenesis and growth. Sci Rep 2017; 7:15060. [PMID: 29118380 PMCID: PMC5678190 DOI: 10.1038/s41598-017-12408-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/30/2017] [Indexed: 11/16/2022] Open
Abstract
Carcinomas constitute over 80% of all human cancer types with no effective therapy for metastatic disease. Here, we demonstrate, for the first time, the efficacy of therapeutic-ultrasound (TUS) to deliver a human tumor suppressor gene, hSef-b, to prostate tumors in vivo. Sef is downregulated in various human carcinomas, in a manner correlating with tumor aggressiveness. In vitro, hSef-b inhibited proliferation of TRAMP C2 cells and attenuated activation of ERK/MAPK and the master transcription factor NF-κB in response to FGF and IL-1/TNF, respectively. In vivo, transfection efficiency of a plasmid co-expressing hSef-b/eGFP into TRAMP C2 tumors was 14.7 ± 2.5% following a single TUS application. Repeated TUS treatments with hSef-b plasmid, significantly suppressed prostate tumor growth (60%) through inhibition of cell proliferation (60%), and reduction in blood vessel density (56%). In accordance, repeated TUS-treatments with hSef-b significantly inhibited in vivo expression of FGF2 and MMP-9. FGF2 is a known mitogen, and both FGF2/MMP-9 are proangiogenic factors. Taken together our results strongly suggest that hSef-b acts in a cell autonomous as well as non-cell autonomous manner. Moreover, the study demonstrates the efficacy of non-viral TUS-based hSef-b gene delivery approach for the treatment of prostate cancer tumors, and possibly other carcinomas where Sef is downregulated.
Collapse
|
32
|
Gong L, Jiang C, Liu L, Wan S, Tan W, Ma S, Jia X, Wang M, Hu A, Shi Y, Zhang Y, Shen Y, Wang F, Chen Y. Transfection of neurotrophin-3 into neural stem cells using ultrasound with microbubbles to treat denervated muscle atrophy. Exp Ther Med 2017; 15:620-626. [PMID: 29403547 PMCID: PMC5780738 DOI: 10.3892/etm.2017.5439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
Neurotrophin-3 (NT-3) has potential as a therapeutic agent for the treatment of patients with denervated muscle atrophy. However, the endogenous secretion of NT-3 is low and exogenous NT-3 lacks sufficient time to accumulate due to its short half-life. The transfection of NT-3 has been demonstrated to have a beneficial effect on denervated muscle and motor endplates. Neural stem cells (NSCs) differentiate into neurons and form motor endplate nerve-muscle connections. It has been previously demonstrated that local and noninvasive transfection can be performed using ultrasound with microbubbles (MBs). In the current study, hematoxylin and eosin, acetylcholinesterase and gold chloride staining, as well as transmission electron microscopy, were performed to verify the effects of this treatment strategy. The results demonstrated that using ultrasound with MBs for the transfection of NT-3 into NSCs, and their subsequent transplantation in vivo, attenuated the atrophy of denervated muscle and reduced motor endplate degeneration. This noninvasive, efficient and targeted treatment strategy may therefore be a potential treatment for patients with denervated muscle atrophy.
Collapse
Affiliation(s)
- Lin Gong
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shengxiang Wan
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wen Tan
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Sushuang Ma
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiaojian Jia
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China.,Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, P.R. China
| | - Meiwei Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Azhen Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yu Zhang
- Department of Ultrasound, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518055, P.R. China
| | - Yuanyuan Shen
- Department of Biomedical Engineering, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China.,Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, P.R. China.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
33
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
34
|
Kudo N. High-Speed In Situ Observation System for Sonoporation of Cells With Size- and Position-Controlled Microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:273-280. [PMID: 27623577 DOI: 10.1109/tuffc.2016.2606551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A high-speed in situ microscopic observation system developed for basic studies on mechanisms of sonoporation is introduced in this paper. The main part of the system is an inverted-type fluorescence microscope, and a high-speed camera of 20 MHz in a maximum framing rate was used to visualize the dynamics of cavitation bubbles that causes a sonoporation effect. Differential interference contrast and fluorescence techniques were used for sensitive visualization of cell changes during sonoporation. The system is also equipped with optical tweezers that can move a microbubble of several microns in size by using a donut-shaped light beam. In situ microscopic observation of sonoporation was carried out using a cell with a size- and position-controlled microbubble. The experimental results showed that the ability of cells to repair sonoporation-induced damage depends on their membrane tension, indicating the usefulness of the observation system as a basic tool for the investigation of sonoporation phenomena.
Collapse
|
35
|
Waghulde S, Naik P. An Overview of Therapeutic Applications. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over the last few years' great advances have been made on the development drug delivery systems for different purposes for targeting the diseased conditions. Novel drug delivery originates from polymers or associated with some devices is generally related with the emergence of novel characteristics. These changes are what eventually comprise the value of drug delivery system and Novel drug delivery system. Novel properties become existed without making new materials. Novel drug delivery system comparable to traditional system, following Targeted Drug Delivery System (TDDS) is also called targeting drug system. A new drug delivery system makes the drugs densely gather pathological-change structures, and has an improved healing effect and less toxic side effects. The drugs can improve the strength of pharmacological action and reduce the bad effect all over the body, for they release in the target organs.
Collapse
|
36
|
Larina IV, Evers BM, Ashitkov TV, Bartels C, Larin KV, Esenaliev RO. Enhancement of Drug Delivery in Tumors by Using Interaction of Nanoparticles with Ultrasound Radiation. Technol Cancer Res Treat 2016; 4:217-26. [PMID: 15773791 DOI: 10.1177/153303460500400211] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficacy and safety of cancer chemo- and biotherapy are limited by poor penetration of anti-cancer drugs from blood into tumor cells. Tumor blood vessel wall, slow diffusion in the interstitium, and cancer cell membrane create physiological barriers for anti-cancer drugs, in particular promising macromolecular agents. Recently, we proposed to use selective accumulation of exogenous nano- and microparticles in tumors followed by ultrasound-induced cavitation for safe and efficient drug and gene delivery. In this paper, we first investigated the influence of polystyrene nanoparticles (100 and 280 nm in diameter and concentration up to 0.2% w/w) on cavitation threshold in water at the frequency of 20 kHz. Then, using optimal irradiation parameters found in the first part of this work, we studied efficacy of cancer chemotherapy with this technique. The experiments were performed in athymic nude mice bearing human colon KM20 tumors, which are highly resistant to chemotherapy. Ultrasound with the frequency of 20 kHz in combination with i.v. injected polystyrene nanoparticles was applied to enhance delivery of chemotherapeutic agent 5-fluorouracil. Our studies demonstrated that ultrasound irradiation in combination with the nanoparticle and drug injections significantly decreased tumor volume and resulted in complete tumor regression at optimal irradiation conditions, while the volume of control (non-irradiated) tumors increased despite drug injections. These data suggest that ultrasound-induced drug delivery may improve efficacy of current cancer treatment regimens.
Collapse
Affiliation(s)
- Irina V Larina
- Center for Biomedical Engineering, University of Texas, Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0456, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Mozafari M, Shimoda M, Urbanska AM, Laurent S. Ultrasound-targeted microbubble destruction: toward a new strategy for diabetes treatment. Drug Discov Today 2016; 21:540-3. [DOI: 10.1016/j.drudis.2015.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
|
39
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Meng M, Gao J, Wu C, Zhou X, Zang X, Lin X, Liu H, Wang C, Su H, Liu K, Wang Y, Xue X, Wu J. Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor. Tumour Biol 2016; 37:8673-80. [PMID: 26738862 PMCID: PMC4990606 DOI: 10.1007/s13277-015-4525-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 01/11/2023] Open
Abstract
A new class of multifunctional nanobubble using poly(lactic-co-glycolic acid) (PLGA) has been developed as ultrasound imaging contrast agents, doxorubicin carriers, and enhancers of ultrasound-mediated drug delivery. The doxorubicin nanobubble (DOX-NB) wrapping carbon tetrafluoride gas was prepared with double emulsion method. We evaluated the enhanced ultrasonic function of the DOX-NB in vivo; its antitumor function was confirmed. The diameter of the prepared bubble was 500 nm, and the potential was −23 mV. The drug loading and encapsulation efficiency of the bubble were 78.6 and 7.4 %, respectively. Therefore, the DOX-NB greatly enhanced ultrasound imaging in vivo. Ultrasound combined with DOX-NB had significant antitumor effect. Compared with other groups, the tumor growth rate and the proliferation index were the lowest while the survival rate and apoptosis index were the highest.
Collapse
Affiliation(s)
- Mingming Meng
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Jie Gao
- The Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Chongchong Wu
- The Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xuan Zhou
- The Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Zang
- The Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiangchun Lin
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hong Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Canghai Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hui Su
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Kuiliang Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Yadan Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Xinying Xue
- The Department of Special Medical Treatment, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| | - Jing Wu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| |
Collapse
|
41
|
Wang YU, Chen YN, Zhang W, Yang YU, Bai WK, Shen E, Hu B. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation. Oncol Lett 2015; 11:699-704. [PMID: 26870270 DOI: 10.3892/ol.2015.3946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a 'gentle' technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Y U Wang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yi-Ni Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wei Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Y U Yang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wen-Kun Bai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
42
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
43
|
Tavri S, Vezeridis A, Cui W, Mattrey RF. In Vivo Transfection and Detection of Gene Expression of Stem Cells Preloaded with DNA-carrying Microbubbles. Radiology 2015; 276:518-25. [PMID: 25811427 DOI: 10.1148/radiol.15141380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To determine whether (a) stem cells loaded with DNA-carrying microbubbles (MBs) can be transfected in vivo, (b) the cells remain alive to express the gene, and (c) gene expression is sufficiently robust to be detected in vivo. MATERIALS AND METHODS The study was approved by the Institutional Animal Care and Use Committee. Cationic MBs were prepared, characterized, and loaded with pLuciferase green fluorescent protein (GFP) plasmid. Loading was confirmed with SYBR Gold staining (Life Technologies, Carlsbad, Calif). C17.2 cells were loaded with the DNA-carrying MBs. Two hundred thousand cells suspended in 20 μL phosphate-buffered saline were mixed with 200 μL Matrigel (BD Biosciences, San Jose, Calif) and injected in both flanks of eight nude mice. One of the Matrigel (BD Biosciences) injections contained 50 000 cells pretransfected in vitro by using lipofectamine as a positive control. Nine flanks were exposed to 2.25-MHz ultrasonic pulses at 50% duty cycle for 1 minute at 1 W/cm(2) (n = 3) or 2 W/cm(2) (n = 6), and six flanks served as the negative control. Two days later, bioluminescent images were acquired in each mouse every 3 minutes for 1 hour after the intraperitoneal injection of d-luciferin (Perkin Elmer, Waltham, Mass). Differences between groups were assessed by using the nonparametric Kruskal-Wallis test with Wilcoxon rank sum tests for follow-up comparisons. Mice were then killed, plugs were explanted, and alternate sections were stained with hematoxylin-eosin or stained for GFP expression. RESULTS Mean DNA-loaded MB diameter ± standard deviation was 2.87 μm ± 1.69 with the DNA associated with the MB shell. C17.2 cells were associated with 2-4 MBs each, and more than 90% were viable. Peak background subtracted bioluminescent signal was fourfold higher when cells were exposed to 2 W/cm(2) pulses as compared with 1 W/cm(2) pulses (P = .02) and negative controls (P = .002). Histologic examination showed cells within the Matrigel (BD Biosciences) with robust GFP expression only after 2 W/cm(2) ultrasound exposure and lipofectamine transfection. CONCLUSION Stem cells loaded with DNA-carrying MBs can be transfected in vivo with ultrasonic pulses and remain alive to demonstrate robust gene expression.
Collapse
Affiliation(s)
- Sidhartha Tavri
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Alexander Vezeridis
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Wenjin Cui
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Robert F Mattrey
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| |
Collapse
|
44
|
He X, Wu DF, Ji J, Ling WP, Chen XL, Chen YX. Ultrasound microbubble-carried PNA targeting to c-myc mRNA inhibits the proliferation of rabbit iliac arterious smooth muscle cells and intimal hyperplasia. Drug Deliv 2015; 23:2482-2487. [PMID: 25726989 DOI: 10.3109/10717544.2015.1014947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To elucidate the transfected effect of albumin ultrasound microbubbles carrying peptide nucleic acids (PNAs) against c-myc gene to the vascular walls and their effect on the intimal proliferation induced by vascular denudation. METHODS A rabbit iliac artery intimal proliferation model was constructed and PNA against c-myc mRNA was designed and synthesized and was added to albumin solution before ultrasound microbubbles were prepared and encapsulated in matrix of albumin. The ultrasound microbubbles carrying PNA were transfected to intima under ultrasound exposure. The transfected effect was identified by a histochemical method and the expression of c-myc was detected by in situ hybridization. The proliferation of intimal smooth muscle cells was estimated by the expression of proliferative cell nuclear antigen (PCNA) of them. The intimal area and thickness were judged morphologically for intimal hyperplasia. RESULTS The ultrasound microbubbles with PNA were successfully prepared and c-myc PNA was transfected to vascular intimal cells. The expression of c-myc and PCNA by intimal vascular smooth muscle cells (vSMCs) was inhibited significantly and the intimal thickness and area were reduced remarkably. CONCLUSION Transfection of c-myc PNA could inhibit proliferartion of vSMCs and intima in the rabbit iliac artery intimal proliferation model and the targeted transfection of albumin ultrasound microbubbles carrying PNA offers a feasible way to facilitate its access to specific cells in vivo and produce bioavailability.
Collapse
Affiliation(s)
- Xia He
- a The Department of Pathology , Shenzhen Sun Yet-Sen Cardiovascular Hospital , Shenzhen , PR China and
| | - Da-Fang Wu
- b Department of Endocrinology , 451 Hospital of PLA , Xi'an, Shanxi , PR China
| | - Jun Ji
- a The Department of Pathology , Shenzhen Sun Yet-Sen Cardiovascular Hospital , Shenzhen , PR China and
| | - Wen-Ping Ling
- a The Department of Pathology , Shenzhen Sun Yet-Sen Cardiovascular Hospital , Shenzhen , PR China and
| | - Xiao-Ling Chen
- a The Department of Pathology , Shenzhen Sun Yet-Sen Cardiovascular Hospital , Shenzhen , PR China and
| | - Yue-Xuan Chen
- a The Department of Pathology , Shenzhen Sun Yet-Sen Cardiovascular Hospital , Shenzhen , PR China and
| |
Collapse
|
45
|
Qi JS, Wang WH, Li FQ. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett 2014; 9:1297-1302. [PMID: 25663901 PMCID: PMC4315071 DOI: 10.3892/ol.2014.2811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the effect of the combination of interventional adenovirus-p53 (Ad-p53) introduction and ultrasonic irradiation (CIAIUI) treatment for liver cancer, including evaluating the Ad-p53 transfection efficiency and the impact of the p53 gene on vascular endothelial growth factor (VEGF) and matrix metalloprotein 2 (MMP2) protein expression levels. Ad-p53 was arterially infused into the hepatic carcinoma via the interventional introduction of the hepatic tumor-bearing artery (IIHTBA) or the CIAIUI. Serum VEGF levels were determined by performing an enzyme-linked immunosorbent assay; immunohistochemical analysis was used to identify the expression levels of intratumoral p53, MMP2 and VEGF; and western blot analysis was used to determine the impact of different Ad-p53 administration methods on the expression of wild-type p53. The wild-type p53 expression level was significantly higher in the p53-treated group compared with the control group, and the p53 expression level in the CIAIUI group was significantly higher compared with the non-irradiation group. The CIAIUI could significantly reduce the serum VEGF levels. The two delivery methods caused a reduction in the intratumoral VEGF and MMP2 expression levels, and the effects of CIAIUI were most obvious. Ad-p53 infusion via IIHTBA promoted the protein expression levels of p53, however, it inhibited the protein expression levels of MMP2 and VEGF, indirectly indicating that the gene may inhibit the growth of liver cancer. Therefore, CIAIUI therapy exhibited an overall improved therapeutic effect compared with the more simple IIHTBA therapy.
Collapse
Affiliation(s)
- Jin-Song Qi
- Department of Interventional Radiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Wen-Hui Wang
- Department of Interventional Medicine, The First Hospital of Lanzhou University, Lanzhouu, Gansu 730000, P.R. China
| | - Fen-Qiang Li
- Department of Interventional Medicine, The First Hospital of Lanzhou University, Lanzhouu, Gansu 730000, P.R. China
| |
Collapse
|
46
|
Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv 2014; 5:467-86. [PMID: 24856171 DOI: 10.4155/tde.14.10] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Paproski RJ, Forbrich A, Hitt M, Zemp R. RNA biomarker release with ultrasound and phase-change nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1847-1856. [PMID: 24792584 DOI: 10.1016/j.ultrasmedbio.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Microbubbles driven by ultrasound are capable of permeabilizing cell membranes and allowing biomarkers or therapeutics to exit from or enter cancer cells, respectively. Unfortunately, the relatively large size of microbubbles prevents extravasation. Lipid-based perfluorobutane microbubbles can be made seven-fold smaller by pressurization, creating 430-nm nanodroplets. The present study compares microbubbles and nanodroplets with respect to their ability to enhance miR-21 and mammaglobin mRNA release from cultured ZR-75-1 cells. Mammaglobin mRNA and miR-21 release increased with escalating concentrations of nanodroplets up to, respectively, 25- and 42-fold with 2% nanodroplets (v/v), compared with pre-ultrasound levels, whereas cell viability decreased to 62.4%. Sonication of ZR-75-1 cells incubated with microbubbles or nanodroplets caused relatively similar levels of cell death and miR-21 release, suggesting that nanodroplets are similar to microbubbles in enhancing cell permeability, but may be more advantageous because of their smaller size, which may allow extravasation through leaky tumor vasculature.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Forbrich
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
48
|
Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 2014; 72:82-93. [PMID: 24486388 PMCID: PMC4204336 DOI: 10.1016/j.addr.2014.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, and viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. The major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, and pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery.
Collapse
Affiliation(s)
| | - Alexander L Klibanov
- Cardiovascular Division, University of Virginia, Charlottesville, VA 22908-1394, USA.
| |
Collapse
|
49
|
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71:98-114. [PMID: 23751778 DOI: 10.1016/j.addr.2013.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
Collapse
|
50
|
Tschiche A, Malhotra S, Haag R. Nonviral gene delivery with dendritic self-assembling architectures. Nanomedicine (Lond) 2014; 9:667-93. [DOI: 10.2217/nnm.14.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we outline the concept and applicability of self-assembling dendrimers for gene-delivery applications. Low-molecular-weight, well-defined cationic dendritic arrays which have been modified with hydrophobic domains can form self-organized multivalent systems that have significant advantages over nonassembling, high-molecular-weight/polymeric gene vectors. Particular structural variations have been highlighted with respect to the individual components of the displayed dendritic amphiphiles, namely, the employed amine termini, the hydrophobic segment, the size of the dendritic array, and the integration of special features such as targeting ability and cleavability/degradability, which can all have a crucial effect on gene-transfection efficiencies. Accordingly, the scientific efforts to create new synthetic gene-delivery vectors to act as promising in vivo transfection agents in the future will be presented and discussed here.
Collapse
Affiliation(s)
- Ariane Tschiche
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Shashwat Malhotra
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|