1
|
Chen XC, Gai MT, He CH, Zhao BH, Liu F, Ma X, Ma YT, Gao XM, Chen BD. Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07662-1. [PMID: 39747743 DOI: 10.1007/s10557-024-07662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury. METHODS A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed. RESULTS The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway. CONCLUSION Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Chun-Hui He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
So WY, Liao Y, Liu WN, Rutter GA, Han W. Paired box 6 gene delivery preserves beta cells and improves islet transplantation efficacy. EMBO Mol Med 2023; 15:e17928. [PMID: 37933577 DOI: 10.15252/emmm.202317928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Loss of pancreatic beta cells is the central feature of all forms of diabetes. Current therapies fail to halt the declined beta cell mass. Thus, strategies to preserve beta cells are imperatively needed. In this study, we identified paired box 6 (PAX6) as a critical regulator of beta cell survival. Under diabetic conditions, the human beta cell line EndoC-βH1, db/db mouse and human islets displayed dampened insulin and incretin signalings and reduced beta cell survival, which were alleviated by PAX6 overexpression. Adeno-associated virus (AAV)-mediated PAX6 overexpression in beta cells of streptozotocin-induced diabetic mice and db/db mice led to a sustained maintenance of glucose homeostasis. AAV-PAX6 transduction in human islets reduced islet graft loss and improved glycemic control after transplantation into immunodeficient diabetic mice. Our study highlights a previously unappreciated role for PAX6 in beta cell survival and raises the possibility that ex vivo PAX6 gene transfer into islets prior to transplantation might enhance islet graft function and transplantation outcome.
Collapse
Affiliation(s)
- Wing Yan So
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yilie Liao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong, 510530, China
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guy A Rutter
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Kim MJ, Hwang YH, Hwang JW, Alam Z, Lee DY. Heme oxygenase-1 gene delivery for altering high mobility group box-1 protein in pancreatic islet. J Control Release 2022; 343:326-337. [PMID: 35085698 DOI: 10.1016/j.jconrel.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Pancreatic islet transplantation is a promising strategy for the treatment of type I diabetes. High-mobility group box-1 (HMGB1), highly expressed in islet cells, is a potent immune stimulator in immune rejection. Heme oxygenase-1 (HO1) gene therapy can modulate the release of HMGB1 by altering intracellular molecules for successful cell transplantation. After delivery of the heme oxygenase-1 (HO1) gene to islet cells using an adeno-associated viral vector (AAV), it was evaluated the changes in cytoplasmic Ca2+ ions and calcineurin activity as well as histone acetyltransferase (HAT) and Poly(ADP) ribose polymerase-1 (PARP-1). Inhibition of HMGB1 release was evaluated through altering these intracellular molecules. Then, after transplantation of HO1-transduced islets, the therapeutic effect of them was evaluated through measuring blood glucose level to diabetic mice and through immunohistochemical analysis. The transduced HO1 gene significantly inhibited HMGB1 release in islets that was under the cell damage by hypoxia exposure. It was confirmed that this result was initially due to the decrease in cytoplasmic Ca2+ ion concentration and calcineurin activity. In addition, the delivered HO1 gene simultaneously reduced the activity of HAT and PARP-1, which are involved in the translocation of HMGB1 from the nucleus to the cytoplasm. As a result, when the HO1 gene-transduced islets were transplanted into diabetic mice, the treatment efficiency of diabetes was effectively improved by increasing the survival rate of the islets. Collectively, these results suggest that HO1 gene transfer can be used for successful islet transplantation by altering the activity of intracellular signal molecules and reducing HMGB1 release.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Yong Hwa Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin Wook Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Zahid Alam
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul 04763, Republic of Korea.
| |
Collapse
|
4
|
Hu J, Bourne RA, McGrath BC, Lin A, Pei Z, Cavener DR. Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases. Mol Ther 2021; 29:3274-3292. [PMID: 33892188 PMCID: PMC8571108 DOI: 10.1016/j.ymthe.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of CRISPR-Cas9-mediated gene-editing technologies, correction of disease-causing mutations has become possible. However, current gene-correction strategies preclude mutation repair in post-mitotic cells of human tissues, and a unique repair strategy must be designed and tested for each and every mutation that may occur in a gene. We have developed a novel gene-correction strategy, co-opting regulation bypass repair (CRBR), which can repair a spectrum of mutations in mitotic or post-mitotic cells and tissues. CRBR utilizes the non-homologous end joining (NHEJ) pathway to insert a coding sequence (CDS) and transcription/translation terminators targeted upstream of any CDS mutation and downstream of the transcriptional promoter. CRBR results in simultaneous co-option of the endogenous regulatory region and bypass of the genetic defect. We validated the CRBR strategy for human gene therapy by rescuing a mouse model of Wolcott-Rallison syndrome (WRS) with permanent neonatal diabetes caused by either a large deletion or a nonsense mutation in the PERK (EIF2AK3) gene. Additionally, we integrated a CRBR GFP-terminator cassette downstream of the human insulin promoter in cadaver pancreatic islets of Langerhans, which resulted in insulin promoter regulated expression of GFP, demonstrating the potential utility of CRBR in human tissue gene repair.
Collapse
Affiliation(s)
- Jingjie Hu
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca A Bourne
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara C McGrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alice Lin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas R Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Zammit NW, Seeberger KL, Zamerli J, Walters SN, Lisowski L, Korbutt GS, Grey ST. Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation 2020; 28:e12669. [PMID: 33316848 DOI: 10.1111/xen.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Jad Zamerli
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.,Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | | | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Bloom K, Mohsen AW, Karunanidhi A, El Demellawy D, Reyes-Múgica M, Wang Y, Ghaloul-Gonzalez L, Otsubo C, Tobita K, Muzumdar R, Gong Z, Tas E, Basu S, Chen J, Bennett M, Hoppel C, Vockley J. Investigating the link of ACAD10 deficiency to type 2 diabetes mellitus. J Inherit Metab Dis 2018; 41:49-57. [PMID: 28120165 PMCID: PMC5524623 DOI: 10.1007/s10545-017-0013-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
The Native American Pima population has the highest incidence of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) of any reported population, but the pathophysiologic mechanism is unknown. Genetic studies in Pima Indians have linked acyl-CoA dehydrogenase 10 (ACAD10) gene polymorphisms, among others, to this predisposition. The gene codes for a protein with a C-terminus region that is structurally similar to members of a family of flavoenzymes-the acyl-CoA dehydrogenases (ACADs)-that catalyze α,β-dehydrogenation reactions, including the first step in mitochondrial FAO (FAO), and intermediary reactions in amino acids catabolism. Dysregulation of FAO and an increase in plasma acylcarnitines are recognized as important in the pathophysiology of IR and T2DM. To investigate the deficiency of ACAD10 as a monogenic risk factor for T2DM in human, an Acad-deficient mouse was generated and characterized. The deficient mice exhibit an abnormal glucose tolerance test and elevated insulin levels. Blood acylcarnitine analysis shows an increase in long-chain species in the older mice. Nonspecific variable pattern of elevated short-terminal branch-chain acylcarnitines in a variety of tissues was also observed. Acad10 mice accumulate excess abdominal adipose tissue, develop an early inflammatory liver process, exhibit fasting rhabdomyolysis, and have abnormal skeletal muscle mitochondria. Our results identify Acad10 as a genetic determinant of T2DM in mice and provide a model to further investigate genetic determinants for insulin resistance in humans.
Collapse
MESH Headings
- Abdominal Fat/enzymology
- Abdominal Fat/physiopathology
- Acyl-CoA Dehydrogenase/genetics
- Adiposity
- Animals
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Insulin/blood
- Insulin Resistance/genetics
- Lipid Metabolism, Inborn Errors/enzymology
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/pathology
- Lipid Metabolism, Inborn Errors/physiopathology
- Liver/enzymology
- Liver/pathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Non-alcoholic Fatty Liver Disease/enzymology
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity, Abdominal/enzymology
- Obesity, Abdominal/genetics
- Obesity, Abdominal/physiopathology
- Phenotype
- Rhabdomyolysis/enzymology
- Rhabdomyolysis/genetics
- Rhabdomyolysis/pathology
Collapse
Affiliation(s)
- Kaitlyn Bloom
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Dina El Demellawy
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yudong Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Lina Ghaloul-Gonzalez
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chikara Otsubo
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Kimi Tobita
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Radhika Muzumdar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Zhenwei Gong
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Emir Tas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Shrabani Basu
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jie Chen
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Bennett
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Charles Hoppel
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Chen M, Maeng K, Nawab A, Francois RA, Bray JK, Reinhard MK, Boye SL, Hauswirth WW, Kaye FJ, Aslanidi G, Srivastava A, Zajac-Kaye M. Efficient Gene Delivery and Expression in Pancreas and Pancreatic Tumors by Capsid-Optimized AAV8 Vectors. Hum Gene Ther Methods 2017; 28:49-59. [PMID: 28125909 DOI: 10.1089/hgtb.2016.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite efforts to use adeno-associated viral (AAV) vector-mediated gene therapy for treatment of pancreatic ductal adenocarcinoma (PDAC), transduction efficiency remains a limiting factor and thus improvement of AAV delivery would significantly facilitate the treatment of this malignancy. Site-directed mutagenesis of specific tyrosine (Y) residues to phenylalanine (F) on the surface of various AAV serotype capsids has been reported as a method for enhancing gene transfer efficiencies. In the present studies, we determine whether Y-to-F mutations could also enhance AAV8 gene transfer in the pancreas to facilitate gene therapy for PDAC. Three different Y-to-F mutant vectors (a single-mutant, Y733F; a double-mutant, Y447F+Y733F; and a triple-mutant, Y275F+Y447F+Y733F) and wild-type AAV8 (WT-AAV8) were administered by intraperitoneal or tail-vein routes to KrasG12D+/-, KrasG12D+/-/Pten+/-, and wild-type mice. The transduction efficiency of these vectors expressing the mCherry reporter gene was evaluated 2 weeks post administration in pancreas or PDAC and correlated with viral genome copy numbers. Our comparative and quantitative analyses of the transduction profiles demonstrated that the Y-to-F double-mutant exhibited the highest mCherry expression in pancreatic tissues (range 45-70%) compared with WT-AAV8 (7%; p < 0.01). We also detected a 7-fold higher level of vector genome copy numbers in normal pancreas following transduction with the double-mutant AAV8 compared with WT-AAV8 (10,285 vs. 1,500 vector copies/μg DNA respectively, p < 0.05). In addition, we observed that intraperitoneal injection of the double-mutant AAV8 led to a 15-fold enhanced transduction efficiency as compared to WT-AAV8 in mouse PDAC, with a corresponding ∼14-fold increase in vector genome copy numbers (26,575 vs. 2,165 copies/μg DNA respectively, p < 0.05). These findings indicate that the Y447+Y733F-AAV8 leads to a significant enhancement of transduction efficiency in both normal and malignant pancreatic tissues, suggesting the potential use of this vector in targeting pancreatic diseases in general, and PDAC in particular.
Collapse
Affiliation(s)
- Min Chen
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Kyungah Maeng
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Akbar Nawab
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Rony A Francois
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Julie K Bray
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Mary K Reinhard
- 2 Department of Veterinary Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Sanford L Boye
- 3 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - William W Hauswirth
- 3 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - Frederic J Kaye
- 4 Department of Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Georgiy Aslanidi
- 5 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Arun Srivastava
- 5 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Maria Zajac-Kaye
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
8
|
Zhao C, Qiao C, Tang RH, Jiang J, Li J, Martin CB, Bulaklak K, Li J, Wang DW, Xiao X. Overcoming Insulin Insufficiency by Forced Follistatin Expression in β-cells of db/db Mice. Mol Ther 2015; 23:866-874. [PMID: 25676679 PMCID: PMC4427879 DOI: 10.1038/mt.2015.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes poses a substantial burden to society as it can lead to serious complications and premature death. The number of cases continues to increase worldwide. Two major causes of diabetes are insulin resistance and insulin insufficiency. Currently, there are few antidiabetic drugs available that can preserve or protect β-cell function to overcome insulin insufficiency in diabetes. We describe a therapeutic strategy to preserve β-cell function by overexpression of follistatin (FST) using an AAV vector (AAV8-Ins-FST) in diabetic mouse model. Overexpression of FST in the pancreas of db/db mouse increased β-cell islet mass, decreased fasting glucose level, alleviated diabetic symptoms, and essentially doubled lifespan of the treated mice. The observed islet enlargement was attributed to β-cell proliferation as a result of bioneutralization of myostatin and activin by FST. Overall, our study indicates overexpression of FST in the diabetic pancreas preserves β-cell function by promoting β-cell proliferation, opening up a new therapeutic avenue for the treatment of diabetes.
Collapse
Affiliation(s)
- Chunxia Zhao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA; Cardiovascular Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Qiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ru-Hang Tang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jiangang Jiang
- Cardiovascular Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Carrie Bette Martin
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen Bulaklak
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dao Wen Wang
- Cardiovascular Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Li M, Zhu Y, Zhang H, Li L, He P, Xia H, Zhang Y, Mao C. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Sci Rep 2014; 4:7380. [PMID: 25490312 PMCID: PMC4260466 DOI: 10.1038/srep07380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma.
Collapse
Affiliation(s)
- Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| | - Hongbin Zhang
- Department of Medical Research, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Lihua Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Peng He
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Hong Xia
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| |
Collapse
|
10
|
Tamaki S, Nye C, Slorach E, Scharp D, Blau HM, Whiteley PE, Pomerantz JH. Simultaneous silencing of multiple RB and p53 pathway members induces cell cycle reentry in intact human pancreatic islets. BMC Biotechnol 2014; 14:86. [PMID: 25305068 PMCID: PMC4287515 DOI: 10.1186/1472-6750-14-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022] Open
Abstract
Background Human pancreatic islet structure poses challenges to investigations that require specific modulation of gene expression. Yet dissociation of islets into individual cells destroys cellular interactions important to islet physiology. Approaches that improve transient targeting of gene expression in intact human islets are needed in order to effectively perturb intracellular pathways to achieve biological effects in the most relevant tissue contexts. Results Electroporation of intact human cadaveric islets resulted in robust and specific suppression of gene expression. Two genes were simultaneously suppressed by 80% from baseline levels. When multiple (up to 5) genes were simultaneously targeted, effective suppression of 3 of 5 genes occurred. Enzymatic pretreatment of islets was not required. Simultaneous targeting of RB and p53 pathway members resulted in cell cycle reentry as measured by EDU incorporation in 10% of islet nuclei. Conclusions At least three genes can be effectively suppressed simultaneously in cultured intact human pancreatic islets without disruption of islet architecture or overt alterations in function. This enabled the effective modulation of two central growth control pathways resulting in the phenotypic outcome of cell cycle reentry in postmitotic islet cells. Transient exposure to multiple siRNAs is an effective approach to modify islets for study with the potential to aid clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason H Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Craniofacial and Mesenchymal Biology Program, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Expression of IL-2 in β cells by AAV8 gene transfer in pre-diabetic NOD mice prevents diabetes through activation of FoxP3-positive regulatory T cells. Gene Ther 2014; 21:715-22. [PMID: 24849041 DOI: 10.1038/gt.2014.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
Abstract
We previously demonstrated that intraperitoneal delivery of adeno-associated virus serotype 8 (AAV8) stably transduces the pancreas, including the β cells in the pancreatic islets. We further demonstrated the ability to deliver and express target genes specifically in β cells for at least 6 months using a murine insulin promoter in a double-stranded, self-complementary AAV vector. Recombinant interleukin (IL)-2 has been shown to induce CD4(+)CD25(+) regulatory T cells (Tregs) in several mouse models of autoimmune disease. Here we evaluated the effects of double-stranded adeno-associated virus serotype 8-mouse insulin promoter (dsAAV8-mIP)-mediated delivery of 2 to pancreatic β cells in non-obese diabetic (NOD) mice. AAV8-mIP-mediated gene expression of IL-2 to pancreatic β cells of 10-week-old NOD mice prevented the onset of hyperglycemia in NOD mice more in a dose-dependent manner with the lower dose of virus being more effective than a higher dose of AAV-mIP-IL-2 and IL-4. Moreover, the local β-cell expression of IL-2 increased the number of CD4(+)CD25(+)FoxP3(+) cells in the pancreatic lymph node (PLN) and SPL in both NOD and C57BL/6 mice. Taken together, these results demonstrate that local, low expression of mIL-2 in islets prevents progress of diabetes through the regulation of Tregs.
Collapse
|
12
|
Ma HI, Hueng DY, Shui HA, Han JM, Wang CH, Lai YH, Cheng SY, Xiao X, Chen MT, Yang YP. Intratumoral decorin gene delivery by AAV vector inhibits brain glioblastomas and prolongs survival of animals by inducing cell differentiation. Int J Mol Sci 2014; 15:4393-414. [PMID: 24625664 PMCID: PMC3975403 DOI: 10.3390/ijms15034393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/08/2014] [Accepted: 02/19/2014] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant cancer in the central nervous system with poor clinical prognosis. In this study, we investigated the therapeutic effect of an anti-cancer protein, decorin, by delivering it into a xenograft U87MG glioma tumor in the brain of nude mice through an adeno-associated viral (AAV2) gene delivery system. Decorin expression from the AAV vector in vitro inhibited cultured U87MG cell growth by induction of cell differentiation. Intracranial injection of AAV-decorin vector to the glioma-bearing nude mice in vivo significantly suppressed brain tumor growth and prolonged survival when compared to control non-treated mice bearing the same U87MG tumors. Proteomics analysis on protein expression profiles in the U87MG glioma cells after AAV-mediated decorin gene transfer revealed up- and down-regulation of important proteins. Differentially expressed proteins between control and AAV-decorin-transduced cells were identified through MALDI-TOF MS and database mining. We found that a number of important proteins that are involved in apoptosis, transcription, chemotherapy resistance, mitosis, and fatty acid metabolism have been altered as a result of decorin overexpression. These findings offer valuable insight into the mechanisms of the anti-glioblastoma effects of decorin. In addition, AAV-mediated decorin gene delivery warrants further investigation as a potential therapeutic approach for brain tumors.
Collapse
Affiliation(s)
- Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Jun-Ming Han
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chi-Hsien Wang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ying-Hsiu Lai
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute. The Robert H. Lurie Comprehensive Cancer Center, Center of Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Ping Yang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
13
|
Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB, Davidson BL, Divekar A, Uc A. A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 2013; 21:123-30. [PMID: 24257348 PMCID: PMC3946305 DOI: 10.1038/gt.2013.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/17/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans.
Collapse
Affiliation(s)
- M A Griffin
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M S Restrepo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M Abu-El-Haija
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Wallen
- Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Buchanan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Rokhlina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Y H Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - P B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B L Davidson
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Neurology and Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Divekar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Uc
- 1] Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Johnson MC, Garland AL, Nicolson SC, Li C, Samulski RJ, Wang B, Tisch R. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice. Diabetes 2013; 62:3775-84. [PMID: 23884888 PMCID: PMC3806588 DOI: 10.2337/db13-0669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.
Collapse
Affiliation(s)
- Mark C. Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alaina L. Garland
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah C. Nicolson
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Corresponding author: Roland Tisch,
| |
Collapse
|
15
|
Lee HH, O'Malley MJ, Friel NA, Payne KA, Qiao C, Xiao X, Chu CR. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints. Hum Gene Ther 2013; 24:457-66. [PMID: 23496155 PMCID: PMC3631018 DOI: 10.1089/hum.2012.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 03/07/2013] [Indexed: 01/11/2023] Open
Abstract
A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)-luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications.
Collapse
Affiliation(s)
- Hannah H. Lee
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15313
| | - Michael J. O'Malley
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
| | - Nicole A. Friel
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
| | - Karin A. Payne
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Orthopedic Surgery, University of Colorado Denver, Aurora, CO 80045
| | - Chunping Qiao
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Constance R. Chu
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305
| |
Collapse
|
16
|
Raj D, Davidoff AM, Nathwani AC. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges. Expert Rev Hematol 2011; 4:539-49. [PMID: 21939421 PMCID: PMC3200187 DOI: 10.1586/ehm.11.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Therapies currently used for hemophilia involve injection of protein concentrates that are expensive, invasive and associated with side effects such as development of neutralizing antibodies (inhibitors) that diminish therapeutic efficacy. Gene transfer is an attractive alternative to circumvent these issues. However, until now, clinical trials using gene therapy to treat hemophilia have failed to demonstrate sustained efficacy, although a vector based on a self-complementary adeno-associated virus has recently shown promise. This article will briefly outline a novel gene-transfer approach using self-complementary adeno-associated viral vectors using hemophilia B as a target disorder. This approach is currently being evaluated in the clinic. We will provide an overview of the development of self-complementary adeno-associated virus vectors as well as preclinical and clinical data with this vector system.
Collapse
Affiliation(s)
- Deepak Raj
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA
- Departments of Surgery and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amit C Nathwani
- Department of Haematology, University College London Cancer Institute, London, UK
- NHS Blood and Transplant, London, UK
| |
Collapse
|
17
|
Lee HH, Haleem AM, Yao V, Li J, Xiao X, Chu CR. Release of bioactive adeno-associated virus from fibrin scaffolds: effects of fibrin glue concentrations. Tissue Eng Part A 2011; 17:1969-78. [PMID: 21449684 DOI: 10.1089/ten.tea.2010.0586] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. However, the effect of different fibrinogen concentrations on FG scaffold delivery of bioactive adeno-associated viruses (AAVs) has not been established. This study was performed to test the hypothesis that FG concentration alters AAV release profiles, which affect AAV bioavailability. Gene transfer efficiency of AAV-GFP released from FG was measured using HEK-293 cells. Bioactivity of AAV transforming growth factor-beta1 (TGF-β(1)) released from FG was assessed using the mink lung cell assay, and by measuring induction of cartilage-specific gene expression in human mesenchymal stem cells (hMSCs). Nondiluted FG had longer clotting times, smaller pore sizes, thicker fibers, and slower dissolution rate, resulting in reduced release of AAV. AAV release and gene transfer efficiency was higher with 25% and 50% FG than with the 75% and 100% FG. AAV-TGF-β(1) released from dilute-FG transduced hMSCs, resulting in higher concentrations of bioactive TGF-β(1) and greater upregulation of cartilage-specific gene expression compared with hMSC from undiluted FG. This study, showing improved release, transduction efficiency, and chondrogenic effect on hMSC of bioactive AAV-TGF-β(1) released from diluted FG, provides information important to optimization of this clinically available scaffold for therapeutic gene delivery, both in cartilage regeneration and for other tissue engineering applications.
Collapse
Affiliation(s)
- Hannah H Lee
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
18
|
Alaee F, Sugiyama O, Virk MS, Tang Y, Wang B, Lieberman JR. In vitro evaluation of a double-stranded self-complementary adeno-associated virus type2 vector in bone marrow stromal cells for bone healing. GENETIC VACCINES AND THERAPY 2011; 9:4. [PMID: 21352585 PMCID: PMC3056728 DOI: 10.1186/1479-0556-9-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/27/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Both adenoviral and lentiviral vectors have been successfully used to induce bone repair by over-expression of human bone morphogenetic protein 2 (BMP-2) in primary rat bone marrow stromal cells in pre-clinical models of ex vivo regional gene therapy. Despite being a very efficient means of gene delivery, there are potential safety concerns that may limit the adaptation of these viral vectors for clinical use in humans. Recombinant adeno-associated viral (rAAV) vector is a promising viral vector without known pathogenicity in humans and has the potential to be an effective gene delivery vehicle to enhance bone repair. In this study, we investigated gene transfer in rat and human bone marrow stromal cells in order to evaluate the effectiveness of the self-complementary AAV vector (scAAV) system, which has higher efficiency than the single-stranded AAV vector (ssAAV) due to its unique viral genome that bypasses the rate-limiting conversion step necessary in ssAAV. METHODS Self-complementaryAAV2 encoding GFP and BMP-2 (scAAV2-GFP and scAAV2-BMP-2) were used to transduce human and rat bone marrow stromal cells in vitro, and subsequently the levels of GFP and BMP-2 expression were assessed 48 hours after treatment. In parallel experiments, adenoviral and lentiviral vector mediated over-expression of GFP and BMP-2 were used for comparison. RESULTS Our results demonstrate that the scAAV2 is not capable of inducing significant transgene expression in human and rat bone marrow stromal cells, which may be associated with its unique tropism. CONCLUSIONS In developing ex vivo gene therapy regimens, the ability of a vector to induce the appropriate level of transgene expression needs to be evaluated for each cell type and vector used.
Collapse
Affiliation(s)
- Farhang Alaee
- New England Musculoskeletal Institute, Department of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Johnson MC, Wang B, Tisch R. Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. HUMAN VACCINES 2011; 7:27-36. [PMID: 21157183 DOI: 10.4161/hv.7.1.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease resulting in the destruction of the insulin-secreting β cells. Currently, there is no established clinical approach to effectively suppress long-term the diabetogenic response. Genetic-based vaccination offers a general strategy to reestablish β-cell specific tolerance within the T-cell compartment. The transfer of genes encoding β-cell autoantigens, anti-inflammatory cytokines and/or immunomodulatory proteins has proven to be effective at preventing and suppressing the diabetogenic response in animal models of T1D. The current review will discuss genetic approaches to prevent and treat T1D with an emphasis on plasmid DNA- and adeno-associated virus-based vaccines.
Collapse
Affiliation(s)
- Mark C Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
20
|
Thomas PB, Samant DM, Selvam S, Wei RH, Wang Y, Stevenson D, Schechter JE, Apparailly F, Mircheff AK, Trousdale MD. Adeno-associated virus-mediated IL-10 gene transfer suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis. Invest Ophthalmol Vis Sci 2010; 51:5137-44. [PMID: 20505195 DOI: 10.1167/iovs.10-5423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the effect of adeno-associated virus (AAV) vector-mediated viral (v)IL-10 gene expression on lacrimal gland (LG) immunopathology and ocular surface disease in a rabbit model of induced autoimmune dacryoadenitis (ID). METHODS Autologous peripheral blood lymphocytes, activated in a mixed-cell reaction when cocultured with purified rabbit lacrimal epithelial cells, induce a Sjögren's-like autoimmune dacryoadenitis when injected directly back into the donor animal's inferior LG. Four weeks after disease induction, AAV vector expressing the vIL-10 gene under control of a tetracycline-inducible promoter was injected into the inferior LG of the treatment group (ID/Rx), and doxycycline was fed orally to induce transgene expression. The ID group serving as control also received doxycycline. All LGs were removed 16 weeks after disease induction. RESULTS Clinical symptoms showed overall improvement in the ID/Rx group compared with the ID group. Histopathologic examination of the ID group's LG revealed scattered large lymphocytic foci and areas of altered or distorted acini, whereas the ID/Rx group had scattered small lymphocytic foci. The number of CD18(+) cells was almost fivefold lower in the ID/Rx group than in the ID group. Although the total number of RTLA(+) cells did not differ between the groups, the CD4/CD8 ratio was 16-fold smaller in the ID/Rx group. CONCLUSIONS Animals with experimentally induced autoimmune dacryoadenitis appeared to benefit from AAV-mediated vIL-10 gene transfer therapy. Quantitative immunohistochemical analysis suggested that the therapy might not have been simply immunosuppressive but rather supported the induction of CD8(+) regulatory cells.
Collapse
Affiliation(s)
- Padmaja B Thomas
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lefebvre B, Vandewalle B, Longue J, Moerman E, Lukowiak B, Gmyr V, Maedler K, Kerr-conte J, Pattou F. Efficient gene delivery and silencing of mouse and human pancreatic islets. BMC Biotechnol 2010; 10:28. [PMID: 20353585 PMCID: PMC2853492 DOI: 10.1186/1472-6750-10-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/30/2010] [Indexed: 11/23/2022] Open
Abstract
Background In view of the importance of beta cells in glucose homeostasis and the profound repercussions of beta cell pathology on human health, the acquisition of tools to study pancreatic islet function is essential for the design of alternative novel therapies for diabetes. One promising approach toward this goal involves the modification of gene expression profile of beta cells. Results This study describes a new method of gene and siRNA delivery into human pancreatic islets by microporation technology. We demonstrated that mild islet distention with accutase greatly enhanced the transfection efficiency without compromising in vitro function (secretion, apoptosis and viability). As an example, the recently identified gene involved in type 2 diabetes, ZnT8, can be over-expressed or silenced by RNA interference using this technology. Microporation can also be used on rodent islets. Conclusions Taken together, our results demonstrate that microporation technology can be used to modify gene expression in whole rodent and human islets without altering their in vitro function and will be key to the elucidation of the factors responsible for proper islet function.
Collapse
|
22
|
Craig AT, Gavrilova O, Dwyer NK, Jou W, Pack S, Liu E, Pechhold K, Schmidt M, McAlister VJ, Chiorini JA, Blanchette-Mackie EJ, Harlan DM, Owens RA. Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors. Virol J 2009; 6:61. [PMID: 19450275 PMCID: PMC2687429 DOI: 10.1186/1743-422x-6-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/18/2009] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation.
Collapse
Affiliation(s)
- Anthony T Craig
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Multifunctional magnetic nanocarriers for image-tagged SiRNA delivery to intact pancreatic islets. Transplantation 2008; 86:1170-7. [PMID: 19005396 DOI: 10.1097/tp.0b013e31818a81b2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND With the ultimate hope of finding a cure for diabetes, researches are looking into altering the genetic profile of the beta cell as a way to manage metabolic dysregulation. One of the most powerful new approaches for the directed regulation of gene expression uses the phenomenon of RNA interference. METHODS Here, we establish the feasibility of a novel technology centered around multifunctional magnetic nanocarriers, which concurrently deliver siRNA to intact pancreatic islets and can be detected by magnetic resonance and optical imaging. RESULTS In the proof-of-principle studies described here, we demonstrate that, after in vitro incubation, magnetic nanoparticles carrying siRNA designed to target the model gene for enhanced green fluorescent protein are efficiently taken up by murine pancreatic islets, derived from egfp transgenic animals. This uptake can be visualized by magnetic resonance imaging and near-infrared fluorescence optical imaging and results in suppression of the target gene. CONCLUSIONS These results illustrate the value of our approach in overcoming the challenges associated with genetic modification of intact pancreatic islets in a clinically acceptable manner. Furthermore, an added advantage of our technology derives from the combined capability of our magnetic nanoparticles for siRNA delivery and magnetic labeling of pancreatic islets.
Collapse
|
24
|
AAV8-mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Mol Ther 2008; 16:1409-16. [PMID: 18560422 DOI: 10.1038/mt.2008.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have demonstrated the ability to deliver and express genes specifically in beta-cells for at least 6 months, using a murine insulin promoter (mIP) in a double-stranded, self-complementary AAV vector (dsAAV8-mIP). In this study, we evaluated the effects of dsAAV8-mIP-mediated delivery of interleukin 4 (mIL-4) to endogenous beta-cells in nonobese diabetic (NOD) mice. In 4-week-old NOD mice, the extent of gene transfer and expression in endogenous beta-cells after ip delivery of dsAAV8-mIP-enhanced green fluorescent protein (eGFP) was comparable to normal BALB/C mice. Further, after IP delivery of dsAAV8-mIP-IL4, expression of mIL-4 was detected in islets isolated from the treated mice and cultured. AAV8-mIP-mediated gene expression of mIL-4 in endogenous beta- cells of 4- and 8-week-old NOD mice prevented the onset of hyperglycemia in NOD mice and reduced the severity of insulitis. Moreover, expression of mIL-4 also maintained the level of CD4(+)CD25(+)FoxP3(+) cells, and adoptive transfer of splenocytes from nondiabetic dsAAV8-mIP-IL-4 mice to NODscid mice was able to block the diabetes induced by splenocytes co-adoptively transferred from nondiabetic dsAAV-mIP-eGFP mice. Taken together, these results demonstrate that local expression of mIL-4 in islets prevents islet destruction and blocks autoimmunity, partly through regulation of T-cell function.
Collapse
|
25
|
Lai Y, Drobinskaya I, Kolossov E, Chen C, Linn T. Genetic modification of cells for transplantation. Adv Drug Deliv Rev 2008; 60:146-59. [PMID: 18037530 DOI: 10.1016/j.addr.2007.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/02/2007] [Indexed: 01/16/2023]
Abstract
Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.
Collapse
|
26
|
Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 2008; 437:51-91. [PMID: 18369962 PMCID: PMC7120696 DOI: 10.1007/978-1-59745-210-6_2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell. Prior to developing a gene therapy strategy that utilizes AAV, the serotype should be carefully considered since each capsid exhibits a unique tissue tropism and transduction efficiency. Several approaches have been undertaken in an effort to target AAV vectors to specific cell types, including utilizing natural serotypes that target a desired cellular receptor, producing pseudotyped vectors, and engineering chimeric and mosaic AAV capsids. These capsid modifications are being incorporated into vector production and purification methods that provide for the ability to scale-up the manufacturing process to support human clinical trials. Protocols for small-scale and large-scale production of AAV, as well as assays to characterize the final vector product, are presented here. The structures of AAV2, AAV4, and AAV5 have been solved by X-ray crystallography or cryo-electron microscopy (cryo-EM), and provide a basis for rational vector design in developing customized capsids for specific targeting of AAV vectors. The capsid of AAV has been shown to be remarkably stable, which is a desirable characteristic for a gene therapy vector; however, recently it has been shown that the AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern when exposed to various proteases, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition to serotype identification, protease susceptibility can also be utilized to study dynamic structural changes that must occur for the AAV capsid to perform its various functions during the virus life cycle. The use of proteases for structural studies in solution complements the crystal structural studies of the virus. A generic protocol based on proteolysis for AAV serotype identification is provided here.
Collapse
Affiliation(s)
- Kim M Van Vliet
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
27
|
Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, Samulski RJ, Monahan PE. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 2007; 16:280-9. [PMID: 18059373 DOI: 10.1038/sj.mt.6300355] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Self-complementary adeno-associated virus (scAAV) vectors can significantly minimize the vector load required to achieve sustained transgene expression. In this study, transcriptional regulatory elements were systematically screened to produce constitutive and liver-specific scAAV factor IX (FIX) expression cassettes. In addition, optimization of GC content, cis- regulatory elements, and codon usage in the human FIX (hFIX) transgene increased expression 4-20-fold. A vector was developed that was capable of expressing high FIX levels in comparison with the single-stranded (ss) AAV vector used in a recent clinical trial. The ssAAV and scAAV vectors display different transgene expression and genome stability patterns in the liver, as determined by immunohistochemical staining, in situ messenger RNA (mRNA) hybridization and vector genome quantitation. The ssAAV2 vector promoted strong FIX expression in only a subset of hepatocytes. The scAAV2-hFIX vector showed widespread ( approximately 80% of hepatocytes), moderate FIX expression levels similar to normal livers with correction of coagulation function in FIX-deficient mice. The ability of low dose scAAV-FIX vectors to achieve near-physiological expression may circumvent inflammatory responses in the liver. In addition to providing an improved scAAV vector for potential application in future hemophilia B clinical trials and liver-directed gene delivery, these studies underscore the need for rigorous analysis and optimization of vector genome cassettes.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7352, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng H, Wolfe SH, Valencia V, Qian K, Shen L, Phillips MI, Chang LJ, Zhang YC. Efficient and persistent transduction of exocrine and endocrine pancreas by adeno-associated virus type 8. J Biomed Sci 2007; 14:585-94. [PMID: 17387636 DOI: 10.1007/s11373-007-9159-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022] Open
Abstract
Efficient delivery of therapeutic proteins into the pancreas represents a major obstacle to gene therapy of pancreatic disorders. The current study compared the efficiency of recombinant lentivirus and adeno-associated virus (AAV) serotypes 1, 2, 5, 8 vectors delivered by intrapancreatic injection for gene transfer in vivo. Our results indicate that lentivirus and AAV 1, 2, 8 are capable of transducing pancreas with the order of efficiency AAV8 >>AAV1 > AAV2 >/= lentivirus, whereas AAV5 was ineffective. AAV8 resulted in an efficient, persistent (150 days) and dose-dependent transduction in exocrine acinar cells and endocrine islet cells. Pancreatic ducts and blood vessels were also transduced. Extrapancreatic transduction was restricted to liver. Leukocyte infiltration was not observed in pancreas and blood glucose levels were not altered. Thus, AAV8 represents a safe and effective vehicle for therapeutic gene transfer to pancreas in vivo.
Collapse
Affiliation(s)
- Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 2007; 14:804-13. [PMID: 17344902 DOI: 10.1038/sj.gt.3302938] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone marrow cells are routinely accessed clinically for cartilage repair. This study was performed to determine whether adeno-associated virus (AAV) effectively transduces human bone marrow-derived mesenchymal stem cells (hMSC) in vitro, whether AAV infection interferes with hMSC chondrogenesis and whether AAV-transforming growth factor-beta-1 (TGF-beta1)-transduced hMSC can improve cartilage repair in vivo. Adult hMSC were transduced with AAV-green fluorescent protein (GFP) or AAV-transforming growth factor beta1 (TGF beta1) and studied in pellet cultures. For in vivo studies, AAV-GFP and AAV-TGF-beta1-transduced hMSCs were implanted into osteochondral defects of 21 athymic rats. GFP was detected using fluorescent microscopy. Cartilage repair was assessed using gross and histological analysis at 4, 8 and 12 weeks. In pellet culture, GFP expression was visualized in situ through 21 days in vitro. In vivo GFP transgene expression was observed by in situ fluorescent surface imaging in 100% of GFP implanted defects at 2 , 67% at 8 and 17% at 12 weeks. Improved cartilage repair was observed in osteochondral defects implanted with AAV-TGF-beta1-transduced hMSC at 12 weeks (P=0.0047). These results show that AAV is a suitable vector for gene delivery to improve the cartilage repair potential of human mesenchymal stem cells.
Collapse
Affiliation(s)
- M R Pagnotto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | | | | | | | | | | |
Collapse
|
30
|
McCabe C, Samali A, O'Brien T. Cytoprotection of beta cells: rational gene transfer strategies. Diabetes Metab Res Rev 2006; 22:241-52. [PMID: 16397906 DOI: 10.1002/dmrr.615] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene transfer to pancreatic islets may prove useful in preventing islet cell destruction and prolonging islet graft survival after transplantation in patients with type 1 diabetes mellitus (T1DM). Potentially, a host of therapeutically relevant transgenes may be incorporated into an appropriate gene delivery vehicle and used for islet modification. An increasing understanding of the molecular pathogenesis of immune-mediated beta cell death has served to highlight molecules which have become suitable candidates for promoting islet cell survival in the face of oxidative stress. This review aims to give an overview of some conventional gene transfer strategies aimed at promoting islet cell survival in the face of cytokine onslaught. These strategies target three aspects of islet cell physiology: redox status and antioxidant defence, anti-apoptotic gene expression and mediators of cytokine signal transduction pathways.
Collapse
Affiliation(s)
- Cillian McCabe
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
31
|
Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C, Papworth G, Watkins S, Trucco M, Robbins PD, Li J, Xiao X. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006; 55:875-84. [PMID: 16567506 DOI: 10.2337/diabetes.55.04.06.db05-0927] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes is a disease of epidemic proportions and is on the rise worldwide. Gene therapy has been actively pursued but limited by technical hurdles and profound inefficiency of direct gene transfer to the pancreas in vivo. Here, we show that, for the first time, appropriate serotypes of adeno-associated virus (AAV), coupled with a double-stranded vector DNA cassette, enable extensive and long-term in vivo gene transfer in the adult mouse pancreas by three different delivery methods. Intraperitoneal and intravenous delivery of AAV8 effectively transduced exocrine acinar cells as well as endocrine beta-cells, while local pancreatic intraductal delivery of AAV6 showed the best efficiency in the beta-cells among all AAV serotypes tested in this study. Nearly the entire islet population showed gene transfer but with distinct gene transfer efficiency and patterns when different delivery methods and vectors were used. Importantly, localized gene delivery coupled with an insulin promoter allowed extensive yet specific gene expression in the beta-cells. These effective new methods should provide useful tools to study diabetes pathogenesis and gene therapy.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rood PPM, Bottino R, Balamurugan AN, Fan Y, Cooper DKC, Trucco M. Facilitating physiologic self-regeneration: a step beyond islet cell replacement. Pharm Res 2006; 23:227-42. [PMID: 16323065 DOI: 10.1007/s11095-005-9095-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/13/2005] [Indexed: 01/06/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, the clinical onset of which most frequently presents in children and adolescents who are genetically predisposed. T1D is characterized by specific insulin-producing beta cell destruction. The well-differentiated and specialized islet beta cells seem to physiologically retain the ability to compensate for the cells lost by reproducing themselves, whereas undifferentiated cell sources may help in generating new ones, even while the autoimmune process takes place. Diabetes clinical onset, i.e., establishment of a detectable, chronic hyperglycemia, occurs at a critical stage when autoimmunity, having acted for a while, supersedes the regenerative effort and reduces the number of beta cells below the physiologic threshold at which the produced insulin becomes insufficient for the body's needs. Clinical solutions aimed at avoiding cumbersome daily insulin administrations by the reestablishment of physiologic insulin production, like whole pancreas or pancreatic islet allotransplantation, are limited by the scarcity of pancreas donors and by the toxic effects of the immunosuppressive drugs administered to prevent rejection. However, new accumulating evidence suggests that, once autoimmunity is abrogated, the endocrine pancreas properties may be sufficient to allow the physiological regenerative process to restore endogenous insulin production, even after the disease has become clinically manifest. Knowledge of these properties of the endocrine pancreas suggests the testing of reliable and clinically translatable protocols for obliterating autoimmunity, thus allowing the regeneration of the patient's own endocrine cells. The safe induction of an autoimmunity-free status might become a new promising therapy for T1D.
Collapse
Affiliation(s)
- Pleunie P M Rood
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|