1
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
2
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. J Pharmacol Exp Ther 2020; 374:354-365. [PMID: 32561686 PMCID: PMC7430450 DOI: 10.1124/jpet.119.264127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 11/22/2022] Open
Abstract
The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Takahisa Kanekiyo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| |
Collapse
|
3
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
4
|
Dos Santos Rodrigues B, Arora S, Kanekiyo T, Singh J. Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Brain Res 2020; 1734:146738. [PMID: 32081534 DOI: 10.1016/j.brainres.2020.146738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Effective transport of therapeutic nucleic acid to brain has been a challenge for the success of gene therapy for treating brain diseases. In this study, we proposed liposomal nanoparticles modified with brain targeting ligandsfor active brain targeting with enhanced BBB permeation and delivery of genes to brain. We targeted transferrin and nicotinic acetylcholine receptors by conjugating transferrin (Tf) and rabies virus glycoprotein (RVG) peptide to surface of liposomes. Liposomal formulations showed homogeneous particle size and ability to protect plasmid DNA against enzymatic degradation. These nanoparticles were internalized by brain endothelial cells, astrocytes and primary neuronal cells through energy-dependent endocytosis pathways. RVG-Tf coupled liposomes showed superior ability to transfect cells compared to liposomes without surface modification or single modification. Characterization of permeability through blood brain barrier (BBB) and functionality of designed liposomes were performed using an in vitro triple co-culture BBB model. Liposome-RVG-Tf efficiently translocated across in vitro BBB model and, consecutively, transfected primary neuronal cells. Notably, brain-targeted liposomes promoted in vivo BBB permeation. These studies suggest that modifications of liposomes with brain-targeting ligands are a promising strategy for delivery of genes to brain.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
5
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 2019; 14:6497-6517. [PMID: 31616141 PMCID: PMC6699367 DOI: 10.2147/ijn.s215941] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background The potential of gene therapy for treatment of neurological disorders can be explored using designed lipid-based nanoparticles such as liposomes, which have demonstrated ability to deliver nucleic acid to brain cells. We synthesized liposomes conjugated to cell-penetrating peptides (CPPs) (vascular endothelial-cadherin-derived peptide [pVec], pentapeptide QLPVM and HIV-1 trans-activating protein [TAT]) and transferrin (Tf) ligand, and examined the influence of surface modifications on the liposome delivery capacity and transfection efficiency of encapsulated plasmid DNA. The design of liposomes was based on targeting molecular recognition of transferrin receptor overexpressed on the blood–brain barrier (BBB) with enhanced internalization ability of CPPs. Methods CPP-Tf-liposomes were characterized by particle size distribution, zeta potential, protection of encapsulated plasmid DNA, uptake mechanisms and transfection efficiencies. An in vitro triple co-culture BBB model selected the liposomal formulations that were able to cross the in vitro BBB and subsequently, transfect primary neuronal cells. The in vivo biodistribution and biocompatibility of selected formulations were also investigated in mice. Results Liposomal formulations were able to protect the encapsulated plasmid DNA against enzymatic degradation and presented low hemolytic potential and low cytotoxicity at 100 nM phospholipid concentration. Cellular internalization of nanoparticles occurred via multiple endocytosis pathways. CPP-Tf-conjugated liposomes mediated robust transfection of brain endothelial (bEnd.3), primary glial and primary neuronal cells. Liposomes modified with Tf and TAT demonstrated superior ability to cross the barrier layer and subsequently, transfect neuronal cells compared to other formulations. Quantification of fluorescently labeled liposomes and in vivo imaging demonstrated that this system could efficiently overcome the BBB and penetrate the brain of mice (7.7% penetration of injected dose). Conclusion In vitro screening platforms are important tools to enhance the success of brain-targeted gene delivery systems. The potential of TAT-Tf-liposomes as efficient brain-targeted gene carriers in vitro and in vivo was suggested to be related to the presence of selected moieties on the nanoparticle surface.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
6
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
7
|
Puhl DL, D'Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull 2019; 150:216-230. [PMID: 31173859 PMCID: PMC8284997 DOI: 10.1016/j.brainresbull.2019.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising form of treatment for those suffering from neurological disorders or central nervous system (CNS) injury, however, obstacles remain that limit its translational potential. The CNS is protected by the blood brain barrier, and this barrier blocks genes from traversing into the CNS if administered outside of the CNS. Viral and non-viral gene delivery vehicles, commonly referred to as vectors, are modified to enhance delivery efficiency to target locations in the CNS. Still, there are few gene therapy approaches approved by the FDA for CNS disease or injury treatment. The lack of viable clinical approaches is due, in part, to the unpredictable nature of many vector systems. In particular, safety concerns exist with the use of viral vectors for CNS gene delivery. To seek some alternatives to viral vectors, development of new non-viral, biomaterial vectors is occurring at a rapid rate. This review discusses the challenges of delivering various forms of genetic material to the CNS, the use and limitations of current viral vector delivery systems, and the use of non-viral, biomaterial vectors for CNS applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| | - Anthony R D'Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| |
Collapse
|
8
|
Dos Santos Rodrigues B, Banerjee A, Kanekiyo T, Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int J Pharm 2019; 566:717-730. [PMID: 31202901 DOI: 10.1016/j.ijpharm.2019.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
Abstract
Liposome based delivery systems provide a promising strategy for treatment of neurodegenerative diseases. A rational design of brain-targeted liposomes can support the development of more efficient treatments with drugs and gene materials. Here, we characterized surface modified liposomes with transferrin (Tf) protein and penetratin (Pen), a cell-penetrating peptide, for efficient and targeted gene delivery to brain cells. PenTf-liposomes efficiently encapsulated plasmid DNA, protected them against enzymatic degradation and exhibited a sustained in vitro release kinetics. The formulation demonstrated low cytotoxicity and was non-hemolytic. Liposomes were internalized into cells mainly through energy-dependent pathways especially clathrin-mediated endocytosis. Reporter gene transfection and consequent protein expression in different cell lines were significantly higher using PenTf-liposomes compared to unmodified liposomes. The ability of these liposomes to escape from endosomes can be an important factor which may have likely contributed to the high transfection efficiency observed. Rationally designed bifunctional targeted-liposomes provide an efficient tool for improving the targetability and efficacy of synthesized delivery systems. This investigation of liposomal properties attempted to address cell differences, as well as, vector differences, in gene transfectability. The findings indicate that PenTf-liposomes can be a safe and non-invasive approach to transfect neuronal cells through multiple endocytosis pathways.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
9
|
Eriksen AZ, Eliasen R, Oswald J, Kempen PJ, Melander F, Andresen TL, Young M, Baranov P, Urquhart AJ. Multifarious Biologic Loaded Liposomes that Stimulate the Mammalian Target of Rapamycin Signaling Pathway Show Retina Neuroprotection after Retina Damage. ACS NANO 2018; 12:7497-7508. [PMID: 30004669 PMCID: PMC6117751 DOI: 10.1021/acsnano.8b00596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/13/2018] [Indexed: 05/08/2023]
Abstract
A common event in optic neuropathies is the loss of axons and death of retinal ganglion cells (RGCs) resulting in irreversible blindness. Mammalian target of rapamycin (mTOR) signaling pathway agonists have been shown to foster axon regeneration and RGC survival in animal models of optic nerve damage. However, many challenges remain in developing therapies that exploit cell growth and tissue remodeling including (i) activating/inhibiting cell pathways synergistically, (ii) avoiding tumorigenesis, and (iii) ensuring appropriate physiological tissue function. These challenges are further exacerbated by the need to overcome ocular physiological barriers and clearance mechanisms. Here we present liposomes loaded with multiple mTOR pathway stimulating biologics designed to enhance neuroprotection after retina damage. Liposomes were loaded with ciliary neurotrophic factor, insulin-like growth factor 1, a lipopeptide N-fragment osteopontin mimic, and lipopeptide phosphatase tension homologue inhibitors for either the ATP domain or the c-terminal tail. In a mouse model of N-methyl-d-aspartic acid induced RGC death, a single intravitreal administration of liposomes reduced both RGC death and loss of retina electrophysiological function. Furthermore, combining liposomes with transplantation of induced pluripotent stem cell derived RGCs led to an improved electrophysiological outcome in mice. The results presented here show that liposomes carrying multiple signaling pathway modulators can facilitate neuroprotection and transplant electrophysiological outcome.
Collapse
Affiliation(s)
- Anne Z. Eriksen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Eliasen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Oswald
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Paul J. Kempen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Fredrik Melander
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael Young
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Petr Baranov
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Andrew J. Urquhart
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles. Front Neurosci 2017; 11:476. [PMID: 28912673 PMCID: PMC5582160 DOI: 10.3389/fnins.2017.00476] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1) in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs) can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB) warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs) were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1), had a uniform spherical core-shell morphology with an average size of 30 nm, and surface charge (ζ-potential) of -4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34) through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that CaP-lipid NPs could be an effective and safe delivery system for the improved delivery of SOD1 ASOs to motor neurons. Further in vivo evaluation in transgenic mouse models of SOD1 ALS are therefore warranted.
Collapse
Affiliation(s)
- Liyu Chen
- Illawarra Health and Medical Research InstituteWollongong, NSW, Australia
- Science Medicine and Health Faculty, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - Clare Watson
- Illawarra Health and Medical Research InstituteWollongong, NSW, Australia
- Science Medicine and Health Faculty, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Nicholas J. Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Roger S. Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Darren N. Saunders
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Justin J. Yerbury
- Science Medicine and Health Faculty, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - Kara L. Vine
- Illawarra Health and Medical Research InstituteWollongong, NSW, Australia
- Science Medicine and Health Faculty, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
11
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
12
|
|
13
|
Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015; 33:277-87. [PMID: 25698504 DOI: 10.1016/j.biotechadv.2015.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Luciana Negro-Demontel
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Zhikun Xu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Váquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
14
|
Li L, Xiong DF, Liu JW, Li ZX, Zeng GC, Li HL. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2013; 37:37-44. [PMID: 24379132 DOI: 10.1007/s13246-013-0237-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.
Collapse
Affiliation(s)
- Li Li
- Electric Power Research Institute of Guangdong Power Grid Corporation, No. 8 Shuijungang Dongfengdong Road, Guangzhou, 510080, Guangdong, China,
| | | | | | | | | | | |
Collapse
|
15
|
Tros de Ilarduya C, Düzgüneş N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv 2013; 10:1583-91. [PMID: 24050263 DOI: 10.1517/17425247.2013.837447] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The overexpression of transferrin (Tf) receptors on cancer cells renders them a useful target for the delivery of small-molecule drugs and nucleic acid therapeutics to these cells. This approach could alleviate the non-target effects of the drugs. AREAS COVERED The function of the Tf receptor, the development of Tf-lipid-DNA complexes (Tf lipoplexes), therapeutic use of lipoplexes and polymer-DNA complexes (poylplexes), and the therapeutic use of Tf-lipoplexes and anti-Tf-receptor antibody-lipoplexes are outlined. The literature search for this review was based primarily on the terms 'lipoplexes,' 'lipopolyplexes' 'transferrin,' 'transferrin receptor,' and 'gene therapy.' However, the review was not intended to be comprehensive. EXPERT OPINION Complexes of Tf with cationic liposomes and nucleic acids, or liposomes with covalently attached Tf or anti-transferrin receptor antibodies have been used for the delivery of therapeutic genes, antisense oligodeoxynucleotides, and short interfering RNA. Although such targeted nonviral delivery vehicles may benefit from further enhancement of their efficacy, current achievements at the cell culture and animal model level should be translated into clinical applications, restricted initially to localized delivery into accessible tissues to avoid potential systemic side-effects and non-target delivery.
Collapse
Affiliation(s)
- Conchita Tros de Ilarduya
- University of Navarra, School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology , Pamplona , Spain
| | | |
Collapse
|
16
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
17
|
Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov Today 2013; 18:1263-71. [PMID: 23891881 DOI: 10.1016/j.drudis.2013.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Deficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control of neurotrophin dosage in the brain. Here, we suggest that nanoparticulate carriers favoring targeted delivery in specific brain areas and minimizing biodistribution to the systemic circulation should be developed toward clinical benefits of neuroregeneration. We also provide examples of improved targeted neurotrophin delivery to localized areas in the CNS.
Collapse
Affiliation(s)
- Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.B. Clément, F-92296 Châtenay-Malabry cedex, France; University Paris Sud 11, Faculté de Pharmacie, LabEx LERMIT, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
18
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556-576. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Ruozi B, Belletti D, Bondioli L, De Vita A, Forni F, Vandelli MA, Tosi G. Neurotrophic factors and neurodegenerative diseases: a delivery issue. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:207-47. [PMID: 22748832 DOI: 10.1016/b978-0-12-386986-9.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophic factors (NTFs) represent one of the most stimulating challenge in neurodegenerative diseases, due to their potential in neurorestoring and neuroprotection. Despite the large number of proofs-of-concept and evidences of their activity, most of the clinical trials, mainly regarding Parkinson's disease and Alzheimer's disease, demonstrated several failures of the therapeutic intervention. A large number of researches were conducted on this hot topic of neuroscience, clearly evidencing the advantages of NTF approach, but evidencing the major limitations in its application. The inability in crossing the blood-brain barrier and the lack of selectivity actually represent some of the most highlighted limits of NTFs-based therapy. In this review, beside an overview of NTF activity versus the main neuropathological disorders, a summary of the most relevant approaches, from invasive to noninvasive strategies, applied for improving NTF delivery to the central nervous systems is critically considered and evaluated.
Collapse
Affiliation(s)
- B Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
21
|
Liu J, Chen SS, Dan QQ, Rong R, Zhou X, Zhang LF, Wang TH. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats. Growth Factors 2011; 29:49-56. [PMID: 21291350 DOI: 10.3109/08977194.2010.549129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Salgado AJ, Oliveira JM, Pirraco RP, Pereira VH, Fraga JS, Marques AP, Neves NM, Mano JF, Reis RL, Sousa N. Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in central nervous systems-regenerative medicine: effects on neuron/glial cell viability and internalization efficiency. Macromol Biosci 2011; 10:1130-40. [PMID: 20602413 DOI: 10.1002/mabi.201000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere-like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent-probe FITC for tracing purposes. Post-natal hippocampal neurons and cortical glial cells were both able to internalize the FITC-labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC-labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.
Collapse
Affiliation(s)
- António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 2010; 290:123-30. [DOI: 10.1016/j.jns.2009.09.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 12/21/2022]
|
24
|
Obata Y, Ciofani G, Raffa V, Cuschieri A, Menciassi A, Dario P, Takeoka S. Evaluation of cationic liposomes composed of an amino acid–based lipid for neuronal transfection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:70-7. [DOI: 10.1016/j.nano.2009.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 03/23/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
|
25
|
Russ V, Fröhlich T, Li Y, Halama A, Ogris M, Wagner E. Improvedin vivogene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimine-based polyplexes. J Gene Med 2010; 12:180-93. [DOI: 10.1002/jgm.1430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Physicochemical properties of transferrin-associated lipopolyplexes and their role in biological activity. Colloids Surf B Biointerfaces 2009; 76:207-14. [PMID: 19945258 DOI: 10.1016/j.colsurfb.2009.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
Abstract
The combination of polyethylenimine (PEI), as a plasmid DNA pre-condensing agent, and cationic lipids has been reported to result in a synergistic effect on transfection. Recently, we have explored this effect by associating low-molecular weight PEIs with transferrin-associated lipoplexes using different cationic liposome formulations. The resulting lipopolyplexes that have shown to be the most efficient in mediating transfection were those prepared from cationic liposomes composed of DOTAP:Chol (associated or not with transferrin) and from a pH-sensitive liposome formulation (DOTAP:Chol:DOPE:CHEMS). In the present work, the physicochemical properties of these lipopolyplexes were studied aiming at establishing a correlation with their transfection efficiency. For this purpose, the lipopolyplexes were characterized in terms of their morphology by performing ultrastructural studies using cryo-TEM microscopy, investigating inner DNA structure using circular dichroism and characterizing particle size by photon correlation spectroscopy. A correlation between efficiency of transfection and more compact inner DNA structure and smaller particle sizes (around 250nm) was found. In addition, the visualization of liposomes and lipopolyplexes at the ultrastructural level revealed that the particles presenting enhanced transfection efficiencies are associated with higher electron density. Recently, PEI-based lipopolyplexes were reported to gain entry into the cell through the caveolae-mediated pathway. Based on the present finding that DOTAP:Chol liposomes exhibit the ability to form hexagonal structures when prepared at high concentrations, we propose that the lipopolyplexes containing DOTAP:Chol take advantage of such capacity to escape from the endocytotic vesicles, which will contribute to the observed high transfection efficiencies.
Collapse
|
27
|
Huang R, Han L, Li J, Ren F, Ke W, Jiang C, Pei Y. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med 2009; 11:754-63. [DOI: 10.1002/jgm.1361] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Penacho N, Simões S, de Lima MCP. Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes. Mol Membr Biol 2009; 26:249-63. [DOI: 10.1080/09687680902766716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009; 6:211-25. [PMID: 19290842 DOI: 10.1517/17425240902758188] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
With an increase in lifespan and changing population demographics, the incidence of central nervous system (CNS) diseases is expected to increase significantly in the 21st century. The most challenging of the CNS diseases are neurodegenerative diseases, characterized by age-related gradual decline in neurological function, often accompanied by neuronal death. Alzheimer's disease, Parkinson's disease and Huntington's disease are some examples of neurodegenerative diseases and have been well described in terms of disease mechanisms and pathology. However, successful treatment strategies for neurodegenerative diseases have so far been limited. Delivery of drugs into the CNS is one of the most challenging problems faced in the treatment of neurodegeneration. In this review, we describe the difficulties with CNS therapy, especially with the use of biological macromolecules, such as proteins and nucleic acid constructs. CNS therapeutics also represents a huge opportunity and examples of strategies that can enhance therapeutic delivery for the treatment of neurodegenerative diseases are emphasized. It is anticipated that with an increase in biological understanding of neurodegenerative diseases, there will be even more therapeutic opportunities. As such, these delivery strategies have a very important role to play in the future in the translation of CNS therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Thomas M Barchet
- Department of Pharmaceutical Sciences, Northeastern University, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, Massachussets, MA 02115, USA
| | | |
Collapse
|
30
|
|
31
|
Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. J Control Release 2008; 132:113-23. [DOI: 10.1016/j.jconrel.2008.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/16/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023]
|
32
|
Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. J Drug Target 2008; 14:191-214. [PMID: 16777679 DOI: 10.1080/10611860600650086] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from potentially harmful xenobiotics and endogenous molecules. Anatomically, it comprises the brain microvasculature whose functionality is nevertheless influenced by associated astrocyte, pericyte and neuronal cells. The highly restrictive paracellular pathway within brain microvasculature restricts significant CNS penetration to only those drugs whose physicochemical properties afford ready penetration into hydrophobic cell membranes or are capable of exploiting endogenous active transport processes such as solute carriers or endocytosis pathways. Endocytosis at the BBB is an essential pathway by which the brain obtains its nutrients and affords communication with the periphery. The development of strategies to exploit these endocytic pathways for the purposes of drug delivery to the CNS is still an immature field although some impressive results have been documented with the targeting of particular receptors. This current article initially provides an overview of general endocytosis processes and pathways showing evidence of their functional existence within the BBB. Subsequent sections provide, in an entity-specific manner, comprehensive reviews on BBB transport investigations of endocytosis involving: transferrin and the targeting of the transferrin receptor; hormones; cytokines; cell penetrating peptides; microorganisms and toxins, and nanoparticles aimed at more effectively delivering drugs to the CNS.
Collapse
Affiliation(s)
- Mathew W Smith
- Pharmaceutical Cell Biology, Welsh School of Pharmacy, Cardiff University, Redwood Building, Cardiff CF10 3XF, UK
| | | |
Collapse
|
33
|
Neves S, Faneca H, Bertin S, Konopka K, Düzgüneş N, Pierrefite-Carle V, Simões S, Pedroso de Lima MC. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 2008; 16:91-101. [DOI: 10.1038/cgt.2008.60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Li D, Kong Y, Yu H, Lehtinen A, Huang H, Shen F, Min L, Zhou J, Tang G, Wang Q. The construction of a novel kind of non-viral gene delivery vector based on protein as core backbone. Vox Sang 2008; 94:234-241. [PMID: 18167161 DOI: 10.1111/j.1423-0410.2007.01025.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES A novel kind of non-viral gene delivery vector based on transferrin (Tf) as the core component was constructed with high transfection efficiency and low toxicity. MATERIALS AND METHODS The synthesis vector of Tf-PEI600 was confirmed by different physicochemical methods, including (1)H nuclear magnetic resonance, gel permeation chromatography, X-ray and thermogravimetric analysis. The cytotoxicity and gene delivery efficiency of the synthesized vector were verified by in vitro experiments. RESULTS The agarose gel electrophoresis assay indicated that the novel copolymer Tf-PEI600 could efficiently condense plasmid DNA and the condensed nanoparticles exhibited a spherical shape. As the weight ratio of Tf-PEI600 to DNA reached 15.0, the particle size (about 200 nm) and the zeta potential (about 20 mV) of the nanoparticles became optimal for gene delivery. The methylthiazolyl tetrazolium (MTT) assay showed the cytotoxicity of Tf-PEI600 to be similar to that of PEI600 and much lower than that of PEI25kDa. In gene-delivery experiments with COS-7 cells and HepG2 cells, the Tf-PEI600 showed about a 30- to 53-fold higher efficiency than PEI600 and nearly equal to that of PEI25kDa. CONCLUSIONS These data suggest that Tf-PEI600, with the advantages of low toxicity and high gene-delivery efficiency, might have great prospects in the practice of gene delivery. The core-shell structure of Tf-PEI600 also provided a novel strategy for the construction of non-viral gene delivery vectors.
Collapse
Affiliation(s)
- D Li
- Department of Oncology, Sir Run Run Shaw Hospital affiliated to School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Y Kong
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - H Yu
- Institute of Immunology, Zhejiang University, Hangzhou 310031, China
| | - A Lehtinen
- Department of Chemical Technology, Helsinki University of Technology, FIN-02015 TKK, Finland
| | - H Huang
- Institute of Immunology, Zhejiang University, Hangzhou 310031, China
| | - F Shen
- Institute of Immunology, Zhejiang University, Hangzhou 310031, China
| | - L Min
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - J Zhou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - G Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Q Wang
- Institute of Immunology, Zhejiang University, Hangzhou 310031, China
| |
Collapse
|
35
|
Roy I, Stachowiak MK, Bergey EJ. Nonviral gene transfection nanoparticles: function and applications in the brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:89-97. [PMID: 18313990 DOI: 10.1016/j.nano.2008.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 12/31/2022]
Abstract
In vivo transfer and expression of foreign genes allows for the elucidation of functions of genes in living organisms and generation of disease models in animals that more closely resemble the etiology of human diseases. Gene therapy holds promise for the cure of a number of diseases at the fundamental level. Synthetic "nonviral" materials are fast gaining popularity as safe and efficient vectors for delivering genes to target organs. Not only can nanoparticles function as efficient gene carriers, they also can simultaneously carry diagnostic probes for direct "real-time" visualization of gene transfer and downstream processes. This review has focused on the central nervous system (CNS) as the target for nonviral gene transfer, with special emphasis on organically modified silica (ORMOSIL) nanoparticles developed in our laboratory. These nanoparticles have shown robust gene transfer efficiency in brain cells in vivo and allowed to investigate mechanisms that control neurogenesis as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, State University of New York, Buffalo, New York 14260-3000, USA
| | | | | |
Collapse
|
36
|
Transferrin-Associated Lipoplexes as Gene Delivery Systems: Relevance of Mode of Preparation and Biophysical Properties. J Membr Biol 2008; 221:141-52. [DOI: 10.1007/s00232-008-9092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
37
|
Bergen JM, Park IK, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 2007; 25:983-98. [PMID: 17932730 PMCID: PMC2292496 DOI: 10.1007/s11095-007-9439-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/20/2007] [Indexed: 12/23/2022]
Abstract
The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Jamie M Bergen
- Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.
Collapse
Affiliation(s)
- Albertus G de Boer
- Blood-Brain-Barrier Research Group, Division of Pharmacology, Leiden-Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands.
| | | |
Collapse
|
39
|
Shen F, Wen L, Yang X, Liu W. The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 2007; 30:291-8; discussion 298. [PMID: 17687574 DOI: 10.1007/s10143-007-0094-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/30/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Advances in molecular biology have allowed the possibility of using gene therapy in the treatment of traumatic brain injury. The major tactics involve picking out the appropriate gene target and, by controlling its specific regional expression, inhibiting neuronal cell deaths and/or promoting neuronal regeneration. This review addresses the preliminary usage of gene therapy in in vitro experiments and in animal models to treat traumatic brain injury. The gene targets with therapeutic potentials, the vectors that can be employed to deliver the candidate genes, as well as different approaches for gene therapy are discussed in detail in this review. Despite the existence of several major obstacles to making it practical and effective, gene therapy could provide a new strategy for treatment of the traumatically injured brain.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou City, 310003 Zhejiang, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Bertin S, Neves S, Gavelli A, Baqué P, Brossette N, Simões S, Pedroso de Lima MC, Pierrefite-Carle V. Cellular and molecular events associated with the antitumor response induced by the cytosine deaminase/5-fluorocytosine suicide gene therapy system in a rat liver metastasis model. Cancer Gene Ther 2007; 14:858-66. [PMID: 17589431 DOI: 10.1038/sj.cgt.7701075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bacterial cytosine deaminase (CD) gene converts the non-toxic prodrug 5-fluorocytosine (5-FC) into 5-fluorouracil. We have previously shown, in a rat liver metastasis model from colon carcinoma, that intratumoral injection of a CD-expressing plasmid into the animals followed by 5-FC treatment results in the regression of the treated tumor as well as distant uninjected tumors. The aim of this study was to further analyze the mechanisms associated with tumor regression induced upon application of suicide CD/5-FC strategy. Tumor regression was associated with an increased apoptosis, the recruitment of natural killer cells, CD4- and CD8 T lymphocytes within the tumors and an increased expression of several cytokines/chemokines mRNAs. These data indicate that the CD/5-FC suicide strategy is associated with the triggering of cellular and molecular events leading to an efficient antitumor immune response involving both innate and acquired immunity.
Collapse
MESH Headings
- Animals
- Antimetabolites/therapeutic use
- Apoptosis
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Combined Modality Therapy
- Cytokines/genetics
- Cytosine Deaminase/genetics
- Flucytosine/therapeutic use
- Gene Expression Regulation, Enzymologic/physiology
- Genes, Transgenic, Suicide
- Genetic Therapy
- Killer Cells, Natural/immunology
- Liposomes
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/secondary
- Liver Neoplasms, Experimental/therapy
- Male
- Plasmids/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Transfection
- Tumor Cells, Cultured
Collapse
|
41
|
Cardoso ALC, Simões S, de Almeida LP, Pelisek J, Culmsee C, Wagner E, Pedroso de Lima MC. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 2007; 9:170-83. [PMID: 17351968 DOI: 10.1002/jgm.1006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND RNA interference provides a powerful technology for specific gene silencing. Therapeutic applications of small interfering RNA (siRNA) however require efficient vehicles for stable complexation, protection, and extra- and intracellular delivery of these nucleic acids. Here, we evaluated the potential of transferrin (Tf)-associated liposomes for siRNA complexation and gene silencing. METHODS Cationic liposomes composed of DOTAP : Cholesterol associated with or without transferrin (Tf) were complexed with siRNA at different lipid/siRNA charge ratios. Complexation and protection of siRNA from enzymatic degradation was assessed with the PicoGreen intercalation assay and gel electrophoresis. Cellular internalization of these siRNA Tf-lipoplexes was detected by confocal microscopy. Luciferase assay, immunoblot and fluorescence-activated cell sorting (FACS) analysis were used to evaluate reporter gene silencing in Huh-7 hepatocarcinoma and U-373 glioma cells. c-Jun knockdown in HT-22 cells was evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Cytotoxicity of the siRNA complexes was assessed by Alamar blue, lactate dehydrogenase and MTT assays. RESULTS Complexation of siRNA with the cationic liposomes in the presence of Tf results in the formation of stable particles and prevents serum-mediated degradation. Confocal microscopy showed fast cellular internalization of the Tf-lipoplexes via endocytosis. In the GFP glioma cells Tf-lipoplexes showed enhanced gene silencing at minimum toxicity in comparison to Tf-free lipoplexes. Targeting luciferase in the hepatocarcinoma cell line resulted in more than 70% reduction of luciferase activity, while in HT-22 cells 50% knockdown of endogenous c-Jun resulted in a significant protection from glutamate-mediated toxicity. CONCLUSIONS Cationic liposomes associated with Tf form stable siRNA lipoplexes with reduced toxicity and enhanced specific gene knockdown activity compared to conventional lipoplexes. Thus, such formulations may constitute efficient delivery systems for therapeutic siRNA applications.
Collapse
Affiliation(s)
- A L C Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
42
|
Russ V, Wagner E. Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm Res 2007; 24:1047-57. [PMID: 17387604 DOI: 10.1007/s11095-006-9233-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/26/2006] [Indexed: 12/11/2022]
Abstract
Tumor targeting--per definition--includes any strategy to improve the specificity of the therapeutic nucleic acid towards the tumor site, while highest biological activity should be maintained. Targeting has been successfully achieved at the transcriptional, transductional or delivery level. For tumor-specific delivery, physical targeting methods like electroporation, hyperthermia, magnetofection, photochemical internalization or ultrasound, and biological targeting systems, including active and passive tumor targeting, have been developed. Therapeutic effects could be demonstrated with various targeted nucleic acid formulations, such as tumor-targeted DNA plasmids expressing p53 or tumor necrosis factor alpha, small interfering RNAs knocking down gene expression from tumor specific chromosomal translocations or gene expression of tumor neoangiogenic processes, as well as double stranded RNA poly inosine-cytosine which triggers apoptosis in targeted tumor cells.
Collapse
Affiliation(s)
- Verena Russ
- Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universitaet, Munich, Germany
| | | |
Collapse
|
43
|
Neves SS, Sarmento-Ribeiro AB, Simões SP, Pedroso de Lima MC. Transfection of oral cancer cells mediated by transferrin-associated lipoplexes: Mechanisms of cell death induced by herpes simplex virus thymidine kinase/ganciclovir therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1703-12. [PMID: 17049485 DOI: 10.1016/j.bbamem.2006.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 07/21/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
The Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene/ganciclovir (GCV) approach has been used for the treatment of a variety of cancers. The purpose of the present study was to evaluate the cytotoxic effect of ganciclovir in oral squamous cancer cells, previously transfected with HSV-tk gene delivered by transferrin-associated complexes (Tf-lipoplexes), as well as to investigate the mechanisms involved in the bystander effect and in the process of cell death. The delivery of HSV-tk gene to the oral cancer cells, HSC-3 and SCC-7, mediated by Tf-lipoplexes followed by ganciclovir treatment resulted in essentially 100% cytotoxicity, the observed toxic effect being dependent both on GCV dose and incubation time. Cell death was shown to occur mainly by an apoptotic process. Different experimental approaches demonstrated that the observed cytotoxicity was mainly due to diffusion of the toxic agent into neighbouring, non-transfected cells, via gap junctions. Preliminary in vivo studies in a murine model for oral squamous cell carcinoma have shown a significant inhibition of tumor growth upon injection of Tf-lipoplexes carrying HSV-tk followed by intraperitonal injection of GCV, as compared to controls.
Collapse
Affiliation(s)
- Sílvia S Neves
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | | | | | | |
Collapse
|
44
|
Jacobs AH, Winkler A, Castro MG, Lowenstein P. Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 2006; 32 Suppl 2:S358-83. [PMID: 16328505 PMCID: PMC2902257 DOI: 10.1007/s00259-005-1960-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and "phenotyping" of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being promoted through the use of novel imaging approaches.
Collapse
Affiliation(s)
- Andreas H Jacobs
- Max Planck-Institute for Neurological Research, Center of Molecular Medicine (CMMC) and Department of Neurology, University of Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
45
|
Huynh GH, Deen DF, Szoka FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 2006; 110:236-259. [PMID: 16318895 DOI: 10.1016/j.jconrel.2005.09.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/29/2005] [Indexed: 01/18/2023]
Abstract
Brain tumor patients face a poor prognosis despite significant advances in tumor imaging, neurosurgery and radiation therapy. Potent chemotherapeutic drugs fail when used to treat brain tumors because biochemical and physiological barriers limit drug delivery into the brain. In the past decade a number of strategies have been introduced to increase drug delivery into the brain parenchyma. In particular, direct drug administration into the brain tumor has shown promising results in both animal models and clinical trials. This technique is well suited for the delivery of liposome and polymer drug carriers, which have the potential to provide a sustained level of drug and to reach cellular targets with improved specificity. We will discuss the current approaches that have been used to increase drug delivery into the brain parenchyma in the context of fluid and solute transport into, through and from the brain, with a focus on liposome and polymer drug carriers.
Collapse
Affiliation(s)
- Grace H Huynh
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States
| | - Dennis F Deen
- Brain Tumor Research Center of the Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143-0520, United States
| | - Francis C Szoka
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States; Departments of Pharmaceutical Chemistry and Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, CA 94143-0446, United States.
| |
Collapse
|