1
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
2
|
Drug release from in situ forming implants and advances in release testing. Adv Drug Deliv Rev 2021; 178:113912. [PMID: 34363860 DOI: 10.1016/j.addr.2021.113912] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
In situ forming implants, defined as liquid formulations that generate solid or semisolid depots following administration, have shown a range of advantages in drug delivery. This drug delivery strategy allows localized delivery, sustained drug release over periods of days to months, and is a less invasive option compared to traditional solid implants which typically require surgical implantation. Unfortunately, there are a number of quality control challenges in terms of drug release testing of these delivery systems which is likely to have contributed to the relatively few commercially available in situ forming implant products. This article reviews current marketed in situ forming implant products, FDA guidance on in vitro release testing, and formulation and environmental parameters influencing drug release from in situ forming implants. Formulation considerations for development of biological agents loaded in situ forming implants are also discussed. The advantages and limitations of typically used in vitro release testing methods are summarized. Difficulties in the development of in vitro-in vivo correlations (IVIVCs) for in situ forming implant are discussed. The knowledge presented will be helpful for the development of in situ forming implants, as well as for the development of appropriate in vitro testing methods and IVIVCs.
Collapse
|
3
|
Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021; 26:709-728. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a result of the low oral bioavailability of several drugs, there is a renewed interest for parenteral administration to target their absorption directly into the blood bypassing the long gastrointestinal route and hepatic metabolism. In order to address the potential side effects of frequent injections, sustained release systems are the most popular approaches for achieving controlled long-acting drug delivery. Injectable in-situ forming implants (ISFIs) have gained greater popularity in comparison to other sustained systems. Their significant positive aspects are attributed to easier production, acceptable administration route, reduced dosing frequency and patient compliance achievement. ISFI systems, comprising biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) based on solvent exchange mechanisms, are emerged as liquid formulations that develop solid or semisolid depots after injection and deliver drugs over extended periods. The drug release from ISFI systems is generally characterized by an initial burst during the matrix solidification, followed by diffusion processes and finally polymeric degradation and erosion. The choice of suitable solvent with satisfactory viscosity, miscibility and biocompatibility along with considerable PLGA hydrophobicity and molecular weights is fundamental for optimizing the drug release. This overview gives a particular emphasis on evaluations and the wide ranges of requirements needed to achieve reasonable physicochemical characteristics of ISFIs.
Collapse
Affiliation(s)
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
4
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Kilicarslan M, Buke AN. An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200616125009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major developments of the last decade is the preparation of in situ implant formulations.
Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified
differently due to implant formation based on in vivo solid depot or formation mechanisms inducing
liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant
systems were compiled and their formation mechanisms, materials and methods used, routes of
administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution
tests were compared in Tables and were evaluated. There are several advantages and disadvantages of
these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in
formulations and all of these parameters have been discussed separately. In addition, new generation
systems developed to overcome the difficulties encountered in in situ implants have been evaluated.
There are some approved products of in situ implant preparations that can be used for different indications
available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained
by the analysis of the application of new technologies in many studies evaluated in this review showed
that the number of approved drugs to be used for various indications would increase in the future.
Collapse
Affiliation(s)
- Muge Kilicarslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| | - Ayse Nur Buke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| |
Collapse
|
6
|
Joseph MK, Islam M, Reineke J, Hildreth M, Woyengo T, Pillatzki A, Baride A, Perumal O. Intraductal Drug Delivery to the Breast: Effect of Particle Size and Formulation on Breast Duct and Lymph Node Retention. Mol Pharm 2020; 17:441-452. [PMID: 31886676 DOI: 10.1021/acs.molpharmaceut.9b00879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug delivery by direct intraductal administration can achieve high local drug concentration in the breast and minimize systemic levels. However, the clinical application of this approach for breast cancer treatment is limited by the rapid clearance of the drug from the ducts. With the goal of developing strategies to prolong drug retention in the breast, this study was focused on understanding the influence of particle size and formulation on breast duct and lymph node retention. Fluorescent-labeled polystyrene (PS) particles ranging in size from 100 to 1000 nm were used to study the influence of particle size. Polylactic acid-co-glycolic acid (PLGA) was used to develop and test formulations for intraductal delivery. Cy 5.5, a near-IR dye, was encapsulated in PLGA microparticles, nanoparticles, and the in situ gel to study the biodistribution in rats using an in vivo imager. PS microparticles (1 μm) showed longer retention in the duct compared to 100 and 500 nm nanoparticles. The ductal retention half-life was 5-fold higher for PS microparticles compared to the nanoparticles. On the other hand, the free dye was cleared from the breast within 6 h. PLGA nanoparticles sustained the release of Cy 5.5 for >4 days. Microparticles and gel showed a much slower release than nanoparticles. PLGA in situ gel and microparticles were retained in the breast for up to 4 days, while the nanoparticles were retained in the breast for 2 days. PLGA nanoparticles and microparticles drained to the axillary lymph node and were retained for up to 24 and 48 h, respectively, while the in situ gel and the free dye did not show any detectable fluorescence in the lymph nodes. Taken together, the results demonstrate the feasibility of prolonged retention in the breast duct and lymph node by optimal formulation design. The findings can serve as a framework to design formulations for localized treatment of breast cancer.
Collapse
Affiliation(s)
- Mibin Kuruvilla Joseph
- Department of Pharmaceutical Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - MdSaiful Islam
- Department of Pharmaceutical Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Joshua Reineke
- Department of Pharmaceutical Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Michael Hildreth
- Department of Biology & Microbiology , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Tofuko Woyengo
- Department of Animal Science , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Angela Pillatzki
- Department of Veterinary Science and Biomedical Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Aravind Baride
- Department of Chemistry , University of South Dakota , Vermillion , South Dakota 57069 , United States
| | - Omathanu Perumal
- Department of Pharmaceutical Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| |
Collapse
|
7
|
Rathor PK, Bhat IA, Rather MA, Gireesh-Babu P, Kumar K, Purayil SBP, Sharma R. Steroidogenic acute regulatory protein (StAR) gene expression construct: Development, nanodelivery and effect on reproduction in air-breathing catfish, Clarias batrachus. Int J Biol Macromol 2017; 104:1082-1090. [PMID: 28666831 DOI: 10.1016/j.ijbiomac.2017.06.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Abstract
Steroidogenic acute regulatory protein (StAR) is responsible for the relocation of cholesterol across mitochondrial membrane in vertebrates and is, therefore, a key factor in regulating the rate and timing of steroidogenesis. In the present study, we developed chitosan nanoparticle (CNP) conjugated StAR gene construct (CNP-pcDNA4-StAR) in a eukaryotic expression vector, pcDNA4/HisMax A. CNPs of 135.4nm diameter, 26.7mV zeta potential and 0.381 polydispersity index were used for conjugation. The loading efficiency (LE) of pcDNA4-StAR construct with CNPs was found to be 86%. After the 24h of intramuscular injection, the CNP-pcDNA4-StAR plasmid could be detected from testis, brain, kidney and muscle tissues of Clarias batrachus. The transcript levels of important reproductive genes viz. cyp11a1, cyp17a1, 3β-hsd, 17β-hsd and cyp19a1 in CNP-pcDNA4-StAR treated group were initially low up to 24h, but significantly increased subsequently up to 120h. In naked pcDNA4-StAR treated group, the mRNA level of 3β-hsd, 17β-hsd and cyp19a1 increased initially up to 24h, while cyp11a1 and cyp17a1 increased up to 48h and then started declining. Similar results were obtained for 11-Ketotestosterone and 17β-estradiol. The results indicate relatively long lasting effects of nano-conjugated construct compared to the construct alone. Furthermore, the histopathology of gonads and liver authenticates its possible role in the gonadal development in fish without any adverse effect.
Collapse
Affiliation(s)
- Pravesh Kumar Rathor
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mohd Ashraf Rather
- Department of Fisheries Biology, College of Fisheries Shirgoan, Ratnagiri, 415712 Maharashtra, India
| | - Pathakota Gireesh-Babu
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Kundan Kumar
- Division of Aquatic Environmental and Health Management, Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
8
|
Wang L, Lin X, Hong Y, Shen L, Feng Y. Hydrophobic mixed solvent induced PLGA-based in situ forming systems for smooth long-lasting delivery of Radix Ophiopogonis polysaccharide in rats. RSC Adv 2017. [DOI: 10.1039/c6ra27676h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To obtain a sustained in vivo release of Radix Ophiopogonis polysaccharide, hydrophobic solvent-induced in situ forming systems were investigated, including the factors affecting drug release and anti-myocardial ischemic activity of a formulation.
Collapse
Affiliation(s)
- LiNa Wang
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
| | - Xiao Lin
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - YanLong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Lan Shen
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
9
|
Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1215263. [PMID: 27642587 PMCID: PMC5011507 DOI: 10.1155/2016/1215263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.
Collapse
|
10
|
Nasongkla N, Nittayacharn P, Rotjanasitthikit A, Pungbangkadee K, Manaspon C. Paclitaxel-loaded polymeric depots as injectable drug delivery system for cancer chemotherapy of hepatocellular carcinoma. Pharm Dev Technol 2016; 22:652-658. [PMID: 27056587 DOI: 10.3109/10837450.2016.1163389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, paclitaxel-encapsulated polymeric depots were prepared and characterized as drug delivery system for cancer chemotherapy against hepatocellular carcinoma. Effects of different parameters, including drug-loading content, polymer concentration and depot weight on depot formation, percentage of sustained-release taxol and drug release profile were evaluated. Paclitaxel-loaded depots were successfully formed at the polymer concentration above 25% w/v. For all formulations, paclitaxel could be encapsulated with very high percentage of sustained-release taxol (>90%). The release rate of paclitaxel from depots could be controlled by the amount of drug-loading content, polymer concentration and depot weight. Cytotoxicity against liver cancer cell line, HepG2, was evaluated by medium extraction method. Paclitaxel releasing from depots showed cytotoxic effect against HepG2 at different incubation times, whereas blank depots exhibited no cytotoxicity.
Collapse
Affiliation(s)
- Norased Nasongkla
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakorn Pathom , Thailand
| | - Pinunta Nittayacharn
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakorn Pathom , Thailand
| | - Apichada Rotjanasitthikit
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakorn Pathom , Thailand
| | - Korawich Pungbangkadee
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakorn Pathom , Thailand
| | - Chawan Manaspon
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University , Nakorn Pathom , Thailand
| |
Collapse
|
11
|
Rarokar NR, Saoji SD, Raut NA, Taksande JB, Khedekar PB, Dave VS. Nanostructured Cubosomes in a Thermoresponsive Depot System: An Alternative Approach for the Controlled Delivery of Docetaxel. AAPS PharmSciTech 2016. [PMID: 26208439 DOI: 10.1208/s12249-015-0369-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to develop and evaluate a thermoresponsive depot system comprising of docetaxel-loaded cubosomes. The cubosomes were dispersed within a thermoreversible gelling system for controlled drug delivery. The cubosome dispersion was prepared by dilution method, followed by homogenization using glyceryl monooleate, ethanol and Pluronic® F127 in distilled water. The cubosome dispersion was then incorporated into a gelling system prepared with Pluronic® F127 and Pluronic® F68 in various ratios to formulate a thermoresponsive depot system. The thermoresponsive depot formulations undergo a thermoreversible gelation process i.e., they exists as free flowing liquids at room temperature, and transforms into gels at higher temperatures e.g., body temperature, to form a stable depot in aqueous environment. The mean particle size of the cubosomes in the dispersion prepared with Pluronic® F127, with and without the drug was found to be 170 and 280 nm, respectively. The prepared thermoresponsive depot system was evaluated by assessing various parameters like time for gelation, injectability, gel erosion, and in-vitro drug release. The drug-release studies of the cubosome dispersion before incorporation into the gelling system revealed that a majority (∼97%) of the drug was released within 12 h. This formulation also showed a short lag time (∼3 min). However, when incorporated into a thermoresponsive depot system, the formulation exhibited an initial burst release of ∼21%, and released only ∼39% drug over a period of 12 h, thus indicating its potential as a controlled drug delivery system.
Collapse
|
12
|
Jang JH, Houchin TL, Shea LD. Gene delivery from polymer scaffolds for tissue engineering. Expert Rev Med Devices 2014; 1:127-38. [PMID: 16293016 DOI: 10.1586/17434440.1.1.127] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combination of gene therapy with tissue engineering offers the potential to direct progenitor cell proliferation and differentiation into functional tissue replacements. Many approaches to engineering tissue replacements feature a polymer scaffold to create and maintain a space, support cell adhesion, and organize tissue formation. Polymer scaffolds, either natural, synthetic, or a combination of the two, have also been adapted to serve as delivery vehicles for viral and nonviral vectors, which can induce the expression of tissue inductive factors. Gene delivery is a versatile approach, capable of targeting any cellular process through localized expression of tissue inductive factors. The design and application of tissue engineering scaffolds for localized gene transfer are reviewed. Scaffolds are designed either to release the vector into the local tissue environment or maintain the vector at the polymer surface, which is regulated by the effective affinity of the vector for the polymer. Polymeric delivery can enhance gene transfer locally, promote and extend transgene expression, avoid vector distribution to distant tissues, and reduce the immune response to the vector. Scaffolds capable of controlled DNA delivery can provide a fundamental tool for directing progenitor cell function, which has applications with the engineering of numerous types of tissue. The utility of this approach will increase with the development of design parameters that correlate release and transgene expression, and with continued research into the biology of tissue formation.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156 Evanston, IL 60208-3120, USA
| | | | | |
Collapse
|
13
|
Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release. J Control Release 2013; 172:292-304. [DOI: 10.1016/j.jconrel.2013.08.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
14
|
Choi SJ, Oh SH, Kim IG, Chun SY, Lee JY, Lee JH. Functional recovery of urethra by plasmid DNA-loaded injectable agent for the treatment of urinary incontinence. Biomaterials 2013; 34:4766-76. [PMID: 23545290 DOI: 10.1016/j.biomaterials.2013.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Stress urinary incontinence (SUI) is an embarrassing problem affecting a large number of women and interfering with their quality of life. The injury or weakness of urethral supporting tissues by childbirth and aging has been considered as key factors in the development of the SUI. In this study, plasmid DNA (pDNA; encoding for bFGF) complex-loaded poly(DL-lactic-co-glycolic acid) (PLGA)/Pluronic F127 mixture dispersed with polycaprolactone (PCL) microspheres was prepared as an injectable bioactive bulking agent that may provide bulking effect (by PCL microspheres) and allow stimulation of the defect tissues around urethra (by synthesis of bFGF from cells or tissues transfected by the pDNA complex) for the effective treatment of SUI. From in vitro experiments, the pDNA complex incorporated in the bulking agent was released in a sustained manner over 84 days (≥80% of the initial loading amount). The pDNA complex was effectively transfected into fibroblasts and the cells were continuously producing the target protein, bFGF. From the in vivo study using hairless mice and Sprague-Dawley rats, it was confirmed that the pDNA complex released from the bulking agent is transfected into surrounding cells/tissue, and the cells/tissues synthesize sufficient bFGF to regenerate smooth muscle with biological function around the urethra. Basis on these results, the pDNA (encoding for bFGF) complex-loaded PLGA/Pluronic F127 mixture dispersed with PCL microspheres can be a promising bioactive bulking agent system for the fundamental cure of SUI.
Collapse
Affiliation(s)
- Soo Jung Choi
- Department of Advanced Materials, Hannam University, Yuseong Gu, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Preparation of self-solidifying polymeric depots from PLEC-PEG-PLEC triblock copolymers as an injectable drug delivery system. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-9834-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Nasongkla N, Boongird A, Hongeng S, Manaspon C, Larbcharoensub N. Preparation and biocompatibility study of in situ forming polymer implants in rat brains. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:497-505. [PMID: 22180140 DOI: 10.1007/s10856-011-4520-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.
Collapse
Affiliation(s)
- Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Jeon O, Krebs M, Alsberg E. Controlled and sustained gene delivery from injectable, porous PLGA scaffolds. J Biomed Mater Res A 2011; 98:72-9. [DOI: 10.1002/jbm.a.33098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/11/2022]
|
19
|
Boongird A, Nasongkla N, Hongeng S, Sukdawong N, Sa-Nguanruang W, Larbcharoensub N. Biocompatibility study of glycofurol in rat brains. Exp Biol Med (Maywood) 2011; 236:77-83. [PMID: 21239737 DOI: 10.1258/ebm.2010.010219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycofurol (GF) has been used clinically as a solvent for parenteral drug delivery systems. However, the application and toxicity of GF in the brain have not been reported. This study was carried out to assess the systemic and neurologic reactions of GF in rats upon intracranial injection. Hematological and neuropathological assessments of rats were performed during the acute, subacute and chronic period after the injection. Injection of the GF solution (GF 25 μL + PBS 25 μL) into the brain cortex showed that it did not cause any deaths or clinical neurobehavioral abnormalities. At the same volume as phosphate-buffered saline (PBS) injection, it had mild effects on all hematological data and histopathology of brain tissues. Nevertheless, histomorphologic assessments of the brain tissues treated with PBS 70 μL revealed different tissue responses compared with those of 70 μL GF solution (30 μL + PBS 40 μL) where tissues around the administration site showed elevated polymorphonuclear leukocytes, macrophages and gliosis. These results demonstrated that the GF solution (GF 25 μL + PBS 25 μL) administration was well tolerated and caused minor inflammatory responses of cerebral cortex. This suggests possibilities of GF for drug delivery systems in the brain parenchymal tissues.
Collapse
Affiliation(s)
- Atthaporn Boongird
- Department of Surgery, Neurosurgical Unit, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | |
Collapse
|
20
|
Sun J, Jiang G, Qiu T, Wang Y, Zhang K, Ding F. Injectable chitosan-based hydrogel for implantable drug delivery: Body response and induced variations of structure and composition. J Biomed Mater Res A 2010; 95:1019-27. [DOI: 10.1002/jbm.a.32923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/23/2010] [Accepted: 06/29/2010] [Indexed: 11/08/2022]
|
21
|
Bencherif SA, Sheehan JA, Hollinger JO, Walker LM, Matyjaszewski K, Washburn NR. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. J Biomed Mater Res A 2009; 90:142-53. [PMID: 18491397 DOI: 10.1002/jbm.a.32069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An investigation of encapsulated plasmid DNA release from degradable poly(ethylene glycol)-co-poly(glycolic acid) hydrogels (PEG-co-PGA) is presented. We determined by varying the chemistry of the cross-linker group, significant variations in hydrogel degradation kinetics could be achieved to control the release profiles of plasmid DNA. We prepared three analogues of PEG-co-PGA hydrogels by a photopolymerization process and measured variation in degradation rates by monitoring mechanical properties and release of plasmid DNA. 1H 1D DOSY NMR (one-dimensional diffusion ordered nuclear magnetic resonance spectroscopy) was used to measure conversion of vinyl groups after photocross-linking. Nearly full vinyl conversion was reached after 10 min exposure under ultraviolet light. Gel electrophoresis analysis confirmed that plasmid DNA remained structurally intact after photoencapsulation and release from the gels. This approach provides an additional strategy for controlling the release of biologically active compounds from hydrogels.
Collapse
Affiliation(s)
- Sidi A Bencherif
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24:438-49. [PMID: 17252188 DOI: 10.1007/s11095-006-9180-5] [Citation(s) in RCA: 434] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/16/2006] [Indexed: 01/13/2023]
Abstract
Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid-nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle-cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.
Collapse
Affiliation(s)
- Weijun Li
- Departament of Biopharmaceutidal Sciences, School of Pharmacy, University of California at San Francisco, San Francisco, California 94143-0046, USA
| | | |
Collapse
|
24
|
De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:292-307. [PMID: 17512630 PMCID: PMC1949490 DOI: 10.1016/j.addr.2007.03.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled, localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chicago, IL 60611
| |
Collapse
|
25
|
Shenoy DB, Amiji MM. An overview of condensing and noncondensing polymeric systems for gene delivery. ACTA ACUST UNITED AC 2007; 2007:pdb.top9. [PMID: 21357090 DOI: 10.1101/pdb.top9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONSelf-assembling synthetic vectors for DNA delivery are designed to fulfill several biological functions. They must be able to deliver their genetic payload specifically to the target tissue/cells in a site-specific manner, while protecting the genetic material from degradation by metabolic or immune pathways. Furthermore, they must exhibit minimal toxicity and be proven safe enough for therapeutic use. Ultimately, they must have the capability to express a therapeutic gene for a finite period of time in an appropriate, regulated fashion. The DNA encapsulated in these vectors may be in a condensed or noncondensed form, depending on the nature of the polymer and the technique used for formulating the vector system. The whole process presents many barriers at both tissue and cellular levels. Overcoming these hurdles is the principal objective for efficient polymer-based DNA therapeutics.
Collapse
|
26
|
Heyde M, Partridge KA, Oreffo ROC, Howdle SM, Shakesheff KM, Garnett MC. Gene therapy used for tissue engineering applications. J Pharm Pharmacol 2007; 59:329-50. [PMID: 17331336 DOI: 10.1211/jpp.59.3.0002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.
Collapse
Affiliation(s)
- Mieke Heyde
- Division of Advanced Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
27
|
Jang JH, Bengali Z, Houchin TL, Shea LD. Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery. J Biomed Mater Res A 2006; 77:50-8. [PMID: 16353173 PMCID: PMC2648387 DOI: 10.1002/jbm.a.30643] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene delivery from tissue engineering scaffolds has potential to promote localized transgene expression that can induce the formation of functional tissues. Substrate-mediated delivery, an alternative delivery strategy to sustained release, is based on immobilization of DNA complexes to the polymer surface for subsequent delivery to cells cultured on the substrate. We investigate polyethylenimine (PEI)/DNA complex immobilization and subsequent cellular transfection on tissue engineering scaffolds fabricated from poly(lactide-co-glycolide) (PLG). The properties of the substrate and the complex affect both immobilization and cellular transfection. PLG promotes binding of PEI/DNA complexes, with percent bound independent of the N/P ratio or the DNA dosage. The levels of transgene expression are similar to or greater than control studies based on bolus DNA delivery, with orders of magnitude less DNA. Immobilization also homogeneously distributes the DNA throughout the scaffold, resulting in large numbers of transfected cells (>60%) at low surface quantities (<50 ng). Importantly, this approach can be employed to transfect cells throughout a three-dimensional scaffold. Tissue engineering scaffolds that are prefabricated into various shapes from a range of materials could potentially employ this strategy for numerous applications.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | |
Collapse
|
28
|
Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 2005; 12:475-83. [PMID: 15950542 PMCID: PMC2648405 DOI: 10.1016/j.ymthe.2005.03.036] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering scaffolds capable of sustained plasmid release can promote gene transfer locally and stimulate new tissue formation. We have investigated the scaffold design parameters that influence the extent and duration of transgene expression and have characterized the distribution of transfected cells. Porous scaffolds with encapsulated plasmid were fabricated from poly(lactide-co-glycolide) with a gas foaming procedure, with wet granulation employed to mix the components homogeneously prior to foaming. Wet granulation enhanced plasmid incorporation relative to standard procedures and also enhanced in vivo transgene expression, possibly through the increased loading and maintenance of the scaffold pore structure. The plasmid loading regulated the quantity and duration of transgene expression, with expression for 105 days achieved at the highest dosage. Expression was localized to the implantation site, though the distribution of transfected cells varied with time. Transfected cells were initially observed at the scaffold periphery (day 3), then within the pores and adjacent to the polymer (day 17), and finally throughout the scaffold interior (day 126). Delivery of a plasmid encoding VEGF increased the blood vessel density relative to control. Correlating scaffold design with gene transfer efficiency and tissue formation will facilitate application of plasmid-releasing scaffolds to multiple tissues.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Christopher B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA
- To whom correspondence and reprint requests should be addressed. Fax: +1 847 491 3728. E-mail:
| |
Collapse
|
29
|
Oh SH, Lee JY, Ghil SH, Lee SS, Yuk SH, Lee JH. PCL microparticle-dispersed PLGA solution as a potential injectable urethral bulking agent. Biomaterials 2005; 27:1936-44. [PMID: 16221494 DOI: 10.1016/j.biomaterials.2005.09.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 09/26/2005] [Indexed: 01/12/2023]
Abstract
The PCL microparticle-dispersed PLGA solutions were prepared as a potential injectable urethral bulking agent. The mixture solutions were prepared by mixing polycarprolactone (PCL) microparticles (diameter, 100 approximately 200mum; fabricated by a temperature-induced phase transition method) and poly(dl-lactic-co-glycolic acid) (PLGA) solution (dissolved in tetraglycol to 10wt%) with different PCL microparticle to PLGA solution ratio. The mixture solution was solidified by the precipitation of PLGA when the solution was contact with water. In contact with water, the PCL microparticles exhibited a well-packed structure entrapped in a solidified porous PLGA matrix, which can effectively prevent the microparticle migration in the body and retain its initial volume even after PLGA matrix degradation. The PCL microparticle-dispersed PLGA solution (particle to solution ratio, 45/55 (w/v)) was easily injected through 18G needle into back of hairless mouse (subcutaneously) and stably located at the apply site. The surrounding tissue including blood vessel were gradually infiltrated into the implant up to 8 weeks without the initial injected volume change and with little inflammatory response. The PCL microparticle-dispersed PLGA solution may be a good candidate as an injectable bulking agent for the treatment of urinary incontinence owing to its good injectability, volume retention potential as well as biocompatibility.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Gu, Daejeon 306-791, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm 2005; 58:409-26. [PMID: 15296964 DOI: 10.1016/j.ejpb.2004.03.019] [Citation(s) in RCA: 836] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
In the past few years, an increasing number of in situ-forming systems have been reported in the literature for various biomedical applications, including drug delivery, cell encapsulation, and tissue repair. There are several possible mechanisms that lead to in situ gel formation: solvent exchange, UV-irradiation, ionic cross-linkage, pH change, and temperature modulation. The thermosensitive approach can be advantageous for particular applications as it does not require organic solvents, co-polymerization agents, or an externally applied trigger for gelation. In the last 2 decades, several thermosensitive formulations have been proposed. This manuscript focuses on aqueous polymeric solutions that form implants in situ in response to temperature change, generally from ambient to body temperature. It mainly reviews the characterization and use of polysaccharides, N-isopropylacrylamide copolymers, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (poloxamer) and its copolymers, poly(ethylene oxide)/(D,L-lactic acid-co-glycolic acid) copolymers, and thermosensitive liposome-based systems.
Collapse
Affiliation(s)
- Eve Ruel-Gariépy
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, Montreal, Que, Canada
| | | |
Collapse
|
32
|
Kasper FK, Seidlits SK, Tang A, Crowther RS, Carney DH, Barry MA, Mikos AG. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 2005; 104:521-39. [PMID: 15911051 DOI: 10.1016/j.jconrel.2005.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/29/2022]
Abstract
This research investigates the release of plasmid DNA in vitro from novel, injectable hydrogels based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF). These biodegradable hydrogels can be crosslinked under physiological conditions to physically entrap plasmid DNA. The DNA release kinetics were characterized fluorescently with the PicoGreen and OliGreen Reagents as well as through the use of radiolabeled plasmid. Further, the ability of the released DNA to be expressed was assessed through bacterial transformations. It was found that plasmid DNA can be released in a sustained, linear fashion over the course of 45-62 days, with the release kinetics depending upon the molecular weight of the poly(ethylene glycol) from which the OPF was synthesized. Two formulations of OPF were synthesized from poly(ethylene glycol) of a nominal molecular weight of either 3.35K (termed OPF 3K) or 10K (termed OPF 10K). By the time the gels had completely degraded, 97.8+/-0.3% of the initially loaded DNA was recovered from OPF 3K hydrogels, with 80.8+/-1.9% of the initial DNA retaining its double-stranded form. Likewise, for OPF 10K gels, 92.1+/-4.3% of the initially loaded DNA was recovered upon complete degradation of the gels, with 81.6+/-3.8% of the initial DNA retaining double-stranded form. Experiments suggest that the release of plasmid DNA from OPF hydrogels is dominated by the degradation of the gels. Bacterial transformation results indicated that the DNA retained bioactivity over the course of 42 days of release. Thus, these studies demonstrate the potential of OPF hydrogels in controlled gene delivery applications.
Collapse
Affiliation(s)
- F Kurtis Kasper
- Department of Bioengineering, Rice University, PO Box 1892, MS-142, Houston, TX 77251-1892, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther 2004; 10:19-26. [PMID: 15233938 DOI: 10.1016/j.ymthe.2004.03.020] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/24/2004] [Indexed: 12/01/2022] Open
Abstract
Adapting controlled release technologies to the delivery of DNA has the potential to overcome extracellular barriers that limit gene therapy. Controlled release systems can enhance gene delivery and increase the extent and duration of transgene expression relative to more traditional delivery methods (e.g., injection). These systems typically deliver vectors locally, which can avoid distribution to distant tissues, decrease toxicity to nontarget cells, and reduce the immune response to the vector. Delivery vehicles for controlled release are fabricated from natural and synthetic polymers, which function either by releasing the vector into the local tissue environment or by maintaining the vector at the polymer surface. Vector release or binding is regulated by the effective affinity of the vector for the polymer, which depends upon the strength of molecular interactions. These interactions occur through nonspecific binding based on vector and polymer composition or through the incorporation of complementary binding sites (e.g., biotin-avidin). This review examines the delivery of nonviral and viral vectors from natural and synthetic polymers and presents opportunities for continuing developments to increase their applicability.
Collapse
Affiliation(s)
- Angela K Pannier
- Department of Interdepartmental Biological Sciences, Northwestern University, 2145 Sheridan Road, E156, Evanston, IL 60208-3120, USA
| | | |
Collapse
|
34
|
Quick DJ, Macdonald KK, Anseth KS. Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J Control Release 2004; 97:333-43. [PMID: 15196760 DOI: 10.1016/j.jconrel.2004.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 03/01/2004] [Indexed: 11/28/2022]
Abstract
Sustained delivery of DNA has the potential to enhance long-term gene therapy; however, precise control of a wide range of DNA release profiles may be needed. In this work, multifunctional anhydride monomers were photocrosslinked to produce hydrophobic, highly crosslinked polymer networks that degrade by surface erosion. Surface-eroding polymers can deliver molecules of a wide range of sizes at sustained, steady rates, which is advantageous for DNA delivery, where the high molecular weight may complicate control of the release profiles. When plasmid DNA was released from photocrosslinked polyanhydride matrices, DNA recovery was low (approximately 25%). Electrophoresis indicated that the plasmid DNA was released primarily in the relaxed and supercoiled forms, yet the relative fraction of released DNA in the supercoiled form decreased over time. To improve DNA recovery and reduce the damaging effects of polymer degradation, DNA was pre-encapsulated in alginate microparticles, which served as a temporary coating that quickly dissolved upon microparticle release from the polyanhydride matrix. As photocrosslinked polyanhydrides have highly predictable drug release profiles that depend on the polymer erosion rate and implant geometry and not on the entrapped molecule size, they can serve dual purposes in many biomaterial applications where structural support and drug release would be beneficial.
Collapse
Affiliation(s)
- Deborah J Quick
- Department of Chemical and Biological Engineering, University of Colorado, ECCH 111, UCB 424, Boulder, CO 80309, USA
| | | | | |
Collapse
|
35
|
Quick DJ, Anseth KS. DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J Control Release 2004; 96:341-51. [PMID: 15081223 DOI: 10.1016/j.jconrel.2004.01.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
Sustained DNA delivery from polymer matrices provides a means for enhanced and prolonged gene therapy; however, limitations exist with respect to tailoring the DNA release profiles and maintaining the quality of the encapsulated DNA over time. To address these issues, PEG-based macromolecular monomers were photopolymerized to produce hydrogels with various degradation rates to control the DNA release profiles. Photocrosslinked PEG-based hydrogels were designed that released DNA for periods of 6-100 days with either nearly linear or delayed burst release profiles. Plasmid DNA was released primarily in the relaxed and supercoiled forms, and the released DNA showed high biological activity in plated cell cultures. The addition of both chemical and physical protective agents helped preserve the supercoiled form of the plasmid DNA during photoencapsulation (up to 75% compared to non-encapsulated plasmid controls), thereby enhancing the biological activity of the released DNA.
Collapse
Affiliation(s)
- Deborah J Quick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
36
|
Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 2003; 89:341-53. [PMID: 12711456 DOI: 10.1016/s0168-3659(03)00097-x] [Citation(s) in RCA: 469] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work utilizes electrospinning to fabricate synthetic polymer/DNA composite scaffolds for therapeutic application in gene delivery for tissue engineering. The scaffolds are non-woven, nano-fibered, membranous structures composed predominantly of poly(lactide-co-glycolide) (PLGA) random copolymer and a poly(D,L-lactide)-poly(ethylene glycol) (PLA-PEG) block copolymer. Release of plasmid DNA from the scaffolds was sustained over a 20-day study period, with maximum release occurring at approximately 2 h. Cumulative release profiles indicated amounts released were approximately 68-80% of the initially loaded DNA. Variations in the PLGA to PLA-PEG block copolymer ratio vastly affected the overall structural morphology, as well as both the rate and efficiency of DNA release. Results indicated that DNA released directly from these electrospun scaffolds was indeed intact, capable of cellular transfection, and successfully encoded the protein beta-galactosidase. When tested under tensile loads, the electrospun polymer/DNA composite scaffolds exhibited tensile moduli of approximately 35 MPa, with approximately 45% strain initially. These values approximate those of skin and cartilage. Taken together, this work represents the first successful demonstration of plasmid DNA incorporation into a polymer scaffold using electrospinning.
Collapse
Affiliation(s)
- Y K Luu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | | | | | |
Collapse
|