1
|
Song H, Hao D, Zhou J, Farmer D, Wang A. Development of pro-angiogenic skin substitutes for wound healing. Wound Repair Regen 2024; 32:208-216. [PMID: 38308588 DOI: 10.1111/wrr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024]
Abstract
Wounds pose significant challenges to public health, primarily due to the loss of the mechanical integrity and barrier function of the skin and impaired angiogenesis, causing physical morbidities and psychological trauma to affect patients. Reconstructing the vasculature of the wound bed is crucial for promoting wound healing, reducing scar formation and enhancing the quality of life for patients. The development of pro-angiogenic skin substitutes has emerged as a promising strategy to facilitate vascularization and expedite the healing process of burn wounds. This review provides an overview of the various types of skin substitutes employed in wound healing, explicitly emphasising those designed to enhance angiogenesis. Synthetic scaffolds, biological matrices and tissue-engineered constructs incorporating stem cells and primary cells, cell-derived extracellular vesicles (EVs), pro-angiogenic growth factors and peptides, as well as gene therapy-based skin substitutes are thoroughly examined. The review summarises the existing challenges, future directions and potential innovations in pro-angiogenic dressing for skin substitutes. It highlights the need for continued research to develop new technologies and combine multiple strategies and factors, and to overcome obstacles and advance the field, ultimately leading to improved outcomes for wound patients.
Collapse
Affiliation(s)
- Hengyue Song
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Dake Hao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Diana Farmer
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Biomedical Engineering, UC Davis, Davis, California, USA
| |
Collapse
|
2
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
3
|
Kumar M, Mahmood S, Mandal UK. An Updated Account On Formulations And Strategies For The Treatment Of Burn Infection – A Review. Curr Pharm Des 2022; 28:1480-1492. [DOI: 10.2174/1381612828666220519145859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Background:
Burn injury is considered one of the critical injuries of the skin. According to WHO (World Health Organization), approximately 3,00,000 deaths are caused each year mainly due to fire burns, with additional deaths attributed to heat and other causes of burn e.g., electric devices, chemical materials, radioactive rays, etc. More than 95% of burn injuries occur in developing countries.
Introduction:
Burn injuries have been a prominent topic of discussion in this present era of advancements. Burns are one of the common and devastating forms of trauma. Burn injuries are involved in causing severe damage to skin tissues and various other body parts triggered particularly by fire,blaze, or exposure to chemicals and heated substances. They leave a long-lasting negative impact on the patients in terms of their physical and mental health.
Method:
The various methods and bioactive hydrogels, a viable and widely utilised approach for treating chronic wounds remains a bottleneck. Many traditional approaches such as woven material, conventional antimicrobial agents, hydrogel sheets, creams are utilised in wound healing. Nowadays, lipid-based nanoparticles, nanofibres systems, and foam-based formulations heal the wound.
Result:
The prepared formulation shows wound healing activity when tested on rat model. The nanofibres containing SSD help in the burn-wound healing study on Male Sprague Dawley (SD) rats. The healing effect on rats was examined by western blot analysis, digital camera observation, and histological analyses.
Conclusion:
Burn is also considered the most grievous form of trauma. Nowadays, several large and foam-based formulations are used in wound healing, which heals the wound better than previously existing formulations and is less prone to secondary infection. Recently, nanofiber delivery has piqued the interest of academics over the years because of its excellent features, which include an extraordinarily high surface to volume ratio, a highly porous structure, and tiny pore size.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
4
|
Rustagi Y, Abouhashem AS, Verma P, Verma SS, Hernandez E, Liu S, Kumar M, Guda PR, Srivastava R, Mohanty SK, Kacar S, Mahajan S, Wanczyk KE, Khanna S, Murphy MP, Gordillo GM, Roy S, Wan J, Sen CK, Singh K. Endothelial Phospholipase Cγ2 Improves Outcomes of Diabetic Ischemic Limb Rescue Following VEGF Therapy. Diabetes 2022; 71:1149-1165. [PMID: 35192691 PMCID: PMC9044136 DOI: 10.2337/db21-0830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.
Collapse
Affiliation(s)
- Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Sharkia Clinical Research Department, Ministry of Health and Population, Cairo, Egypt
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sumit S. Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sujit K. Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sanskruti Mahajan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kristen E. Wanczyk
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Michael P. Murphy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gayle M. Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
6
|
Chen X, Tong G, Fan J, Shen Y, Wang N, Gong W, Hu Z, Zhu K, Li X, Jin L, Cong W, Xiao J, Zhu Z. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy. Br J Pharmacol 2021; 179:1102-1121. [PMID: 34608629 DOI: 10.1111/bph.15701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Migration and differentiation of epidermal cells are essential for epidermal regeneration during wound healing. Fibroblast growth factor 21 (FGF21) plays key roles in mediating a variety of biological activities. However, its role in skin wound healing remains unknown. EXPERIMENTAL APPROACH Fgf21 knockout (Fgf21 KO) mice were used to determine the effect of FGF21 on wound healing. The source of FGF21 and its target cells were determined by immunohistochemistry, immunoblotting, and ELISA assay. Moreover, Sirt1flox/flox and Atg7flox/flox mice were constructed and injected with the epidermal-specific Cre virus to elucidate the underlying mechanisms. Migration and differentiation of keratinocytes were evaluated in vitro by cell scratch assays, immunofluorescence, and qRT-RCR. The effects were further assessed when SIRT1, ATG7, ATG5, BECN1, and P53 were silenced. Interactions between SIRT1 and autophagy-related genes were assessed using immunoprecipitation assays. KEY RESULTS FGF21 was active in fibroblasts and promoted migration and differentiation of keratinocytes following injury. After wounding, SIRT1 expression and autophagosome synthesis were lower in Fgf21 KO mice. Depletion of ATG7 in keratinocytes counteracted the FGF21-induced increases in migration and differentiation, suggesting that autophagy is required for the FGF21-mediated pro-healing effects. Furthermore, epithelial-specific Sirt1 knockout abolished the FGF21-mediated improvements of autophagy and wound healing. Silencing of SIRT1 in keratinocytes, which decreased deacetylation of p53 and autophagy-related proteins, revealed that FGF21-induced autophagy during wound healing was SIRT1-dependent. CONCLUSIONS AND IMPLICATIONS FGF21 is a key regulator of keratinocyte migration and differentiation during wound healing. FGF21 may be a novel therapeutic target to accelerate would healing.
Collapse
Affiliation(s)
- Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Characterization of Viral Genome Encapsidated in Adeno-associated Recombinant Vectors Produced in Yeast Saccharomyces cerevisiae. Mol Biotechnol 2021; 63:156-165. [PMID: 33392920 DOI: 10.1007/s12033-020-00294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Adeno-associated virus (AAV) is a small, non-enveloped virus used as vector in gene therapy, mainly produced in human cells and in baculovirus systems. Intense studies on these platforms led to the production of vectors with titers between 103 and 105 viral genomes (vg) per cells. In spite of this, vector yields need to be improved to satisfy the high product demands of clinical trials and future commercialization. Our studies and those of other groups have explored the possibility to exploit the yeast Saccharomyces cerevisiae to produce rAAV. We previously demonstrated that yeast supports AAV genome replication and capsid assembly. The purpose of this study was to evaluate the quality of the encapsidated AAV DNA. Here, we report the construction of a yeast strain expressing Rep68/40 from an integrated copy of the Rep gene under the control of the yeast constitutive ADH promoter and Capsid proteins from the Cap gene under the control of an inducible GAL promoter. Our results indicate that a portion of AAV particles generated by this system contains encapsidated AAV DNA. However, the majority of encapsidated DNA consists of fragmented regions of the transgene cassette, with ITRs being the most represented sequences. Altogether, these data indicate that, in yeast, encapsidation occurs with low efficiency and that rAAVs resemble pseudo-vectors that are present in clinical-grade rAAV preparations.
Collapse
|
8
|
Pang C, Fan KS, Wei L, Kolar MK. Gene therapy in wound healing using nanotechnology. Wound Repair Regen 2020; 29:225-239. [PMID: 33377593 DOI: 10.1111/wrr.12881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex and highly regulated process that is susceptible to a variety of failures leading to delayed wound healing or chronic wounds. This is becoming an increasingly global burden on the healthcare system. Treatment of wounds has evolved considerably to overcome barriers to wound healing especially within the field of regenerative medicine that focuses on the replacement of tissues or organs. Improved understanding of the pathophysiology of wound healing has enabled current advances in technology to allow better optimization of microenvironment within wounds. This approach may help tackle wounds that are difficult to treat and help reduce the global burden of the disease. This article provides an overview of the physiology in wound healing and the application of gene therapy using nanotechnology in the management of wounds.
Collapse
Affiliation(s)
- Calver Pang
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Ka Siu Fan
- Faculty of Medicine, St. George's, University of London, London, United Kingdom
| | - Lanxuan Wei
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, United Kingdom
| | - Mallappa K Kolar
- Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
9
|
Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential Therapeutic Strategies for Lung and Breast Cancers through Understanding the Anti-Angiogenesis Resistance Mechanisms. Int J Mol Sci 2020; 21:ijms21020565. [PMID: 31952335 PMCID: PMC7014257 DOI: 10.3390/ijms21020565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and lung cancers are among the top cancer types in terms of incidence and mortality burden worldwide. One of the challenges in the treatment of breast and lung cancers is their resistance to administered drugs, as observed with angiogenesis inhibitors. Based on clinical and pre-clinical findings, these two types of cancers have gained the ability to resist angiogenesis inhibitors through several mechanisms that rely on cellular and extracellular factors. This resistance is mediated through angiogenesis-independent vascularization, and it is related to cancer cells and their microenvironment. The mechanisms that cancer cells utilize include metabolic symbiosis and invasion, and they also take advantage of neighboring cells like macrophages, endothelial cells, myeloid and adipose cells. Overcoming resistance is of great interest, and researchers are investigating possible strategies to enhance sensitivity towards angiogenesis inhibitors. These strategies involved targeting multiple players in angiogenesis, epigenetics, hypoxia, cellular metabolism and the immune system. This review aims to discuss the mechanisms of resistance to angiogenesis inhibitors and to highlight recently developed approaches to overcome this resistance.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Dana M. Zaher
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Alaa M. Altaie
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Pathology Department, Faculty of Medicine, Alexandria University, 21526 Alexandria, Egypt
- Correspondence: ; Tel.: +971-65057221
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Wilgus TA. Vascular Endothelial Growth Factor and Cutaneous Scarring. Adv Wound Care (New Rochelle) 2019; 8:671-678. [PMID: 31750015 DOI: 10.1089/wound.2018.0796] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
Significance: The proangiogenic mediator vascular endothelial growth factor (VEGF) plays an important role in cutaneous wound repair. Most of the work on VEGF and wound healing has focused on its role in mediating angiogenesis and how this affects wound closure rates. Less is known about how VEGF affects other phases of wound healing, including scar formation. Recent Advances: Over the last 10 years, mounting evidence suggests that VEGF plays an important role in regulating scar tissue production. Multiple studies have linked high VEGF levels with scar formation in normal, hypertrophic, and keloid scars. In addition, there is experimental evidence that VEGF inhibition can reduce scar tissue deposition. Critical Issues: While there is evidence that VEGF can promote scar formation in the skin, there are several unanswered questions that remain. First, the mechanisms by which VEGF promotes scar formation have not been completely characterized. While both indirect and direct mechanisms could be involved, clear evidence for a specific mechanism is lacking. In addition, despite the availability of anti-VEGF drugs, the potential value in targeting VEGF to attenuate scar formation clinically is not yet known. Future Directions: While there are a significant number of studies examining the effects of VEGF on angiogenesis and wound closure, much less attention has been paid to the contribution of VEGF to scar tissue production. Additional studies are required to learn more about how VEGF regulates scar formation and whether VEGF inhibition could be used clinically to manage scars.
Collapse
Affiliation(s)
- Traci A. Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Oryan A, Alemzadeh E, Zarei M. Basic concepts, current evidence, and future potential for gene therapy in managing cutaneous wounds. Biotechnol Lett 2019; 41:889-898. [PMID: 31256273 DOI: 10.1007/s10529-019-02701-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Several studies have investigated the role of gene therapy in the healing process. The aim of this review is to explain the gene delivery systems in wound area. RESULTS Ninety-two studies were included and comprehensively overviewed. We described the importance of viral vectors such as adenoviruses, adeno-associated viruses, and retroviruses, and conventional non-viral vectors such as naked DNA injections, liposomes, gene gun, electroporation, and nanoparticles in achieving high-level expression of genes. Application of viral transfection, liposomal vectors, and electroporation were the main gene delivery systems. Genes encoding for growth factors or cytokines have been shown to result in a better wound closure in comparison to application of the synthetic growth factors. In addition, a combination of stem cell and gene therapy has been found an effective approach in regeneration of cutaneous wounds. CONCLUSIONS This article gives an overview of the methods and investigations applied on gene therapy in wound healing. However, clinical investigations need to be undertaken to gain a better understanding of gene delivery technologies and their roles in stimulating wound repair.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Zarei
- Department of Agricultural Biotechnology, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
12
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
13
|
Zhang N, Chin JS, Chew SY. Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Exp Neurol 2018; 319:112820. [PMID: 30195695 DOI: 10.1016/j.expneurol.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth. Nucleic acids modulate gene expression by over-expression of neuronal growth factor or silencing growth-inhibitory molecules. Although in vitro outcomes appear promising, the lack of efficient non-viral nucleic acid delivery methods to the nervous system has limited the application of nucleic acid therapeutics to patients. Here, we review the recent development of efficient non-viral nucleic acid delivery platforms, as applied to the nervous system, including the transfection vectors and carriers used, as well as matrices and scaffolds that are currently used. Additionally, we will discuss possible improvements for localised nucleic acid delivery.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.
| |
Collapse
|
14
|
Naldaiz‐Gastesi N, Bahri OA, López de Munain A, McCullagh KJA, Izeta A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. J Anat 2018; 233:275-288. [PMID: 29893024 PMCID: PMC6081499 DOI: 10.1111/joa.12840] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
The panniculus carnosus is a thin striated muscular layer intimately attached to the skin and fascia of most mammals, where it provides skin twitching and contraction functions. In humans, the panniculus carnosus is conserved at sparse anatomical locations with high interindividual variability, and it is considered of no functional significance (most possibly being a remnant of evolution). Diverse research fields (such as anatomy, dermatology, myology, neuroscience, surgery, veterinary science) use this unique muscle as a model, but several unknowns and misconceptions remain in the literature. In this article, we review what is currently known about panniculus carnosus structure, development, anatomical location, response to environmental stimuli and potential function(s), with the aim of putting together the evidence arising from the different research communities and raising interest in this unique muscle, which we postulate as an ideal model for both vascular and muscular research.
Collapse
Affiliation(s)
- Neia Naldaiz‐Gastesi
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Ola A. Bahri
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Adolfo López de Munain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
- Faculty of Medicine and DentistryUPV‐EHUSan SebastianSpain
- Department of NeurologyHospital Universitario DonostiaSan SebastianSpain
| | - Karl J. A. McCullagh
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Ander Izeta
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Department of Biomedical EngineeringSchool of EngineeringTecnun‐University of NavarraSan SebastianSpain
| |
Collapse
|
15
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
16
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
17
|
Polstein LR, Juhas M, Hanna G, Bursac N, Gersbach CA. An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis. ACS Synth Biol 2017; 6:2003-2013. [PMID: 28793186 DOI: 10.1021/acssynbio.7b00147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
Collapse
Affiliation(s)
- Lauren R. Polstein
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark Juhas
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Gabi Hanna
- Department of Radiation Oncology and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Nenad Bursac
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Charles A. Gersbach
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for
Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
18
|
Zhang Z, Slobodianski A, Arnold A, Nehlsen J, Hopfner U, Schilling AF, Perisic T, Machens HG. High Efficiency Low Cost Fibroblast Nucleofection for GMP Compatible Cell-based Gene Therapy. Int J Med Sci 2017; 14:798-803. [PMID: 28824316 PMCID: PMC5562186 DOI: 10.7150/ijms.19241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 11/21/2022] Open
Abstract
Background: Dermal fibroblast is a powerful tool for the study of ex vivo DNA delivery in development of both cell therapy and tissue engineering products. Using genetic modification, fibroblasts can be diversely adapted and made suitable for clinical gene therapy. In this study, we first compared several non-viral transfection methods including nucleofection in rat and human primary dermal fibroblast. In addition, the original protocol for nucleofection of primary mammalian fibroblasts was modified in order to achieve the highest possible transfection efficiency, as determined by flow cytometry analysis of the green fluorescent protein (GFP) expression. Results: the results showed that transfection performance of Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Calf Serum (FCS) yielded the best transfection efficiency with rat dermal fibroblasts and ITS (insulin, transferrin, and sodium selenite solution) was comparable to the standard nucleofection solution for human dermal fibroblasts. Conclusion: Our results suggest a promising application of the modified nucleofection method for GMP compatible therapeutic translational medical research.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Alex Slobodianski
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Technical University Munich, Faculty of Medicine, TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany.,Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Astrid Arnold
- Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Jessica Nehlsen
- Department of Plastic Surgery and Hand Surgery, University of Lübeck, Lübeck, Germany
| | - Ursula Hopfner
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| | - Arndt F Schilling
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany.,Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tatjana Perisic
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department for Plastic Surgery and Hand Surgery; Klinikum rechts der Isar; Technical University Munich, Munich, Germany
| |
Collapse
|
19
|
Carlsson AH, Rose LF, Fletcher JL, Wu JC, Leung KP, Chan RK. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting. Burns 2016; 43:223-231. [PMID: 27600980 DOI: 10.1016/j.burns.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Current standard of care for full-thickness burn is excision followed by autologous split-thickness skin graft placement. Skin grafts are also frequently used to cover surgical wounds not amenable to linear closure. While all grafts have potential to contract, clinical observation suggests that antecedent thermal injury worsens contraction and impairs functional and aesthetic outcomes. This study evaluates the impact of antecedent full-thickness burn on split-thickness skin graft scar outcomes and the potential mediating factors. Full-thickness contact burns (100°C, 30s) were created on the backs of anesthetized female Yorkshire Pigs. After seven days, burn eschar was tangentially excised and covered with 12/1000th inch (300μm) split-thickness skin graft. For comparison, unburned wounds were created by sharp excision to fat before graft application. From 7 to 120days post-grafting, planimetric measurements, digital imaging and biopsies for histology, immunohistochemistry and gene expression were obtained. At 120days post-grafting, the Observer Scar Assessment Scale, colorimetry, contour analysis and optical graft height assessments were performed. Twenty-nine porcine wounds were analyzed. All measured metrics of clinical skin quality were significantly worse (p<0.05) in burn injured wounds. Histological analysis supported objective clinical findings with marked scar-like collagen proliferation within the dermis, increased vascular density, and prolonged and increased cellular infiltration. Observed differences in contracture also correlated with earlier and more prominent myofibroblast differentiation as demonstrated by α-SMA staining. Antecedent thermal injury worsens split-thickness skin graft quality, likely by multiple mechanisms including burn-related inflammation, microscopically inadequate excision, and dysregulation of tissue remodeling. A valid, reliable, clinically relevant model of full-thickness burn, excision and skin replacement therapy has been demonstrated. Future research to enhance quality of skin replacement therapies should be directed toward modulation of inflammation and assessments for complete excision.
Collapse
Affiliation(s)
- Anders H Carlsson
- Q-SCARR™ (Quality Skin Collaborative for Advanced Reconstruction and Regeneration) Research Program, United States; Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States.
| | - Lloyd F Rose
- Q-SCARR™ (Quality Skin Collaborative for Advanced Reconstruction and Regeneration) Research Program, United States; Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States
| | - John L Fletcher
- Q-SCARR™ (Quality Skin Collaborative for Advanced Reconstruction and Regeneration) Research Program, United States; Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States; Clinical Division and Burn Center, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States
| | - Jesse C Wu
- Q-SCARR™ (Quality Skin Collaborative for Advanced Reconstruction and Regeneration) Research Program, United States; Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States
| | - Rodney K Chan
- Q-SCARR™ (Quality Skin Collaborative for Advanced Reconstruction and Regeneration) Research Program, United States; Dental and Craniofacial Trauma Research and Tissue Regeneration, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States; Clinical Division and Burn Center, US Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, United States
| |
Collapse
|
20
|
Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody. Gene Ther 2015; 22:960-7. [PMID: 26181624 DOI: 10.1038/gt.2015.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.
Collapse
|
21
|
He L, Tu HJ, He WF, Guo LL, Yu SX, Li J, Wu Q, Li J. Lentiviral-mediated overexpression of homeobox A4 by human umbilical cord mesenchymal stem cells repairs full-thickness skin defects. Mol Med Rep 2015; 11:3517-22. [PMID: 25592724 DOI: 10.3892/mmr.2015.3208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
A number of types of stem cells have been shown to be effective in wound repair. In the present study the effect of homeobox A4 (HOXA4) overexpression by human umbilical cord mesenchymal stem cells (hUMSCs) on full‑thickness skin repair was evaluated. Isolated hUMSCs were transfected with a lentivirus expressing HOXA4 and cultured for 21 days. Expression of the epidermal cell‑specific markers, cytokeratins 14 and 18, was detected by immunohistochemistry and flow cytometry. Full‑thickness skin defects (1.5 cm x 1.5 cm) were made on the backs of 45 nude mice, which were randomly divided into the following three treatment groups: Collagen membrane with lenti‑HOXA4 hUMSC seed cells; collagen membrane with lentivirus expressing green fluorescent protein; and collagen membrane alone. On days 7, 14 and 21 following transplantation, tissue samples were harvested and examined by histology and western blot analysis. Flow cytometry showed that the transfection efficiency was 95.41% at a multiplicity of infection of 100, and that the lenti‑HOXA4 hUMSCs differentiated into epidermal cells, expressing cytokeratins 14 and 18. In addition, re‑epithelialization of wounds treated with lenti‑HOXA4 hUMSCs was significantly greater than that in the control groups in the first week. By week three the epidermis was significantly thicker in the lenti‑HOXA4 group than the control groups. Thus, transplantation of hUMSCs modified with Ad‑HOXA4 promoted wound healing.
Collapse
Affiliation(s)
- Ling He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huai-Jun Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Feng He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Ling Guo
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Xia Yu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jie Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Wu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 2014; 3:647-661. [PMID: 25302139 DOI: 10.1089/wound.2013.0517] [Citation(s) in RCA: 540] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process.
Collapse
Affiliation(s)
- Kelly E. Johnson
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Traci A. Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 2014; 103:2211-30. [PMID: 24985412 DOI: 10.1002/jps.24068] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/12/2022]
Abstract
Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications.
Collapse
Affiliation(s)
- Naeema Mayet
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa
| | | | | | | | | | | | | |
Collapse
|
24
|
Basu G, Downey H, Guo S, Israel A, Asmar A, Hargrave B, Heller R. Prevention of distal flap necrosis in a rat random skin flap model by gene electrotransfer delivering VEGF165plasmid. J Gene Med 2014; 16:55-65. [DOI: 10.1002/jgm.2759] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gaurav Basu
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Harre Downey
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Annelise Israel
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Anthony Asmar
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
| | - Barbara Hargrave
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
- School of Medical Diagnostics and Translational Science; Old Dominion University; Norfolk VA USA
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics; Old Dominion University; Norfolk VA USA
- School of Medical Diagnostics and Translational Science; Old Dominion University; Norfolk VA USA
| |
Collapse
|
25
|
Braun-Falco M, Rödl D. Recombinant adeno-associated virus vectors for somatic gene therapy in dermatology. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2.2.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M. Wound coverage technologies in burn care: novel techniques. J Burn Care Res 2013; 34:612-20. [PMID: 23877140 PMCID: PMC3819403 DOI: 10.1097/bcr.0b013e31829b0075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improvements in burn wound care have vastly decreased morbidity and mortality in severely burned patients. Development of new therapeutic approaches to increase wound repair has the potential to reduce infection, graft rejection, and hypertrophic scarring. The incorporation of tissue-engineering techniques, along with the use of exogenous proteins, genes, or stem cells to enhance wound healing, heralds new treatment regimens based on the modification of already existing biological activity. Refinements to surgical techniques have enabled the creation of protocols for full facial transplantation. With new technologies and advances such as these, care of the severely burned will undergo massive changes over the next decade. This review centers on new developments that have recently shown great promise in the investigational arena.
Collapse
Affiliation(s)
- Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Celeste C. Finnerty
- Department of Surgery, Sealy Center for Molecular Medicine, and the Institute for Translational Science, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, Texas, USA
| | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Ludwik K. Branski
- Department of Plastic and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Manuel Dibildox
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | | |
Collapse
|
27
|
Schmidt C, Bezuidenhout D, Zilla P, Davies NH. A slow-release fibrin matrix increases adeno-associated virus transduction of wound repair cells in vivo. J Biomater Appl 2013; 28:1408-18. [PMID: 24163331 DOI: 10.1177/0885328213510331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Virus-mediated gene therapy is a promising strategy for numerous tissue engineering applications. Fibrin-based scaffolds have been previously used as vehicles for localised delivery of adenovirus to wound sites. However, their utility in the delivery of adeno-associated viruses to wound repair cells has not yet been determined. The influence of fibrin concentration on efficacy of delivery of AAV-2 to wound tissue was assessed in this study. Fibrin scaffolds containing recombinant AAV-2 encoding for β-galactosidase were polymerised in porous polyurethane discs and implanted subcutaneously in rats. A fibrin scaffold with a concentration of 50 mg/ml showed significantly elevated levels of β-galactosidase activity within explanted discs at 10 days compared to 10 mg/ml and 25 mg/ml fibrin. These findings inform efforts to optimise biodegradable scaffolds for the localised delivery of AAV in tissue engineering.
Collapse
Affiliation(s)
- Christian Schmidt
- 1Cardiovascular Research Unit, University of Cape Town, South Africa
| | | | | | | |
Collapse
|
28
|
Albrecht-Schgoer K, Schgoer W, Theurl M, Stanzl U, Lener D, Dejaco D, Zelger B, Franz WM, Kirchmair R. Topical secretoneurin gene therapy accelerates diabetic wound healing by interaction between heparan-sulfate proteoglycans and basic FGF. Angiogenesis 2013; 17:27-36. [PMID: 23918206 DOI: 10.1007/s10456-013-9375-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/24/2013] [Indexed: 02/06/2023]
Abstract
Diabetic foot ulcers represent a therapeutic problem of high clinical relevance. Reduced vascular supply, neuropathy and diminished expression of growth factors strongly contribute to wound healing impairment in diabetes. Secretoneurin, an angiogenic neuropeptide, has been shown to improve tissue perfusion in different animal models by increasing the amount of vessels in affected areas. Therefore, topical secretoneurin gene therapy was tested in a full thickness wound healing model in diabetic db/db mice. Secretoneurin significantly accelerated wound closure in these mice and immunohistochemistry revealed higher capillary and arteriole density in the wounded area compared to control mice. In-vitro, the mechanism of action of secretoneurin on human dermal microvascular endothelial cells was evaluated in normal and diabetic cells. Secretoneurin shows positive effects on in vitro angiogenesis, proliferation and apoptosis of these cells in a basic fibroblast growth factor dependent manner. A small molecular weight inhibitor revealed fibroblast growth factor receptor 3 as the main receptor for secretoneurin mediated effects. Additionally, we could identify heparan-sulfates as important co-factor of secretoneurin induced binding of basic fibroblast growth factor to human dermal endothelial cells. We suggest topical secretoneurin plasmid therapy as new tool for delayed wound healing in patients suffering from diabetes.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
30
|
Kang WK, Lee MH, Kim YH, Kim MY, Kim JY. Enhanced secretion of biologically active, non-glycosylated VEGF from Saccharomyces cerevisiae. J Biotechnol 2013; 164:441-8. [PMID: 23422691 DOI: 10.1016/j.jbiotec.2013.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 11/25/2022]
Abstract
Vascular endothelial growth factor (VEGF) mediates angiogenesis, which plays a critical role in the development and differentiation of the vascular system. VEGF is a homodimeric glycoprotein that contains one N-glycosylation site. In this study, we evaluated Saccharomyces cerevisiae expression systems producing glycosylated and non-glycosylated splice variants of human VEGF, VEGF121, and VEGF165. The pre region of the mating factor α1 (MFα1) signal sequence was found to perform better than the entire MFα1 prepro signal sequence in secreting glycosylated VEGF. Secretion of non-glycosylated VEGF165 was completely blocked, indicating the importance of glycosylation in VEGF165 secretion. Interestingly, non-glycosylated VEGF165 was secreted when guided by the MFα1 prepro signal sequence, albeit to a lesser degree, compared to glycosylated VEGF165. N-glycosylation in the pro region was required for the prepro sequence to promote VEGF secretion. Furthermore, substitution of asparagine at the VEGF glycosylation site with lysine or glutamic acid increased secretion of non-glycosylated VEGF, a finding not previously reported. Our findings suggest that S. cerevisiae could be a suitable host for secreting biologically active, non-glycosylated VEGF for clinical use.
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
32
|
Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol Ther 2012; 21:445-55. [PMID: 23164936 DOI: 10.1038/mt.2012.234] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a commercially available transfection reagent, were included as controls. ASCs transfected using PBAEs showed enhanced transfection efficiency and 12-15-fold higher VEGF production compared with cells transfected using Lipofectamine 2000 (*P < 0.05). When transplanted into a mouse wild-type excisional wound model, VEGF-overexpressing ASCs led to significantly accelerated wound healing, with full wound closure observed at 8 days compared to 10-12 days in groups treated with ASCs alone or saline control (*P < 0.05). Histology and polarized microscopy showed increased collagen deposition and more mature collagen fibers in the dermis of wound beds treated using PBAE/VEGF-modified ASCs than ASCs alone. Our results demonstrate the efficacy of using nonviral-engineered ASCs to accelerate wound healing, which may provide an alternative therapy for treating many diseases in which wound healing is impaired.
Collapse
|
33
|
Wu X, Ren J, Li J. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine. Cytotherapy 2011; 14:555-62. [PMID: 22175911 DOI: 10.3109/14653249.2011.638914] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.
Collapse
Affiliation(s)
- Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | |
Collapse
|
34
|
Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 2011; 118:5420-8. [PMID: 21937702 DOI: 10.1182/blood-2011-08-372946] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels. In the present study, we genetically engineered human blood-derived endothelial colony-forming cells (ECFCs) to express erythropoietin (EPO) under the control of a tetracycline-regulated system, and generated subcutaneous vascular networks capable of systemic EPO release in immunodeficient mice. These ECFC-lined vascular networks formed functional anastomoses with the mouse vasculature, allowing direct delivery of recombinant human EPO into the bloodstream. After activation of EPO expression, erythropoiesis was induced in both normal and anemic mice, a process that was completely reversible. This approach could relieve patients from frequent EPO injections, reducing the medical costs associated with the management of anemia. We propose this ECFC-based gene-delivery strategy as a viable alternative technology when routine administration of recombinant proteins is needed.
Collapse
|
35
|
Browning RJ, Mulvana H, Tang M, Hajnal JV, Wells DJ, Eckersley RJ. Influence of needle gauge on in vivo ultrasound and microbubble-mediated gene transfection. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1531-1537. [PMID: 21741156 DOI: 10.1016/j.ultrasmedbio.2011.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 05/31/2023]
Abstract
Ultrasound and microbubble-mediated gene transfection are potential tools for safe, site-selective gene therapy. However, preclinical trials have demonstrated a low transfection efficiency that has hindered the progression of the technique to clinical application. In this paper it is shown that simple changes to the method of intravenous injection can lead to an increase in transfection efficiency when using 6-MHz diagnostic ultrasound and the ultrasound contrast agent, SonoVue. By using needles of progressively smaller gauge, i.e., larger internal diameter (ID), from 29 G (ID 0.184 mm) to 25 G (ID 0.31 mm), the transfection of a luciferase plasmid (pGL4.13) was significantly increased threefold in heart-targeted female CD1 mice. In vitro work indicated that the concentration and size distribution of SonoVue were affected by increasing needle gauge. These results suggest that the process of systemic delivery alters the bubble population and adversely affects transfection. This is exacerbated by using high-gauge needles. These findings demonstrate that the needle with the largest possible ID should be used for systemic delivery of microbubbles and genetic material.
Collapse
Affiliation(s)
- Richard J Browning
- Imaging Sciences Department, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 2011; 18:1166-72. [DOI: 10.1038/gt.2011.66] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Tolentino M. Systemic and Ocular Safety of Intravitreal Anti-VEGF Therapies for Ocular Neovascular Disease. Surv Ophthalmol 2011; 56:95-113. [DOI: 10.1016/j.survophthal.2010.08.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 01/11/2023]
|
38
|
|
39
|
Abstract
Viral vector is the most effective means of gene transfer to modify specific cell type or tissue and can be manipulated to express therapeutic genes. Several virus types are currently being investigated for use to deliver genes to cells to provide either transient or permanent transgene expression. These include adenoviruses (Ads), retroviruses (γ-retroviruses and lentiviruses), poxviruses, adeno-associated viruses, baculoviruses, and herpes simplex viruses. The choice of virus for routine clinical use will depend on the efficiency of transgene expression, ease of production, safety, toxicity, and stability. This chapter provides an introductory overview of the general characteristics of viral vectors commonly used in gene transfer and their advantages and disadvantages for gene therapy use.
Collapse
Affiliation(s)
- James N Warnock
- School of Chemical & Bioprocess Engineering and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
40
|
Aizawa K, Sato S, Terakawa M, Saitoh D, Tsuda H, Ashida H, Obara M. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064043. [PMID: 20059281 DOI: 10.1117/1.3253325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.
Collapse
Affiliation(s)
- Kazuya Aizawa
- Keio University, Department of Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu PY, Tong W, Liu K, Han SH, Wang XT, Badiavas E, Rieger-Christ K, Summerhayes I. Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair Regen 2009. [DOI: 10.1111/j.1067-1927.2004.012114.x-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29:503-10. [PMID: 19201690 DOI: 10.1161/atvbaha.108.178962] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We hypothesized that adipose tissue may contain progenitors cells with cutaneous and angiogenic potential. METHODS AND RESULTS Adipose tissue-derived stroma cells (ADSCs) were administrated to skin punched wounds of both nonirradiated and irradiated mice (20 Gy, locally). At day 14, ADSCs promoted dermal wound healing and enhanced wound closure, viscolesticity, and collagen tissue secretion in both irradiated and nonirradiated mice. Interestingly, GFP-positive ADSCs incorporated in dermal and epidermal tissue in vivo and expressed epidermal markers K5 and K14. Cultured ADSCs in keratinocyte medium have been shown to differentiate into K5- and K14-positive cells and produced high levels of KGF. At Day 7, ADSCs also improved skin blood perfusion assessed by laser Doppler imaging, capillary density, and VEGF plasma levels in both irradiated and nonirradiated animals. GFP-positive ADSCs incorporated into capillary structures in vivo and expressed the endothelial cell marker CD31. Finally, in situ interphase fluorescence hybridization showed that a small number of ADSCs have the potential to fuse with endogenous keratinocytes. CONCLUSIONS ADSCs participate in dermal wound healing in physiological and pathological conditions by their ability to promote reepithelialization and angiogenesis. Hence, adipose lineage cells represent a new cell source for therapeutic dermal wound healing.
Collapse
Affiliation(s)
- T G Ebrahimian
- Institut de Radioprotection et de Surete Nucleaire IRSN, Service de Radiobiologie d'Epidemiologie, Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cross KJ, Bomsztyk ED, Weinstein AL, Teo EH, Spector JA, Lyden DC. A Novel Method for Targeted Gene Therapy in Ischemic Tissues through Viral Transfection of an Expression Cassette Containing Multiple Repetitions of Hypoxia Response Element. Plast Reconstr Surg 2009; 123:76S-82S. [DOI: 10.1097/prs.0b013e318191c044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Application of AAV2-mediated bFGF gene therapy on survival of ischemic flaps: effects of timing of gene transfer. Ann Plast Surg 2009; 62:87-91. [PMID: 19131728 DOI: 10.1097/sap.0b013e31817439fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Necrosis of surgically transferred flaps is a major problem in reconstructive surgery. We investigated efficacy of a new vector system-adeno-associated viral 2 (AAV2)-mediated bFGF gene transfer to enhance survival of the ischemic flap. Thirty-eight Sprague-Dawley rats were divided into 3 gene therapy groups and 1 nontreated control of 9 or 10 each. 7.5 x 10(10) AAV2-bFGF viral particles were injected to the dorsum of each of the 29 rats; these rats were divided into 3 groups according to the timing of flap elevation. At the time of surgery, 1 week, and 2 weeks after surgery, flaps of 3 x 7 cm were raised. One week after surgery, flap viability was measured. Vascularization and immunohistochemical staining of the bFGF were evaluated of histologic sections. Flap viability was significantly improved by the AAV2-bFGF gene therapy at the time of surgery, and the flaps with the greatest survival area were found in the rats injected with AAV2-bFGF, 2 weeks before surgery. However, flap viability was significantly decreased by the gene therapy 1 week before surgery. Histologically, vascularity was increased in the groups with AAV2-bFGF injection and immunohistochemical staining showed greatly enhanced bFGF expression by gene transfer. The novel approach of AAV2-bFGF gene therapy shows encouraging manifestations in improving survival of flaps when the flaps are prefabricated during or 2 weeks before surgery.
Collapse
|
45
|
Sonoporation of the minicircle-VEGF(165) for wound healing of diabetic mice. Pharm Res 2008; 26:794-801. [PMID: 18998201 DOI: 10.1007/s11095-008-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/29/2008] [Indexed: 01/13/2023]
Abstract
PURPOSE The purpose of this study is to examine the efficiency of sonoporation with minicircle DNA for the skin wound healing in diabetic mice. METHODS Minicircle DNA containing the human VEGF(165) was constructed and tested in vitro. Diabetes was induced in 2-week old male C57BL/6J mice via streptozotocin (STZ) injection. 6 mm circular skin wounds were made on the mice back. After the subcutaneous injection of the minicircle DNA at the edge of the wound, the mice were exposed to the ultrasound irradiation for the sonoporation. Wound areas were analyzed until the day 12. Blood perfusion and angiogenesis were evaluated using a laser Doppler imaging and CD31 immunostaining, respectively. Re-epithelialization was assessed by histochemical analysis using hematoxylin and eosin staining. RESULTS Accelerated wound closure was observed in the mice receiving sonoporation of minicircle-VEGF(165), which corresponds to the markedly increased skin blood perfusion and CD31 expression. Histological analysis revealed that the minicircle treated wound tissues showed fully restored normal architectures as compared with the non-treated diabetic controls with the markedly edematous and chaotic morphologies. CONCLUSIONS Ultrasound mediated gene therapy with the minicircle-VEGF(165) is effective for the healing of the skin wound of the diabetic mice.
Collapse
|
46
|
Singerman LJ, Masonson H, Patel M, Adamis AP, Buggage R, Cunningham E, Goldbaum M, Katz B, Guyer D. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. Br J Ophthalmol 2008; 92:1606-11. [PMID: 18614570 PMCID: PMC2584239 DOI: 10.1136/bjo.2007.132597] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aims: To evaluate the safety of up to 3 years of pegaptanib sodium therapy in the treatment of neovascular age-related macular degeneration (NV-AMD). Methods: Two concurrent, prospective, multicentre, double-masked studies randomised subjects with all angiographic lesion compositions of NV-AMD to receive intravitreous pegaptanib sodium (0.3, 1 and 3 mg) or sham injections every 6 weeks for 54 weeks. Those initially assigned to pegaptanib were rerandomised to continue or discontinue therapy for 48 more weeks; sham-treated subjects continued sham, discontinued or received pegaptanib. At 102 weeks, subjects receiving pegaptanib 0.3 mg or 1 mg in years 1 or 2 continued; those receiving pegaptanib 3 mg or who did not receive treatment in years 1 and 2 were rerandomised to 0.3 mg or 1 mg for year 3. Results: As in years 1 and 2, pegaptanib was well tolerated in year 3. Adverse events were mainly ocular in nature, mild, transient and injection-related. Serious adverse events were rare. No evidence of systemic safety signals attributed to vascular endothelial growth factor inhibition arose in year 3. There were no findings in relation to vital signs or electrocardiogram results suggesting a relationship to pegaptanib treatment. Conclusion: The 3-year safety profile of pegaptanib sodium was favourable in patients with NV-AMD.
Collapse
Affiliation(s)
- L J Singerman
- Retina Associates of Cleveland, 3401 Enterprise Parkway, Suite 300, Cleveland, OH 44122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2008; 35:171-80. [PMID: 18603379 DOI: 10.1016/j.burns.2008.03.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/11/2008] [Indexed: 11/28/2022]
Abstract
Different therapies that effect wound repair have been proposed over the last few decades. This article reviews the emerging fields of gene and stem cell therapy in wound healing. Gene therapy, initially developed for treatment of congenital defects, is a new option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines showed the greatest potential. The majority of gene delivery systems are based on viral transfection, naked DNA application, high pressure injection, or liposomal vectors. Embryonic and adult stem cells have a prolonged self-renewal capacity with the ability to differentiate into various tissue types. A variety of sources, such as bone marrow, peripheral blood, umbilical cord blood, adipose tissue, skin and hair follicles, have been utilized to isolate stem cells to accelerate the healing response of acute and chronic wounds. Recently, the combination of gene and stem cell therapy has emerged as a promising approach for treatment of chronic and acute wounds.
Collapse
Affiliation(s)
- Ludwik K Branski
- Department of Surgery, The University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, TX 77550, United States
| | | | | | | |
Collapse
|
48
|
Cesco-Gaspere M, Zentilin L, Giacca M, Burrone O. Boosting Anti-idiotype Immune Response with Recombinant AAV Enhances Tumour Protection Induced by Gene Gun Vaccination. Scand J Immunol 2008; 68:58-66. [DOI: 10.1111/j.1365-3083.2008.02119.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, DiPietro LA. Regulation of scar formation by vascular endothelial growth factor. J Transl Med 2008; 88:579-90. [PMID: 18427552 PMCID: PMC2810253 DOI: 10.1038/labinvest.2008.36] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Vascular endothelial growth factor (VEGF-A) is known for its effects on endothelial cells and as a positive mediator of angiogenesis. VEGF is thought to promote repair of cutaneous wounds due to its proangiogenic properties, but its ability to regulate other aspects of wound repair, such as the generation of scar tissue, has not been studied well. We examined the role of VEGF in scar tissue production using models of scarless and fibrotic repair. Scarless fetal wounds had lower levels of VEGF and were less vascular than fibrotic fetal wounds, and the scarless phenotype could be converted to a scar-forming phenotype by adding exogenous VEGF. Similarly, neutralization of VEGF reduced vascularity and decreased scar formation in adult wounds. These results show that VEGF levels have a strong influence on scar tissue formation. Our data suggest that VEGF may not simply function as a mediator of wound angiogenesis, but instead may play a more diverse role in the wound repair process.
Collapse
Affiliation(s)
- Traci A. Wilgus
- Department of Periodontics and Center for Wound Healing & Tissue Regeneration, University of Illinois at Chicago, Chicago, IL
| | - Ahalia M. Ferreira
- Department of Molecular Biology, Loyola University Medical Center, Maywood, IL
| | | | - Valerie K. Bergdall
- Department of Veterinary Preventive Medicine/University Laboratory Animal Resources, The Ohio State University, Columbus, OH
| | - Luisa A. DiPietro
- Department of Periodontics and Center for Wound Healing & Tissue Regeneration, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
50
|
Dickens S, Vermeulen P, Hendrickx B, Van den Berge S, Vranckx JJ. Regulable vascular endothelial growth factor165 overexpression by ex vivo expanded keratinocyte cultures promotes matrix formation, angiogenesis, and healing in porcine full-thickness wounds. Tissue Eng Part A 2008; 14:19-27. [PMID: 18333801 DOI: 10.1089/ten.a.2007.0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intricate wound repair process involves the interplay of numerous cells and proteins. Using a porcine full-thickness wound (FTW) healing model, we hypothesized that the ex vivo gene transfer of vascular endothelial growth factor (VEGF)-transfected basal keratinocyte (KC) cell suspensions may generate cross-talk and induce matrix formation, angiogenesis, and accelerated healing. Moreover, to regulate overexpression of isoform 165 of VEGF and its effect on healing, we introduced a tetracycline (TC)-inducible gene switch in the expression plasmid. Autologous basal KCs were cultivated from the porcine donor and transfected using cationic liposomes. A dose-response curve was established to determine optimal activation of the gene switch by TC. In vivo, FTWs were treated with VEGF-transfected KCs and controls. Wound fluids were collected daily and examined using enzyme-linked immunosorbent assay. Biopsies were evaluated using hematoxylin and eosin and immunostaining for fibronectin, CD144, and lectin BS-1. In vitro, highest regulable VEGF165-expression was obtained with 1 microg/mL of TCs. In vivo, after induction of the gene switch by adding 1 microg/mL of TCs to the FTW, we obtained upregulated VEGF165 levels and enhanced fibronectin deposition and found more endothelial cell tubular formations and higher rates of reepithelialization than in controls. This ex vivo gene transfer model may serve as a platform for vascular induction in full-thickness tissue repair.
Collapse
Affiliation(s)
- Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | |
Collapse
|