1
|
Słyk Ż, Wrzesień R, Barszcz S, Gawrychowski K, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother 2024; 170:116061. [PMID: 38154269 DOI: 10.1016/j.biopha.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Gelatin-based formulations are utilized in neurosurgical procedures, with Medisponge® serving as an illustration of a secure and biocompatible hemostatic formulation. Noteworthy are combined hemostatic products that integrate pharmacological agents with gelatin. Gelatin matrices, which host biologically active substances, provide a platform for a variety of molecules. Biopolymers function as carriers for chemicals and genes, a facet particularly pertinent in brain cancer therapy, as gene therapy complement conventional approaches. The registration of Zolgensma underscores the efficacy of rAAV vectors in therapeutic gene delivery to the CNS. rAAVs, renowned for their safety, stability, and neuron-targeting capabilities, predominate in CNS gene therapy studies. The effectiveness of rAAV vector therapy varies based on the serotype and administration route. Local gene therapy employing hydrogel (e.g., post-tumor resection) enables the circumvention of the blood-brain barrier and restricts formulation diffusion. This study formulates gelatin rAAV gene formulations and evaluates vector transduction potential. Transduction efficiency was assessed using ex vivo mouse brains and in vitro cancer cell lines. In vitro, the transduction of rAAV vectors in gelatin matrices was quantified through qPCR, measuring the itr and Gfp expression. rAAVDJ and rAAV2 demonstrated superior transduction in ex vivo and in vitro models. Among the cell lines tested (Hs683, B16-F10, NIH:OVCAR-3), gelatin matrix F1 exhibited selective transduction, particularly with Hs683 human glioma cells, surpassing the performance Medisponge®. This research highlights the exploration of local brain cancer therapy, emphasizing the potential of gelatin as an rAAV vector carrier for gene therapy. The functional transduction activity of gelatin rAAV formulations is demonstrated.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Barszcz
- Department of Neurosurgery, Children's Clinical Hospital, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Gawrychowski
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Kim SY, Kwon WA, Shin SP, Seo HK, Lim SJ, Jung YS, Han HK, Jeong KC, Lee SJ. Electrostatic interaction of tumor-targeting adenoviruses with aminoclay acquires enhanced infectivity to tumor cells inside the bladder and has better cytotoxic activity. Drug Deliv 2018; 25:49-58. [PMID: 29224371 PMCID: PMC6058485 DOI: 10.1080/10717544.2017.1413450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In a previous report, 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) improved adenovirus transduction efficiency by shielding the negative surface charges of adenovirus particles. The present study analyzed the physicochemical characterization of the electrostatic complex of adenoviruses with aminoclay and explored whether it could be utilized for enhancing tumor suppressive activity in the bladder. As a result of aminoclay-adenovirus nanobiohybridization, its transduction was enhanced in a dose-dependent manner, increasing transgene expression in bladder cancer cells and in in vivo animal models. Physicochemical studies demonstrated that positively charged aminoclay led to the neutralization of negative surface charges of adenoviruses, protection of adenoviruses from neutralizing antibodies and lowered transepithelial electrical resistance (TEER). As expected from the physicochemical properties, the aminoclay enabled tumor-targeting adenoviruses to be more potent in killing bladder cancer cells and suppressing tumor growth in orthotopic bladder tumors, suggesting that aminoclay would be an efficient, versatile and biocompatible delivery carrier for intravesical instillation of adenoviruses.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- a Immunotherapeutics Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , Korea
| | - Whi-An Kwon
- b School of Medicine , Institute of Wonkwang Medical Science, Wonkwang University, Wonkwang Univ. Sanbon Hospital , Sanbon , Korea
| | - Seung-Pil Shin
- a Immunotherapeutics Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , Korea
| | - Ho Kyung Seo
- c Biomarker Branch, Research Institute , National Cancer Center, Center for Prostate Cancer, Hospital , Goyang , Gyeonggi-do , Korea
| | - Soo-Jeong Lim
- d Department of Bioscience and Bioengineering , Sejong University , Seoul , Korea
| | - Yuh-Seog Jung
- a Immunotherapeutics Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , Korea
| | - Hyo-Kyung Han
- e College of Pharmacy , Dongguk University-Seoul , Goyang , Gyeonggi-do , Korea
| | - Kyung-Chae Jeong
- f Translational Research Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , Korea
| | - Sang-Jin Lee
- a Immunotherapeutics Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , Korea
| |
Collapse
|
3
|
Li S, Wang F, Zhai Z, Fu S, Lu J, Zhang H, Guo H, Hu X, Li R, Wang Z, Rodriguez R. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy. Oncol Lett 2017; 14:2081-2088. [PMID: 28781650 PMCID: PMC5530188 DOI: 10.3892/ol.2017.6416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
Abstract
Gene therapy with adenoviral early region gene (E1A) may enhance the susceptibility of neoplastic cells to chemotherapy-induced cell death. Our previous study developed a urothelium-specific oncolytic serotype 5 adenovirus (Ad5) with the uroplakin II (UPII) promoter controlling E1A expression. The present study investigated whether this urothelium-specific recombinant adenovirus (Ad5-UPII-E1A) enhanced mitomycin (MMC) and hydroxycamptothecin (HCPT) sensitization and drug-induced apoptosis in bladder cancer cells. The results of the MTT assay revealed that combination therapy, using Ad5-UPII-E1A and MMC or HCPT, synergistically inhibited the viability of bladder cancer cells in a dose- and time-dependent manner when compared with either agent alone. When cells were treated with Ad5-UPII-E1A alone they arrested in the G1 phase, but cell cycle analysis by flow cytometry revealed S phase arrest when treated with combined therapy. Treatment with MMC or HCPT enhanced Ad5-UPII-E1A-induced apoptosis in 5,637 cells, observed by transmission electron microscopy. Western blot analysis revealed that MMC and HCPT enhanced the E1A expression of the Ad5-UPII-E1A vectorin a dose-dependent manner. The present study demonstrated that Ad5-UPII-E1A combined with MMC or HCPT resulted in synergistic cytotoxicity in a process which involved the promotion of apoptosis in bladder cancer cell lines. MMC and HCPT also promoted the oncolytic effect of Ad5-UPII-E1A. Thus, treatment using Ad5-UPII-E1A combined with MMC or HCPT may be an attractive strategy for the sensitization of bladder cancer to chemotherapy.
Collapse
Affiliation(s)
- Shuwen Li
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Fang Wang
- Medical Experiment Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhenxing Zhai
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Shengjun Fu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jianzhong Lu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hongjuan Zhang
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hongyu Guo
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xuemei Hu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Renju Li
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhiping Wang
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
The State of Immune Checkpoint Inhibition in Urothelial Carcinoma: Current Evidence and Future Areas of Exploration. Cancer J 2017; 22:96-100. [PMID: 27111904 DOI: 10.1097/ppo.0000000000000175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immune checkpoint inhibition will be the first treatment breakthrough in recurrent and metastatic urothelial carcinoma since the introduction of combination chemotherapy more than 30 years ago. Monoclonal antibodies that target cytotoxic T-lymphocyte antigen 4, programmed death receptor 1, and programmed death receptor ligand 1 are furthest along in clinical development. Specific antibodies targeting either programmed death receptor 1 or programmed death receptor ligand 1 have demonstrated significant single-agent activity with impressive safety and tolerability for heavily pretreated patients in early-phase clinical trials. In our review, we discuss the rationale for immunotherapy in urothelial cancer, completed and ongoing studies with immune checkpoint therapy, the development of molecular subtypes of urothelial carcinoma with the potential impact of immunotherapy in these new groupings, and future directions of exploration with these agents in both early- and late-stage disease.
Collapse
|
5
|
Abstract
Intravesical Bacillus Calmette-Guérin (BCG) has long been the gold standard treatment of nonmuscle invasive bladder cancer. Recently, there has been an emergence of novel immunotherapeutic agents, which have shown promise in the treatment of urothelial cell carcinoma. These agents aim to augment, modify, or enhance the immune response. Such strategies include recombinant BCG, monoclonal antibodies, vaccines, gene therapy, and adoptive T-cell therapy. Here, we review the emerging immunotherapeutics in the treatment of nonmuscle invasive bladder cancer.
Collapse
Affiliation(s)
- Mahir Maruf
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sam J Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ho PL, Williams SB, Kamat AM. Immune therapies in non-muscle invasive bladder cancer. Curr Treat Options Oncol 2015; 16:5. [PMID: 25757877 DOI: 10.1007/s11864-014-0315-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Non-muscle invasive bladder cancer (NMIBC) continues to be a challenging disease to manage. Treatment involves transurethral resection and, often, intravesical therapy. Appropriate patient selection, accurate staging, and morphological characterization are vital in risk-stratifying patients to those who would most benefit from receiving intravesical therapy. Bacillus of Calmette and Guérin (BCG) continues to be the first-line agent of choice for patients with intermediate- and high-risk NMIBC. Treatment should begin with the standard induction course of 6 weekly treatments. The inclusion of subsequent maintenance courses of BCG is imperative to optimal therapeutic response. While patients with intermediate-risk disease should receive 1 year of maintenance therapy, high-risk patients benefit from up to 3 years of maintenance therapy. BCG use should not be used in low-risk patients with de novo Ta, low-grade, solitary, <3-cm tumors. Conversely, patients with muscle-invasive disease should forgo intravesical immunotherapy and proceed directly to radical cystectomy. Cystectomy also should be considered in patients with multiple T1 tumors, T1 tumors located in difficult to resect locations, residual T1 on re-resection, and T1 with concomitant CIS. Although promising new immunotherapeutic agents, such as Urocidin, protein-based vaccines, and immune check point inhibitors are undergoing preclinical and clinical investigation, immunotherapy in bladder cancer remains largely reliant on intravesical BCG with surgical consolidation as the standard salvage treatment for patients with BCG failure.
Collapse
Affiliation(s)
- Philip L Ho
- The University of Texas at M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
7
|
Ojha R, Singh SK, Bhattacharyya S, Dhanda RS, Rakha A, Mandal AK, Jha V. Inhibition of grade dependent autophagy in urothelial carcinoma increases cell death under nutritional limiting condition and potentiates the cytotoxicity of chemotherapeutic agent. J Urol 2014; 191:1889-98. [PMID: 24440234 DOI: 10.1016/j.juro.2014.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE We evaluated the status of autophagy in different grades of urothelial carcinoma and explored autophagy modulators as a potential adjunctive therapeutic agent for urothelial carcinoma. MATERIALS AND METHODS The study was performed in tumor tissue from patients with low and high grade urothelial carcinoma, in normal urothelial tissue and in the T24 cell line. Autophagic vesicles and the expression of various autophagic proteins were studied in tissue samples by transmission electron microscopy and Western blot, respectively. The effect of autophagy induction and inhibition was evaluated by measuring AMPK and mTOR expression, cell viability and mitochondrial membrane potential. The therapeutic implication of autophagy was studied using cisplatin alone or combined with an autophagy inhibitor. RESULTS High grade urothelial carcinoma showed a higher number of autophagic vesicles and significantly higher expression of autophagic proteins. Upon starvation cells cultured from high and low grade urothelial carcinoma demonstrated significant autophagy induction associated with AMPK activation and mTOR inhibition. AMPK inhibition decreased the autophagic response and increased cell death. Autophagy inhibition by wortmannin, 3-methyladenine and chloroquine increased mitochondrial hypopolarization as well as caspase-9 and 3 dependent cell death. Combined treatment with cisplatin and an autophagy inhibitor resulted in greater cell death than cisplatin treatment alone. CONCLUSIONS Autophagy is related to urothelial carcinoma grade and regulated via the AMPK pathway for tumor cell survival. Autophagy inhibition leads to cancer cell death through an intrinsic apoptotic pathway. The potential application of autophagy inhibitors as an adjunct to chemotherapy for urothelial carcinoma must be explored.
Collapse
Affiliation(s)
- Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shrawan K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Singh Dhanda
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arup K Mandal
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Gosnell H, Kasman LM, Potta T, Vu L, Garrett-Mayer E, Rege K, Voelkel-Johnson C. Polymer-enhanced delivery increases adenoviral gene expression in an orthotopic model of bladder cancer. J Control Release 2013; 176:35-43. [PMID: 24370892 DOI: 10.1016/j.jconrel.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/06/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
Gene therapy has garnered significant attention as a therapeutic approach for bladder cancer but efficient delivery and gene expression remain major hurdles. The goal of this study was to determine if cationic polymers can enhance adenoviral gene expression in cells that are difficult to transduce in vitro and to subsequently investigate lead candidates for their capacity to increase adenoviral gene expression in an orthotopic in vivo model of bladder cancer. In vitro screening of linear polyamine-based and aminoglycoside-based polymer libraries identified several candidates that enhanced adenoviral reporter gene expression in vitro. The polyamine-based polymer NPGDE-1,4 Bis significantly enhanced adenoviral gene expression in the orthotopic model of bladder cancer but unfortunately further use of this polymer was limited by toxicity. In contrast, the aminoglycoside-based polymer paromomycin-BGDE, enhanced adenoviral gene expression within the bladder without adverse events. Our study demonstrates for the first time that cationic polymers can enhance adenoviral gene expression in an orthotopic model of bladder cancer, thereby providing the foundation for future studies to determine therapeutic benefits of polymer-adenovirus combination in bladder cancer gene therapy.
Collapse
Affiliation(s)
- Helen Gosnell
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Laura M Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Thrimoorthy Potta
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Lucas Vu
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston 29425, USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
9
|
Retargeted adenoviral cancer gene therapy for tumour cells overexpressing epidermal growth factor receptor or urokinase-type plasminogen activator receptor. Gene Ther 2010; 17:1000-10. [PMID: 20410926 DOI: 10.1038/gt.2010.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have assessed the ability of bispecific fusion proteins to improve adenovirus-mediated transfer of therapeutic and marker transgenes. We constructed an expression vector that can be easily modified to synthesize a variety of fusion proteins for retargeting adenoviral gene therapy vectors to cell surface markers, which are differentially expressed between normal and cancer cells. Adenoviral transduction can be improved in a number of tumour cell lines which overexpress EGFR (epidermal growth factor receptor) or uPAR (urokinase-type plasminogen activator receptor), but which have only low levels of endogenous hCAR (human coxsackie B and adenovirus receptor) expression. Up to 40-fold improvement in beta-galactosidase transgene expression was seen using an EGFR retargeting protein, and up to 16-fold using a second fusion protein targeting uPAR. In vitro, our uPAR retargeting fusion protein improved the sensitivity to adenoviral herpes simplex virus thymidine kinase/ganciclovir by an order of magnitude, whereas in vivo, our EGFR retargeting protein is able to significantly delay tumour growth in rodent animal models in a dose-dependent manner. The 'cassette' design of our fusion protein constructs offers a flexible method for the straightforward synthesis of multiple adenoviral retargeting proteins, directed against a variety of tumour-associated antigens, for use in clinical trials.
Collapse
|
10
|
Lojo Rial C, Wilby D, Sooriakumaran P. Role and rationale of gene therapy and other novel therapies in the management of NMIBC. Expert Rev Anticancer Ther 2010; 9:1777-82. [PMID: 19954289 DOI: 10.1586/era.09.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bladder cancer is the second most common urological malignancy with a one in 28 lifetime risk. Three-quarters of tumors are non-muscle-invasive (formerly termed superficial) at the time of presentation. Approximately half of all non-muscle-invasive bladder cancer (NMIBC) will recur and, depending on certain prognostic factors including grade, stage and presence of carcinoma in situ, a number will progress to muscle invasion. The standard of care for NMIBC is transurethral resection of bladder tumor (TURBT) to remove the mass lesion(s). Intravesical therapy of NMIBC post-TURBT therefore aims to delay/prevent recurrence and/or progression to muscle-invasive bladder cancer. While intravesical chemotherapy, such as mitomycin C, and immunotherapy, such as bacillus Calmette-Guérin are well established, there is current interest in novel therapies based on improved molecular understanding of bladder cancer. These novel therapies include gene therapy, using viral and non-viral vectors for transfer, monoclonal antibodies and direct tumoricidal viruses. While there is a sound theoretical basis for these therapies based on molecular targeting, there is little evidence in human studies that these therapies have clinical impact on NMIBC. However, it is certain that their use will be investigated further and they provide great hope for the future of NMIBC adjuvant therapy.
Collapse
|
11
|
Araki D, Takayama K, Inoue M, Watanabe T, Kumon H, Futaki S, Matsui H, Tomizawa K. Cell-penetrating D-isomer peptides of p53 C-terminus: long-term inhibitory effect on the growth of bladder cancer. Urology 2009; 75:813-9. [PMID: 19963248 DOI: 10.1016/j.urology.2009.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/24/2009] [Accepted: 10/04/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate whether a single application of the membrane-permeable D-isomer of the p53 C-terminus connected with a retro-inverso version of the NH(2)-terminal 20-amino acid peptide of the influenza virus hemagglutinin-2 protein (riHA2) inhibited the growth of bladder cancer cells. The transduction of p53 using poly-arginine is useful for targeting and suppressing the growth of bladder cancer cells. However, the protein's intracellular half-life is short, and repeated application is necessary to achieve an anti-tumor effect. METHODS The p53 carboxyl-terminal peptides covalently coupled with cell-penetrating peptides were synthesized with D- or L-amino acids. Moreover, the peptides were connected with riHA2 by a disulfide bridge. Human bladder cancer cell lines were incubated with each peptide and cell viability was assessed with the WST assay. Apoptotic cells were confirmed by Hoechst and active capase-3 staining. The p53 peptides were injected into severe combined immunodeficiency disease mice transplanted with J82 cells to investigate their anti-tumor effect on bladder tumors. A survival curve was plotted using the Kaplan-Meier method. RESULTS A single application of cell-penetrating D-isomer peptides of the p53 C-terminus connected with riHA2 (d11R-p53C'-riHA2 and dFHV-p53C'-riHA2) inhibited the growth and induced the apoptosis of bladder cancer cells. The tumor-bearing mice treated only with vehicle had a mean survival time of 12 days, whereas treatment with d11R-p53C'-riHA2 resulted in a long-term survival rate of 50%. CONCLUSIONS Peptide transduction therapy using the D-isomer p53 C-terminal peptide with riHA2 may be an innovative method for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Daiji Araki
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Buscarini M, Quek ML, Gilliam-Hegarich S, Kasahara N, Bochner B. Adenoviral Receptor Expression of Normal Bladder and Transitional Cell Carcinoma of the Bladder. Urol Int 2007; 78:160-6. [PMID: 17293658 DOI: 10.1159/000098076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. MATERIAL AND METHODS Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. RESULTS Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. CONCLUSIONS The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment.
Collapse
Affiliation(s)
- Maurizio Buscarini
- Department of Urology, USC School of Medicine, USC/Norris Comprehensive Cancer Center, Los Angeles, Calif., USA.
| | | | | | | | | |
Collapse
|
13
|
Inoue M, Tomizawa K, Matsushita M, Lu YF, Yokoyama T, Yanai H, Takashima A, Kumon H, Matsui H. p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Eur Urol 2005; 49:161-8. [PMID: 16310931 DOI: 10.1016/j.eururo.2005.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/23/2005] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-mediated gene therapy for bladder cancer has some problems, such as efficiency of gene delivery and safety issues. We have reported that poly-arginine peptide (11R) has the ability to increase protein transduction in cells. Here, we show that p53 protein transduction using 11R is useful for targeting to bladder tumors and suppressing the growth of bladder cancer cells. MATERIALS AND METHODS An 11R-fused p53 protein (11R-p53) was transduced in bladder cancer cell lines (J82 and T24) to evaluate the anti-tumor effect. Cell viability was assessed by performing the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST) assay. To investigate whether 11R-p53 enhanced the effect on anti-cancer drug-dependent apoptosis of bladder cancer cells, the cell lines were cotreated with 11R-p53 and cis-diaminedichloroplatinum (CDDP). Apoptotic cells were identified using Hoechst staining. To investigate the efficiency of protein transduction mediated by 11R in bladder tumors in vivo, SCID mice were transplanted with J82 cells in the bladder and 11R-GFP was transurethrally transduced into the bladder. The transduction of 11R-GFP in the tumor was examined by confocal microscopy. RESULTS 11R-p53 inhibited the growth of both J82 and T24 cells in a dose-dependent manner. The transduction of 11R-p53 enhanced CDDP-dependent induction of apoptosis. Transurethral application of 11R-GFP resulted in transduction of GFP in bladder tumors but not in the normal bladder epithelium or subepithelial tissues. CONCLUSION The present results suggest that p53 protein transduction therapy may be a promising method for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Miyabi Inoue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li ZY, Ni S, Yang X, Kiviat N, Lieber A. Xenograft models for liver metastasis: Relationship between tumor morphology and adenovirus vector transduction. Mol Ther 2004; 9:650-7. [PMID: 15120325 DOI: 10.1016/j.ymthe.2004.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 01/30/2004] [Indexed: 12/28/2022] Open
Abstract
The improvement of initial tumor cell transduction with viral vectors is a major task in tumor gene therapy. We have developed mouse tumor models with hepatic metastases to study transduction of tumor cells after systemic adenovirus vector application. The tumor models were established by intraportal transplantation of human tumor cell lines into immunodeficient mice. Liver metastases derived from cervix, colon, breast, and liver cancer lines were analyzed for distribution of extracellular matrix, vascularization, and transgene expression after tail vein injection of adenovirus vectors. Overall, xenografts resembled the morphology of corresponding tumors in cancer patients. Adenovirus-mediated gene delivery depended on tumor vascularization and direct contact between blood vessels and tumor cells. These models represent important tools for studying and improving tumor gene therapy approaches.
Collapse
Affiliation(s)
- Zong-Yi Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Arap MA, Lahdenranta J, Hajitou A, Marini FC, Wood CG, Wright KC, Fueyo J, Arap W, Pasqualini R. Model of unidirectional transluminal gene transfer. Mol Ther 2004; 9:305-10. [PMID: 14759814 DOI: 10.1016/j.ymthe.2003.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/04/2003] [Accepted: 11/04/2003] [Indexed: 01/09/2023] Open
Abstract
Gene transfer assays in vitro are poor indicators of transduction efficacy observed in vivo. We designed and optimized an intermediate model for assessing and quantifying unidirectional transduction ex vivo. The model enables simultaneous transmucosal evaluation of up to 96 different variables under the same tissue conditions. We show that the model is versatile and suitable for use with different vectors (adenovirus and AAV), different reporter genes (beta-galactosidase and green fluorescent protein), and viscera with various tissue features such as peritoneum and urothelium. Ex vivo transduction assays may correlate better with in vivo gene transfer results. Because the experimental model described here can be performed in small samples, it may enable translational applications in tissues of human origin.
Collapse
Affiliation(s)
- Marco A Arap
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu ZB, Makhija SK, Lu B, Wang M, Rivera AA, Preuss M, Zhou F, Siegal GP, Alvarez RD, Curiel DT. Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis. Virology 2004; 325:116-28. [PMID: 15231391 DOI: 10.1016/j.virol.2004.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/26/2004] [Accepted: 04/10/2004] [Indexed: 11/17/2022]
Abstract
Adenoviral vectors have a poor record of transgene delivery efficiency through physical barriers such as the epithelium or endothelium. We report here the construction of an adenoviral vector that has the capability to be transported across polarized epithelial monolayers of Caco-2 cells (a colon carcinoma cell line) by transcytosis. This transcytosis is transferrin receptor (TfR)-mediated with use of a bifunctional adaptor, soluble coxsackie adenovirus receptor (sCAR)-Tf, and is both temperature and iron dependent. Under experimental conditions, the adenoviral transcytosis was inhibited by pretreatment of Caco-2 cells with colchicine, an inhibitor of transcytosis, and was not enhanced by pretreatment with Brefeldin A (BFA), an enhancer of transcytosis. In these Caco-2 cells, the transcytosis rate was 0.3 +/- 1.3% (SD). The transcytosed adenoviruses remain biologically functional. These data suggest the potential clinical benefit under conditions where drug delivery is a challenge, such as within the airway epithelium, at the bladder lumen urothelial cell interface, and across the blood-brain barrier for clinical treatment of lung, urogenital, and brain disorders, respectively, by adenoviral transcytosis of transgene delivery.
Collapse
Affiliation(s)
- Zeng B Zhu
- Division of Human Gene Therapy, Department of Medicine, Pathology, and The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35291, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2004; 2:471-86. [PMID: 14529313 DOI: 10.1177/153303460300200513] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy as part of modern molecular medicine holds great promise for the treatment of both acute and chronic diseases and has the potential to bring a revolutionary era to cancer treatment. Gene therapy has been named the medicine of the future. For the past 10 years various viral and non-viral vectors have been engineered for improved gene and drug delivery. Although various diseases have been targeted, cancer therapy has been addressed to a large extent because of the straight forward approach. Delivery of toxic or immunostimulatory genes by viral and non-viral vectors has been investigated and encouraging results have been obtained in animal models. A large number of clinical trials have been conducted with some highly promising outcome. We propose that combinations of viruses with liposomes or polymers will solve the problem of systemic viral delivery and tumor targeting, bringing a revolution in molecular medicine and in applications of gene therapy in humans.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Regulon Inc./BioXtal, Chemin des Croisettes 22, CH-1066, Epalinges, Swizerland.
| | | |
Collapse
|