1
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS BIO & MED CHEM AU 2023; 3:114-136. [PMID: 37101812 PMCID: PMC10125326 DOI: 10.1021/acsbiomedchemau.2c00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 04/28/2023]
Abstract
RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1-2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.
Collapse
Affiliation(s)
- Alex Golubovic
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shannon Tsai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Bowen Li
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Wang Y, Jin B, Li B, Luo Y, Ma M, Chen Y, Liu H, Xie H, Yang T, Zhao X, Ding P. Cell-free protein synthesis of influenza virus hemagglutinin HA2-integrated virosomes for siRNA delivery. Int J Pharm 2022; 623:121890. [PMID: 35690307 DOI: 10.1016/j.ijpharm.2022.121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
It is well known that the difficulty of siRNA therapeutic application is the lack of safe and effective delivery vector. Virosome is a nano vesicle composed of lipid membrane and membrane protein. It retains fusion protein without virus genetic material, and therefore has the reduced immunogenicity compared with viral vector. Virosomes have the potential to deliver protein and nucleic acid drugs, but the traditional preparation method of virosomes is quite limited. In this study, we firstly proposed to synthesize influenza virus hemagglutinin HA2 virosomes by cell-free protein synthesis. In this study, liposomes provided the hydrophobic lipid bilayer environment for the formation of HA2 protein multimer, which inhibited the aggregation of hydrophobic HA2 and improved HA2 protein expression. Chitosan as a rigid core adsorbed siRNA and improved the encapsulation efficiency of siRNA. In conclusion, the cell-free protein synthesis was used to prepare HA2 virosomes, which paves the way for constructing a novel nano vector with high delivery efficiency and biosafety for the delivery of siRNA.
Collapse
Affiliation(s)
- Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Jin
- The First Hospital, China Medical University, Department of Medical Oncology, Shenyang 110001, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
4
|
Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Okolo CA, Jadhav A, Phillips P, Dumoux M, McMurray AA, Joshi VD, Pizzey C, Harkiolaki M. Correlative imaging using super-resolution fluorescence microscopy and soft X-ray tomography at cryogenic temperatures provides a new way to assess virosome solutions for vaccine development. J Microsc 2021; 284:214-232. [PMID: 34333776 PMCID: PMC9292697 DOI: 10.1111/jmi.13054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Active virosomes (AVs) are derivatives of viruses, broadly similar to ‘parent’ pathogens, with an outer envelope that contains a bespoke genome coding for four to five viral proteins capable of eliciting an antigenic response. AVs are essentially novel vaccine formulations that present on their surface selected viral proteins as antigens. Once administered, they elicit an initial ‘anti‐viral’ immune response. AVs are also internalised by host cells where their cargo viral genes are used to express viral antigen(s) intracellularly. These can then be transported to the host cell surface resulting in a second wave of antigen exposure and a more potent immuno‐stimulation. A new 3D correlative microscopy approach is used here to provide a robust analytical method for characterisation of Zika‐ and Chikungunya‐derivatised AV populations including vesicle size distribution and variations in antigen loading. Manufactured batches were compared to assess the extent and nature of batch‐to‐batch variations. We also show preliminary results that verify antigen expression on the surface of host cells. We present here a reliable and efficient high‐resolution 3D imaging regime that allows the evaluation of the microstructure and biochemistry of novel vaccine formulations such as AVs.
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Archana Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Patrick Phillips
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Maud Dumoux
- Institute of Structural and Molecular Biology, Rosalind Franklin Institute, Fermi Avenue, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QS, UK
| | | | - Vishwas D Joshi
- Activirosomes Limited, Centrum, Norwich Research Park, Norwich, UK.,Seagull BioSolutions Private Limited, Maharashtra, India
| | - Claire Pizzey
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| |
Collapse
|
6
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
8
|
Oshchepkova A, Neumestova A, Matveeva V, Artemyeva L, Morozova K, Kiseleva E, Zenkova M, Vlassov V. Cytochalasin-B-Inducible Nanovesicle Mimics of Natural Extracellular Vesicles That Are Capable of Nucleic Acid Transfer. MICROMACHINES 2019; 10:E750. [PMID: 31683842 PMCID: PMC6915531 DOI: 10.3390/mi10110750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles provide cell-to-cell communication and have great potential for use as therapeutic carriers. This study was aimed at the development of an extracellular vesicle-based system for nucleic acid delivery. Three types of nanovesicles were assayed as oligonucleotide carriers: mesenchymal stem cell-derived extracellular vesicles and mimics prepared either by cell treatment with cytochalasin B or by vesicle generation from plasma membrane. Nanovesicles were loaded with a DNA oligonucleotide by freezing/thawing, sonication, or permeabilization with saponin. Oligonucleotide delivery was assayed using HEK293 cells. Extracellular vesicles and mimics were characterized by a similar oligonucleotide loading level but different efficiency of oligonucleotide delivery. Cytochalasin-B-inducible nanovesicles exhibited the highest level of oligonucleotide accumulation in HEK293 cells and a loading capacity of 0.44 ± 0.05 pmol/µg. The loaded oligonucleotide was mostly protected from nuclease action.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Alexandra Neumestova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Vera Matveeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Lyudmila Artemyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Ksenia Morozova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia.
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| |
Collapse
|
9
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Kim JS, Kim MW, Kang SJ, Jeong HY, Park SI, Lee YK, Kim HS, Kim KS, Park YS. Tumor-specific delivery of therapeutic siRNAs by anti-EGFR immunonanoparticles. Int J Nanomedicine 2018; 13:4817-4830. [PMID: 30214190 PMCID: PMC6118344 DOI: 10.2147/ijn.s161932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Efficient target-specific siRNA delivery has always been a primary concern in the field of siRNA clinical application. Purpose In this study, four different types of anti-epidermal growth factor receptor (EGFR) antibody-conjugated immunonanoparticles were prepared and tested for cancer cell-targeted therapeutic siRNA delivery. Materials and methods The prepared nanoparticles encapsulating siRNAs were character-ized by gel retardation and particle analysis using a Zetasizer. In vitro transfection and reduction of target genes, vimentin and JAK3, were determined using quantitative reverse transcription polymerase chain reaction. In vivo tumor targeting and antitumoral efficacies of the nanoparticles were evaluated in mice carrying tumors. Results Among these immunonanoparticles, anti-EGFR immunolipoplexes and immunoviroplexes exhibited remarkable cell binding and siRNA delivery to EGFR-expressing tumor cells compared to immunoliposomes and immunovirosomes. Especially, the anti-EGFR immunoviroplexes exhibited the most efficient siRNA transfection to target tumor cells. Therefore, antitumoral vimentin and Janus kinase-3 siRNAs were loaded in the anti-EGFR immunolipoplexes and immunoviroplexes, which were tested in mice carrying SK-OV-3 tumor xenografts. In fact, the therapeutic siRNAs were efficiently delivered to the tumor tissues by both delivery vehicles, resulting in significant inhibition of tumor growth. Moreover, administration of doxorubicin in combination with anti-EGFR immunoviroplexes resulted in remarkable and synergistic tumor growth inhibition. Conclusion This study provides experimental proof that cancer cell-targeted immunoviroplexes are an efficient siRNA delivery system for cancer therapy. Moreover, this study also suggests that a combination of conventional chemotherapy and tumor-directed anticancer siRNA therapy would be a better modality for cancer treatment.
Collapse
Affiliation(s)
- Jung Seok Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Min Woo Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Seong Jae Kang
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Hwa Yeon Jeong
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Sang Il Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Yeon Kyung Lee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| | - Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Republic of Korea
| | - Keun Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Republic of Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea,
| |
Collapse
|
11
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
12
|
Salim L, McKim C, Desaulniers JP. Effective carrier-free gene-silencing activity of cholesterol-modified siRNAs. RSC Adv 2018; 8:22963-22966. [PMID: 35540146 PMCID: PMC9081628 DOI: 10.1039/c8ra03908a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties. This study evaluates the in vitro cellular uptake and knock-down efficacy of cholesterol-modified triazole-linked siRNAs targeting firefly luciferase in the absence of a transfection carrier. These siRNAs displayed low cytotoxicity and excellent dose-dependent knockdown in HeLa cells in the 500 to 3000 nM concentration range, with a 70–80% reduction in firefly luciferase activity. Our results indicate that this modification is compatible with the RNA interference pathway, and is less cytotoxic and more effective than a commercially-available triethylene glycol (TEG) cholesterol modification. The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties.![]()
Collapse
Affiliation(s)
- Lidya Salim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Chris McKim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | | |
Collapse
|
13
|
Nussbaumer MG, Duskey JT, Rother M, Renggli K, Chami M, Bruns N. Chaperonin-Dendrimer Conjugates for siRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600046. [PMID: 27840795 PMCID: PMC5096033 DOI: 10.1002/advs.201600046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Indexed: 05/19/2023]
Abstract
The group II chaperonin thermosome (THS) is a hollow protein nanoparticle that can encapsulate macromolecular guests. Two large pores grant access to the interior of the protein cage. Poly(amidoamine) (PAMAM) is conjugated into THS to act as an anchor for small interfering RNA (siRNA), allowing to load the THS with therapeutic payload. THS-PAMAM protects siRNA from degradation by RNase A and traffics KIF11 and GAPDH siRNA into U87 cancer cells. By modification of the protein cage with the cell-penetrating peptide TAT, RNA interference is also induced in PC-3 cells. THS-PAMAM protein-polymer conjugates are therefore promising siRNA transfection reagents and greatly expand the scope of protein cages in drug delivery applications.
Collapse
Affiliation(s)
- Martin G. Nussbaumer
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Jason T. Duskey
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Martin Rother
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Kasper Renggli
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
| | - Mohamed Chami
- C‐CINACenter for Cellular Imaging and NanoAnalytics BiozentrumUniversity of BaselMattenstrasse 264058BaselSwitzerland
| | - Nico Bruns
- Department of ChemistryUniversity of BaselKlingelbergstrasse 804056BaselSwitzerland
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| |
Collapse
|
14
|
A novel chimeric influenza virosome containing Vesicular stomatitis G protein as a more efficient gene delivery system. Biotechnol Lett 2016; 38:1321-9. [PMID: 27169781 DOI: 10.1007/s10529-016-2108-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/27/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To enhance the efficiency of influenza virosome-mediated gene delivery by engineering this virosome. RESULTS A novel chimeric influenza virosome was constructed containing the glycoprotein of Vesicular stomatitis virus (VSV-G), along with its own hemagglutinin protein. To optimize the transfection efficiency of both chimeric and influenza cationic virosomes, HEK cells were transfected with plasmid DNA and virosomes and the transfection efficiency was assessed by FACS analysis. The chimeric virosome was significantly more efficient in mediating transfection for all amounts of DNA and virosomes compared to the influenza virosome. CONCLUSIONS Chimeric influenza virosome, including VSV-G, is superior to the conventional influenza virosome for gene delivery.
Collapse
|
15
|
Abstract
There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms.
Collapse
|
16
|
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016; 45:6520-6545. [DOI: 10.1039/c6cs00409a] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multifunctional lipid-based nanovesicles (L-NVs) prepared by molecular self-assembly of membrane components together with (bio)-active molecules, by means of compressed CO2-media or other non-conventional methods lead to highly homogeneous, tailor-made nanovesicles that are used for advanced nanomedicine. Confocal microscopy image of siRNA transfection using L-NVs, reprinted with permission from de Jonge,et al.,Gene Therapy, 2006,13, 400–411.
Collapse
Affiliation(s)
- N. Grimaldi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Nanomol Technologies SA
| | - F. Andrade
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - N. Segovia
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - L. Ferrer-Tasies
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Nanomol Technologies SA
| | - S. Sala
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - J. Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| | - N. Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus Universitari de Bellaterra
- Cerdanyola del Vallès
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
| |
Collapse
|
17
|
Abdoli A, Soleimanjahi H, Tavassoti Kheiri M, Jamali A, Mazaheri V, Abdollahpour Alitappeh M. An H1-H3 chimeric influenza virosome confers complete protection against lethal challenge with PR8 (H1N1) and X47 (H3N2) viruses in mice. Pathog Dis 2014; 72:197-207. [PMID: 25066138 DOI: 10.1111/2049-632x.12206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Annual health threats and economic damages caused by influenza virus are still a main concern of the World Health Organization and other health departments all over the world. An influenza virosome is a highly efficient immunomodulating carrier mimicking the natural antigen presentation pathway and has shown an excellent tolerability profile due to its biocompatibility and purity. The major purpose of this study was to construct a new chimeric virosome influenza vaccine containing hemagglutinin (HA) and neuraminidase (NA) proteins derived from the A/PR/8/1934 (H1N1) (PR8) and A/X/47 (H3N2) (X47) viruses, and to evaluate its efficacy as a vaccine candidate in mice. A single intramuscular vaccination with the chimeric virosomes provided complete protection against lethal challenge with the PR8 and X47 viruses. The chimeric virosomes induced high IgG antibody responses as well as hemagglutination inhibition (HAI) titers. HAI titers following the chimeric virosome vaccination were at the same level as the whole inactivated influenza vaccine. Mice immunized with the chimeric virosomes displayed considerably less weight loss and exhibited significantly reduced viral load in their lungs compared with the controls. The chimeric virosomes can be used as an innovative vaccine formulation to confer protection against a broad range of influenza viruses.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|
19
|
Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines 2014; 12:779-91. [PMID: 23885823 DOI: 10.1586/14760584.2013.811195] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The basic concept of virosomes is the controlled in vitro assembly of virus-like particles from purified components. The first generation of influenza virosomes developed two decades ago is successfully applied in licensed vaccines, providing a solid clinical safety and efficacy track record for the technology. In the meantime, a second generation of influenza virosomes has evolved as a carrier and adjuvant system, which is currently applied in preclinical and clinical stage vaccine candidates targeting various prophylactic and therapeutic indications. The inclusion of additional components to optimize particle assembly, to stabilize the formulations, or to enhance the immunostimulatory properties have further improved and broadened the applicability of the platform.
Collapse
Affiliation(s)
- Christian Moser
- Pevion Biotech AG, Worblentalstrasse 32, Ittigen CH-3063, Switzerland.
| | | | | | | | | |
Collapse
|
20
|
Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines 2014; 6:711-21. [DOI: 10.1586/14760584.6.5.711] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Kim JS, Lee YK, Jeong HY, Kang SJ, Kim MW, Ryu SH, Kim HS, Kim KS, Kim DE, Park YS. Sendai F/HN viroplexes for efficient transfection of leukemic T cells. Yonsei Med J 2013; 54:1149-57. [PMID: 23918564 PMCID: PMC3743179 DOI: 10.3349/ymj.2013.54.5.1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Most chemical transfection reagents are ineffective for the transfection of cells in suspension, such as leukemic cell and stem cell lineages. We developed two different types of viroplexes, cationic Sendai F/HN viroplexes (CSVs) and protamine sulfate-condensed cationic Sendai F/HN viroplexes (PCSVs) for the efficient transfection of T-leukemic cells. MATERIALS AND METHODS The viroplex systems were prepared by reconstitution of fusogenic Sendai F/HN proteins in DMKE (O,O'-dimyristyl-N-lysyl glutamate) cationic liposomes. The viroplexes were further optimized for plasmid DNA and siRNA delivery to suspension cells. The particle size and surface charge of the viroplexes were analyzed with a ζ-sizer. Transfection of plasmid DNA (pDNA) and small interfering RNA (siRNA) by CSVs or PCSV was evaluated by measurement of transgene expression, confocal microscopy, FACS, and RT-PCR. RESULTS The optimized CSVs and PCSVs exhibited enhanced gene and siRNA delivery in the tested suspension cell lines (Jurkat cells and CEM cells), compared with conventional cationic liposomes. In the case of pDNA transfection, the CSVs and PCSVs show at least 10-fold and 100-fold higher transgene expression compared with DMKE lipoplexes (or lipofectamine 2000), respectively. The CSVs showed more effective siRNA delivery to the suspension cells than cationic liposomes, as assessed by confocal microscopy, FACS, and RT-PCR. The effective transfection by the CSVs and PCSVs is presumably due to fusogenic activity of F/HN proteins resulting in facilitated internalization of pDNA and siRNA. CONCLUSION This study suggests that Sendai F/HN viroplexes can be widely applicable for the transfection of pDNA and siRNA to suspension cell lines.
Collapse
Affiliation(s)
- Jung Seok Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Yeon Kyung Lee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Hwa Yeon Jeong
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Seong Jae Kang
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Min Woo Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Seung Hyun Ryu
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| | - Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | - Keun Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Korea
| |
Collapse
|
22
|
RNAi-based therapies for Huntington's disease: delivery challenges and opportunities. Ther Deliv 2012; 3:1061-76. [PMID: 23035592 DOI: 10.4155/tde.12.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine neurodegenerative disease caused by a mutation in the HTT gene coding for the Huntingtin protein (HTT). Unfortunately, there is no cure for HD and there is also no known way to modify the disease progression. RNAi approaches offer the promise of a certain degree of control over the disease. However, there are several challenges in potential use of RNAi in the treatment of HD. This article will discuss the details of RNAi technology as applied to the treatment of HD, and novel approaches to overcome the drug delivery challenges.
Collapse
|
23
|
Kaneda Y. Virosome: a novel vector to enable multi-modal strategies for cancer therapy. Adv Drug Deliv Rev 2012; 64:730-8. [PMID: 21443915 DOI: 10.1016/j.addr.2011.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/22/2011] [Accepted: 03/20/2011] [Indexed: 01/11/2023]
Abstract
Despite advancements in treatments, cancer remains a life-threatening disease that is resistant to therapy. Single-modal cancer therapy is often insufficient to provide complete remission. A revolution in cancer therapy may someday be provided by vector-based gene and drug delivery systems. However, it remains difficult to achieve this aim because viral and non-viral vectors have their own advantages and limitations. To overcome these limitations, virosomes have been constructed by combining viral components with non-viral vectors or by using pseudovirions without viral genome replication. Viruses, such as influenza virus, HVJ (hemagglutinating virus of Japan; Sendai virus) and hepatitis B virus, have been used in the construction of virosomes. The HVJ-derived vector is particularly promising due to its highly efficient delivery of DNA, siRNA, proteins and anti-cancer drugs. Furthermore, the HVJ envelope (HVJ-E) vector has intrinsic anti-tumor activities including the activation of multiple anti-tumor immunities and the induction of cancer-selective apoptosis. HVJ-E is currently being clinically used for the treatment of melanoma. A promising multi-modal cancer therapy will be achieved when virosomes with intrinsic anti-tumor activities are utilized as vectors for the delivery of anti-tumor drugs and genes.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
24
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-55. [DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
|
25
|
Budimir N, Huckriede A, Meijerhof T, Boon L, Gostick E, Price DA, Wilschut J, de Haan A. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity. PLoS One 2012; 7:e30898. [PMID: 22303469 PMCID: PMC3267744 DOI: 10.1371/journal.pone.0030898] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. METHODOLOGY/PRINCIPAL FINDINGS In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Body Weight/drug effects
- Cross Protection/drug effects
- Cross Protection/immunology
- Formaldehyde/pharmacology
- Hemagglutination Inhibition Tests
- Humans
- Immune Sera/drug effects
- Immune Sera/immunology
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/drug effects
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Nucleoproteins/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Propiolactone/pharmacology
- Species Specificity
- Survival Analysis
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Inactivated/immunology
- Viral Load/drug effects
- Viral Load/immunology
- Virus Inactivation/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Natalija Budimir
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center of Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center of Groningen, Groningen, The Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center of Groningen, Groningen, The Netherlands
| | | | - Emma Gostick
- Department of Infection, Immunity & Biochemistry, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A. Price
- Department of Infection, Immunity & Biochemistry, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center of Groningen, Groningen, The Netherlands
| | - Aalzen de Haan
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Abstract
Small interfering RNAs (siRNAs) are potent molecules capable of blocking gene expression after entering cell cytoplasm. Despite their strong efficacy, they need to be carried by nanoscale delivery systems that can protect them against degradation in biological fluids, increase their cellular uptake and favor their subcellular distribution. Several studies have highlighted the potential of local pulmonary delivery of siRNAs for the treatment of lung diseases. For this purpose, nanoscale delivery systems were addressed to target passively or actively the target cell. This review discusses the possibilities of approaching lung delivery of nanoscale particles carrying siRNAs.
Collapse
|
27
|
|
28
|
Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, Merlin D. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 2011; 300:G371-83. [PMID: 21148398 PMCID: PMC3064120 DOI: 10.1152/ajpgi.00466.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent advances in nanotechnology offer new hope for disease detection, prevention, and treatment. Nanomedicine is a rapidly evolving field wherein targeted therapeutic approaches using nanotechnology based on the pathophysiology of gastrointestinal diseases are being developed. Nanoparticle vectors capable of delivering drugs specifically and exclusively to regions of the gastrointestinal tract affected by disease for a prolonged period of time are likely to significantly reduce the side effects of existing otherwise effective treatments. This review aims at integrating various applications of the most recently developed nanomaterials that have tremendous potential for the detection and treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hamed Laroui
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - David S. Wilson
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Guillaume Dalmasso
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Khalid Salaita
- 3Department of Chemistry, Emory University, Atlanta; and
| | - Niren Murthy
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Shanthi V. Sitaraman
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Didier Merlin
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta; ,4Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
29
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaneda Y. Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 2010; 7:1079-93. [PMID: 20716020 DOI: 10.1517/17425247.2010.510511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer is the most formidable human disease. Owing to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed for cancer therapy. These therapeutic agents should be carefully selected to enhance multiple therapeutic pathways. Non-viral delivery methods have been utilized to enhance the tumor-selective delivery of therapeutic molecules, including proteins, synthetic oligonucleotides, small compounds and genes. AREAS COVERED IN THIS REVIEW As non-viral delivery methods, liposomes and polymer-based delivery materials to target tumors mainly by systemic delivery, physical methods including electroporation, sonoporation, and so on, to locally inject therapeutic molecules, and virosomes to use the viral infectious machinery for the delivery of therapeutic molecules are summarized. WHAT THE READER WILL GAIN This article aims to provide an overview of the characteristic properties of each non-viral vector. It will be beneficial to utilize appropriately the vector for cancer treatment. TAKE HOME MESSAGE Efficient and minimally invasive vectors are generally considered to be the ideal drug delivery system (DDS). However, against cancer, DDS equipped with antitumor activities may be a therapeutic choice. By combining therapeutic molecules with DDS having antitumor activities, enhancement of the multiple therapeutic pathways may be achieved.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Osaka University, Graduate School of Medicine, Division of Gene Therapy Science, Suita, Osaka, Japan.
| |
Collapse
|
31
|
Spelios M, Kearns M, Savva M. From gene delivery to gene silencing: plasmid DNA-transfecting cationic lipid 1,3-dimyristoylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate efficiently promotes small interfering RNA-induced RNA interference. Biochemistry 2010; 49:5753-9. [PMID: 20515078 DOI: 10.1021/bi1002376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cationic lipid 1,3-dimyristoylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate (1,3lb2) was applied as a delivery system for small interfering RNA (siRNA) to inhibit the production of vascular endothelial growth factor (VEGF) in vitro in human prostate carcinoma cell line PC-3. VEGF protein silencing peaked at 94% when cationic lipid-nucleic acid complexes (lipoplexes) were formulated at a nitrogen:phosphorothioate ratio (N:P) of 2 with a dose concentration of 53.7 nM, and the performance of these lipoplexes was not impeded by serum. Knockdown efficiency was maintained for at least 72 h, and an IC(50) of 12 nM lasted for 48 h. Only 20% of the total siRNA became cell-associated at this N:P, at a rate of 25 ng/h. Lipoplexes of the optimal formulation were relatively monodisperse, having an average diameter of 634 nm and a zeta potential of -21.3 mV. Formation of the 1,3lb2-siRNA complex reached 94% at an N:P of 2 and was positively cooperative; the binding constant was calculated in the range of 10(5) M(-1), and a Hill coefficient of 3 was determined. 1,3lb2 was found to be a nontoxic and potent carrier of siRNA that binds to the nucleic acid effectively and whose lipoplexes promote long-lasting inhibition, have high biological activity at low N:Ps, and are functional in the presence of serum.
Collapse
Affiliation(s)
- Michael Spelios
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, USA
| | | | | |
Collapse
|
32
|
Aigner A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol 2010; 2006:71659. [PMID: 17057369 PMCID: PMC1559929 DOI: 10.1155/jbb/2006/71659] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful method for specific gene
silencing which may also lead to promising novel therapeutic
strategies. It is mediated through small interfering RNAs (siRNAs)
which sequence-specifically trigger the cleavage and subsequent
degradation of their target mRNA. One critical factor is the
ability to deliver intact siRNAs into target cells/organs in vivo.
This review highlights the mechanism of RNAi and the guidelines
for the design of optimal siRNAs. It gives an overview of studies
based on the systemic or local application of naked siRNAs or the
use of various nonviral siRNA delivery systems. One promising
avenue is the the complexation of siRNAs with the polyethylenimine
(PEI), which efficiently stabilizes siRNAs and, upon systemic
administration, leads to the delivery of the intact siRNAs into
different organs. The antitumorigenic effects of
PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant
proteins like in mouse tumor xenograft models are described.
Collapse
Affiliation(s)
- Achim Aigner
- Department of Pharmacology and Toxicology,
Philipps-University Marburg, Karl-v.-Frisch-Strasse 1, 35033 Marburg, Germany
- *Achim Aigner:
| |
Collapse
|
33
|
Abstract
Therapeutic application of siRNA requires delivery to the correct
intracellular location, to interact with the RNAi machinery within the
target cell, within the target tissue responsible for the pathology. Each of
these levels of targeting poses a significant barrier. To overcome these
barriers several strategies have been developed, such as chemical
modifications of siRNA, viral nucleic acid delivery systems, and nonviral
nucleic acid delivery systems. Here, we discuss progress that has been made
to improve targeted delivery of siRNA in vivo for each of these strategies.
Collapse
Affiliation(s)
- Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Room Z735A,
PO Box 80082, 3508 Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Room Z735A,
PO Box 80082, 3508 Utrecht, The Netherlands
| | - Raymond M. Schiffelers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Room Z735A,
PO Box 80082, 3508 Utrecht, The Netherlands
- * Raymond M. Schiffelers:
| |
Collapse
|
34
|
Abstract
Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.
Collapse
|
35
|
Pseudovirions as vehicles for the delivery of siRNA. Pharm Res 2009; 27:400-20. [PMID: 19998056 DOI: 10.1007/s11095-009-0012-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/12/2009] [Indexed: 01/13/2023]
Abstract
Over the last two decades, small interfering RNA (siRNA)-mediated gene silencing has quickly become one of the most powerful techniques used to study gene function in vitro and a promising area for new therapeutics. Delivery remains a significant impediment to realizing the therapeutic potential of siRNA, a problem that is also tied to immunogenicity and toxicity. Numerous delivery vehicles have been developed, including some that can be categorized as pseudovirions: these are vectors that are directly derived from viruses but whose viral coding sequences have been eliminated, preventing their classification as viral vectors. Characteristics of the pseudovirions discussed in this review, namely phagemids, HSV amplicons, SV40 in vitro-packaged vectors, influenza virosomes, and HVJ-Envelope vectors, make them attractive for the delivery of siRNA-based therapeutics. Pseudovirions were shown to deliver siRNA effector molecules and bring about RNA interference (RNAi) in various cell types in vitro, and in vivo using immune-deficient and immune-competent mouse models. Levels of silencing were not always determined directly, but the duration of siRNA-induced knockdown lasted at least 3 days. We present examples of the use of pseudovirions for the delivery of synthetic siRNA as well as the delivery and expression of DNA-directed siRNA.
Collapse
|
36
|
Abstract
Formation of small interfering RNA (siRNA) occurs in two steps involving binding of the RNA nucleases to a large double‐stranded RNA (dsRNA) and its cleavage into fragments called siRNA. In the second step, these siRNAs join a multinuclease complex, which degrades the homologous single‐stranded mRNAs. The delivery of siRNA involves viral‐ and non‐viral‐mediated delivery systems; the approaches for chemical modifications have also been developed. It has various therapeutic applications for disorders like cardiovascular diseases, central nervous system (CNS) disorders, cancer, human immunodeficiency virus (HIV), hepatic disorders, etc. The present review gives an overview of the applications of siRNA and their potential for treating many hitherto untreatable diseases.
Collapse
Affiliation(s)
- Bhoomika R Goyal
- Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad 382 481, Gujarat, India.
| | | | | | | |
Collapse
|
37
|
Singh SK, Hajeri PB. siRNAs: their potential as therapeutic agents – Part II. Methods of delivery. Drug Discov Today 2009; 14:859-65. [DOI: 10.1016/j.drudis.2009.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 06/08/2009] [Indexed: 12/11/2022]
|
38
|
Wilschut J, de Jonge J, Huckriede A, Amorij JP, Hinrichs WLJ, Frijlink HW. Preservation of Influenza Virosome Structure and Function During Freeze-Drying and Storage. J Liposome Res 2008; 17:173-82. [DOI: 10.1080/08982100701536883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Huckriede A, De Jonge J, Holtrop M, Wilschut J. Cellular Delivery of siRNA Mediated by Fusion-Active Virosomes. J Liposome Res 2008; 17:39-47. [PMID: 17454402 DOI: 10.1080/08982100601186516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA interference is expected to have considerable potential for the development of novel specific therapeutic strategies. However, successful application of RNA interference in vivo will depend on the availability of efficient delivery systems for the introduction of small-interfering RNA (siRNA) into the appropriate target cells. This paper focuses on the use of reconstituted viral envelopes ("virosomes"), derived from influenza virus, as a carrier system for cellular delivery of siRNA. Complexed to cationic lipid, siRNA molecules could be efficiently encapsulated in influenza virosomes. Delivery to cultured cells was assessed on the basis of flow cytometry analysis using fluorescently labeled siRNA. Virosome-encapsulated siRNA directed against Green Fluorescent Protein (GFP) inhibited GFP fluorescence in cells transfected with a plasmid encoding GFP or in cells constitutively expressing GFP. Delivery of siRNA was dependent on the low-pH-induced membrane fusion activity of the virosomal hemagglutinin, supporting the notion that virosomes introduce their encapsulated siRNA into the cell cytosol through fusion of the virosomal membrane with the limiting membrane of cellular endosomes, after internalization of the virosomes by receptor-mediated endocytosis. It is concluded that virosomes represent a promising carrier system for cellular delivery of siRNA in vitro as well as in vivo.
Collapse
Affiliation(s)
- Anke Huckriede
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J Control Release 2008; 130:266-74. [PMID: 18601962 DOI: 10.1016/j.jconrel.2008.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/28/2008] [Accepted: 06/06/2008] [Indexed: 11/21/2022]
Abstract
The ability of small interfering RNA (siRNA) to regulate gene expression has potential therapeutic applications, but its use is limited by inefficient delivery. Triggered release of adsorbed poly(ethylene glycol) (PEG)-b-polycation polymers from pH-dependent (PD) liposomes enables protection from immune recognition during circulation (pH 7.4) and subsequent intracellular delivery of siRNA within the endosome (pH ~5.5). Polycationic blocks, based on either poly[2-(dimethylamino)ethyl methacrylate] (31 or 62 DMA repeat units) or polylysine (21 K repeat units), act as anchors for a PEG (113 ethylene glycol repeat units) protective block. Incorporation of 1,2-dioleoyl-3-dimethylammonium-propane (DAP), a titratable lipid, increases the liposome's net cationic character within acidic environments, resulting in polymer desorption and membrane fusion. Liposomes encapsulating siRNA demonstrate green fluorescent protein (GFP) silencing in genetically-modified, GFP-expressing HeLa cells and glyceraldehyde-3-phosphate dehydrogenase (GAPD) knockdown in human umbilical vein endothelial cells (HUVEC). Bare and PD liposomes coated with PEG113-DMA31 exhibit a 0.16+/-0.2 and 0.32+/-0.3 fraction of GFP knockdown, respectively. In contrast, direct siRNA administration and Oligofectamine complexed siRNA reduce GFP expression by 0.06+/-0.02 and 0.14+/-0.02 fractions, respectively. Our in vitro data indicates that polymer desorption from PD liposomes enhances siRNA-mediated gene knockdown.
Collapse
|
41
|
de Fougerolles A, Novobrantseva T. siRNA and the lung: research tool or therapeutic drug? Curr Opin Pharmacol 2008; 8:280-5. [PMID: 18485820 PMCID: PMC7106383 DOI: 10.1016/j.coph.2008.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/15/2022]
Abstract
Oligonucleotide-based therapeutics have been hailed as ‘the next great wave of the biotechnology revolution’ starting with antisense oligonucleotides (ASOs) nearly 20 years ago to RNA interference (RNAi) currently. Is RNAi just the latest research tool or does it have real potential as a therapeutic drug modality? As a research tool, it is evident that RNAi has revolutionized the biological sciences by allowing selective silencing of messenger RNA (mRNA) expression. With the advent of the postgenomic era, RNAi offers a therapeutic platform on which to identify potential picomolar active drug candidates to any target, including those that are conventionally undruggable. In this review, we will discuss the progress made in developing RNAi therapeutics for the treatment of respiratory diseases.
Collapse
|
42
|
Prakash S, Malhotra M. Recent Advancements in Targeted Delivery of Therapeutic Molecules in Neurodegenerative Disease–-Spinocerebellar Ataxia–-Opportunities and Challenges. Drug Target Insights 2008. [DOI: 10.4137/dti.s378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Meenakshi Malhotra
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
43
|
The effect of pre-existing immunity on the capacity of influenza virosomes to induce cytotoxic T lymphocyte activity. Vaccine 2008; 26:2314-21. [DOI: 10.1016/j.vaccine.2008.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/23/2008] [Accepted: 03/03/2008] [Indexed: 11/22/2022]
|
44
|
de Jonge J, Amorij JP, Hinrichs WLJ, Wilschut J, Huckriede A, Frijlink HW. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage. Eur J Pharm Sci 2007; 32:33-44. [PMID: 17628452 DOI: 10.1016/j.ejps.2007.05.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/19/2007] [Accepted: 05/26/2007] [Indexed: 01/29/2023]
Abstract
Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable dry-powder formulation by freeze-drying (lyophilization) using an amorphous inulin matrix as a stabilizer. In the presence of inulin the structural integrity and fusogenic activity of virosomes were fully preserved during freeze-drying. For example, the immunological properties of the virosomes, i.e. the HA potency in vitro and the immunogenic potential in vivo, were maintained during lyophilization in the presence of inulin. In addition, compared to virosomes dispersed in buffer, inulin-formulated virosomes showed substantially prolonged preservation of the HA potency upon storage. Also the capacity of virosomes to mediate cellular delivery of macromolecules was maintained during lyophilization in the presence of inulin and upon subsequent storage. Specifically, when dispersed in buffer, virosomes with encapsulated plasmid DNA lost their transfection activity completely within 6 weeks, whereas their transfection activity was fully preserved for at least 12 weeks after incorporation in an inulin matrix. Thus, in the presence of inulin as a stabilizing agent, the shelf-life of influenza virosomes with and without encapsulated macromolecules was considerably prolonged. Formulation of influenza virosomes as a dry-powder is advantageous for storage and transport and offers the possibility to develop needle-free dosage forms, e.g. for oral, nasal, pulmonal, or dermal delivery.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
de Jonge J, Leenhouts J, Holtrop M, Schoen P, Scherrer P, Cullis P, Wilschut J, Huckriede A. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem J 2007; 405:41-9. [PMID: 17355227 PMCID: PMC1925238 DOI: 10.1042/bj20061756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reconstituted influenza virosomes (virus membrane envelopes) have been used previously to deliver pDNA (plasmid DNA) bound to their external surface to a variety of target cells. Although high transfection efficiencies can be obtained with these complexes in vitro, the virosome-associated DNA is readily accessible to nucleases and could therefore be prone to rapid degradation under in vivo conditions. In the present study, we show a new method for the production of DNA-virosomes resulting in complete protection of the DNA from nucleases. This method relies on the use of the short-chain phospholipid DCPC (dicaproylphosphatidylcholine) for solubilization of the viral membrane. The solubilized viral membrane components are mixed with pDNA and cationic lipid. Reconstitution of the viral envelopes and simultaneous encapsulation of pDNA is achieved by removal of the DCPC from the mixture through dialysis. Analysis by linear sucrose density-gradient centrifugation revealed that protein, phospholipid and pDNA physically associated to particles, which appeared as vesicles with spike proteins inserted in their membranes when analysed by electron microscopy. The DNA-virosomes retained the membrane fusion properties of the native influenza virus. The virosome-associated pDNA was completely protected from degradation by nucleases, providing evidence for the DNA being highly condensed and encapsulated in the lumen of the virosomes. DNA-virosomes, containing reporter gene constructs, transfected a variety of cell lines, with efficiencies approaching 90%. Transfection was completely dependent on the fusogenic properties of the viral spike protein haemagglutinin. Thus, DNA-virosomes prepared by the new procedure are highly efficient vehicles for DNA delivery, offering the advantage of complete DNA protection, which is especially important for future in vivo applications.
Collapse
Affiliation(s)
- Jørgen de Jonge
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Johanna M. Leenhouts
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Marijke Holtrop
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Pieter Schoen
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Peter Scherrer
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Pieter R. Cullis
- †Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jan Wilschut
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- *Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76:9-21. [PMID: 17457539 PMCID: PMC7079960 DOI: 10.1007/s00253-007-0984-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/13/2023]
Abstract
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.
Collapse
Affiliation(s)
- Achim Aigner
- Department Pharmacology and Toxicology, School of Medicine, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| |
Collapse
|
47
|
de Jonge J, Schoen P, ter Veer W, Stegmann T, Wilschut J, Huckriede A. Use of a dialyzable short-chain phospholipid for efficient solubilization and reconstitution of influenza virus envelopes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:527-36. [PMID: 16630533 DOI: 10.1016/j.bbamem.2006.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/02/2006] [Accepted: 03/10/2006] [Indexed: 11/23/2022]
Abstract
Virosomes are reconstituted viral envelopes that can serve as vaccines and as vehicles for cellular delivery of various macromolecules. To further advance the use of virosomes, we developed a novel dialysis procedure for the reconstitution of influenza virus membranes that is easily applicable to industrial production and compatible with encapsulation of a variety of compounds. This procedure relies on the use of 1,2-dicaproyl-sn-glycero-3-phosphocholine (DCPC) as a solubilizing agent. DCPC is a short-chain lecithin with detergent-like properties and with a critical micelle concentration of 14 mM. DCPC effectively dissolved the influenza virus membranes after which the nucleocapsids could be removed by ultracentrifugation. The solubilized membrane components were reconstituted either by removal of DCPC by dialysis or by a procedure involving initial dilution of the solubilized membrane components followed by dialysis. Both protocols resulted in removal of 99.9% of DCPC and simultaneous formation of virosomes. Analysis of the virosome preparations by equilibrium sucrose density gradient centrifugation revealed co-migration of phospholipid and protein for virosomes produced by either method. Moreover, both virosome preparations showed morphological and fusogenic characteristics similar to native influenza virus. Size, homogeneity and spike density of the virosomes varied with the two different reconstitution procedures employed. The recovery of viral membrane proteins and phospholipids in the virosomes was found to be higher for the dilution/dialysis procedure than for the simple dialysis protocol. This novel procedure for the production of virosomes is straightforward and robust and allows further exploitation of virosomes as vaccines or as drug delivery vehicles not only in academia, but also in industrial settings.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006; 13:644-70. [PMID: 16481219 PMCID: PMC7106286 DOI: 10.1016/j.ymthe.2006.01.001] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 01/28/2023] Open
Abstract
RNA interference (RNAi) has become the method of choice to suppress gene expression in vitro. It is also emerging as a powerful tool for in vivo research with over 90 studies published using synthetic small interfering RNAs in mammals. These reports demonstrate the potential for use of synthetic small interfering RNAs (siRNAs) as therapeutic agents, especially in the areas of cancer and viral infection. The number of reports using siRNAs for functional genomics applications, for validation of targets for small-molecule drug development programs, and to address questions of basic biology will rapidly grow as methods and protocols for use in animals become more established. This review will first discuss aspects of RNAi biochemistry and biology that impact in vivo use, especially as relates to experimental design, and will then provide an overview of published work with a focus on methodology.
Collapse
Affiliation(s)
- Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA.
| |
Collapse
|