1
|
Chen Z, Ni W, Li JL, Lin S, Zhou X, Sun Y, Li JW, Leon ME, Hurtado MD, Zolotukhin S, Liu C, Lu J, Griffin JD, Kaye FJ, Wu L. The CRTC1-MAML2 fusion is the major oncogenic driver in mucoepidermoid carcinoma. JCI Insight 2021; 6:139497. [PMID: 33830080 PMCID: PMC8119194 DOI: 10.1172/jci.insight.139497] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
No effective systemic treatment is available for patients with unresectable, recurrent, or metastatic mucoepidermoid carcinoma (MEC), the most common salivary gland malignancy. MEC is frequently associated with a t(11;19)(q14-21;p12-13) translocation that creates a CRTC1-MAML2 fusion gene. The CRTC1-MAML2 fusion exhibited transforming activity in vitro; however, whether it serves as an oncogenic driver for MEC establishment and maintenance in vivo remains unknown. Here, we show that doxycycline-induced CRTC1-MAML2 knockdown blocked the growth of established MEC xenografts, validating CRTC1-MAML2 as a therapeutic target. We further generated a conditional transgenic mouse model and observed that Cre-induced CRTC1-MAML2 expression caused 100% penetrant formation of salivary gland tumors resembling histological and molecular characteristics of human MEC. Molecular analysis of MEC tumors revealed altered p16-CDK4/6-RB pathway activity as a potential cooperating event in promoting CRTC1-MAML2–induced tumorigenesis. Cotargeting of aberrant p16-CDK4/6-RB signaling and CRTC1-MAML2 fusion–activated AREG/EGFR signaling with the respective CDK4/6 inhibitor Palbociclib and EGFR inhibitor Erlotinib produced enhanced antitumor responses in vitro and in vivo. Collectively, this study provides direct evidence for CRTC1-MAML2 as a key driver for MEC development and maintenance and identifies a potentially novel combination therapy with FDA-approved EGFR and CDK4/6 inhibitors as a potential viable strategy for patients with MEC.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Wei Ni
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and.,Genetics & Genomics Graduate Program, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shuibin Lin
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Xin Zhou
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Yuping Sun
- Department of Pathology, Immunology and Laboratory Medicine
| | - Jennifer W Li
- Department of Biochemistry and Molecular Biology, and.,Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Marino E Leon
- Department of Pathology, Immunology and Laboratory Medicine
| | - Maria D Hurtado
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic Health System La Crosse, Wisconsin, USA, and.,Mayo Clinic, Rochester, Minnesota, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Jianrong Lu
- UF Health Cancer Center, and.,Department of Biochemistry and Molecular Biology, and
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frederic J Kaye
- UF Health Cancer Center, and.,Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and.,Genetics & Genomics Graduate Program, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
2
|
Di Pasquale G, Perez Riveros P, Tora M, Sheikh T, Son A, Teos L, Grewe B, Swaim WD, Afione S, Zheng C, Jang SI, Shitara A, Alevizos I, Weigert R, Chiorini JA. Transduction of Salivary Gland Acinar Cells with a Novel AAV Vector 44.9. Mol Ther Methods Clin Dev 2020; 19:459-466. [PMID: 33294494 PMCID: PMC7689275 DOI: 10.1016/j.omtm.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
The loss of salivary gland function caused by radiation therapy of the head and neck or autoimmune disease such as Sjögren's syndrome is a serious condition that affects a patient's quality of life. Due to the combined exocrine and endocrine functions of the salivary gland, gene transfer to the salivary glands holds the potential for developing therapies for disorders of the salivary gland and the expression of therapeutic proteins via the exocrine pathway to the mouth, upper gastrointestinal tract, or endocrine pathway, systemically, into the blood. Recent clinical success with viral vector-mediated gene transfer for the treatment of irradiation-induced damage to the salivary glands has highlighted the need for the development of novel vectors with acinar cell tropism able to result in stable long-term transduction. Previous studies with adeno-associated virus (AAV) focused on the submandibular gland and reported mostly ductal cell transduction. In this study, we have screened AAV vectors for acinar cell tropism in the parotid gland utilizing membrane-tomato floxed membrane-GFP transgenic mice to screen CRE recombinase encoding AAV vectors of different clades to rapidly identify capsid isolates able to transduce salivary gland acinar cells. We determined that AAVRh10 and a novel isolate found as a contaminant of a laboratory stock of simian adenovirus SV15, AAV44.9, are both able to transduce parotid and sublingual acinar cells. Persistence and localization of transduction of these AAVs were tested using vectors encoding firefly luciferase, which was detected 6 months after vector administration. Most luciferase expression was localized to the salivary gland compared to that of distal organs. Transduction resulted in robust secretion of recombinant protein in both blood and saliva. Transduction was species specific, with AAVRh10 having stronger transduction activity in rats compared with AAV44.9 or AAV2 but weaker in human primary salivary gland cells. This work demonstrates efficient transduction of parotid acinar cells by AAV that resulted in secretion of recombinant protein in both serum and saliva.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paola Perez Riveros
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhibullah Tora
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayyab Sheikh
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leyla Teos
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brigitte Grewe
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D. Swaim
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyh-Ing Jang
- Salivary Gland Biology and Disorder Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akiko Shitara
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilias Alevizos
- Sjögren’s Syndrome and Salivary Gland Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roberto Weigert
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Crosson SM, Marques A, Dib P, Dotson CD, Munger SD, Zolotukhin S. Taste Receptor Cells in Mice Express Receptors for the Hormone Adiponectin. Chem Senses 2020; 44:409-422. [PMID: 31125082 DOI: 10.1093/chemse/bjz030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The metabolic hormone adiponectin is secreted into the circulation by adipocytes and mediates key biological functions, including insulin sensitivity, adipocyte development, and fatty acid oxidation. Adiponectin is also abundant in saliva, where its functions are poorly understood. Here we report that murine taste receptor cells (TRCs) express specific adiponectin receptors and may be a target for salivary adiponectin. This is supported by the presence of all three known adiponectin receptors in transcriptomic data obtained by RNA-seq analysis of purified circumvallate (CV) taste buds. As well, immunohistochemical analysis of murine CV papillae showed that two adiponectin receptors, ADIPOR1 and T-cadherin, are localized to subsets of TRCs. Immunofluorescence for T-cadherin was primarily co-localized with the Type 2 TRC marker phospholipase C β2, suggesting that adiponectin signaling could impact sweet, bitter, or umami taste signaling. However, adiponectin null mice showed no differences in behavioral lick responsiveness compared with wild-type controls in brief-access lick testing. AAV-mediated overexpression of adiponectin in the salivary glands of adiponectin null mice did result in a small but significant increase in behavioral lick responsiveness to the fat emulsion Intralipid. Together, these results suggest that salivary adiponectin can affect TRC function, although its impact on taste responsiveness and peripheral taste coding remains unclear.
Collapse
Affiliation(s)
- Sean M Crosson
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - Andrew Marques
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
| | - Peter Dib
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA.,Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - Cedrick D Dotson
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism; University of Florida, Gainesville, FL, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Corden A, Handelman B, Yin H, Cotrim A, Alevizos I, Chiorini JA. Neutralizing antibodies against adeno-associated viruses in Sjögren's patients: implications for gene therapy. Gene Ther 2017; 24:241-244. [PMID: 28150697 PMCID: PMC5810933 DOI: 10.1038/gt.2017.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 11/12/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
One potential setback to the use of gene therapy for the treatment of Sjögren's syndrome is the presence of neutralizing antibodies (nAb) against adeno-associated virus (AAV) serotypes. In order to evaluate the efficacy of this treatment option, nAb titers were measured in both healthy individuals and Sjögren's patients. Several serotypes with known transduction activity in mouse salivary glands were tested and only AAV5 showed a statistically significant change in the prevalence of nAbs between Sjögren's and healthy participants. Both groups showed a higher rate of nAbs for AAV2 compared with most of the other serotypes tested, except for bovine AAV (BAAV). Although a similar rate of seropositivity was seen against BAAV and AAV2, the percentage of samples with high titer was significantly lower with BAAV. Furthermore, the majority of positive samples exhibited low nAb titers in the primary Sjögren's syndrome (pSS) group for all serotypes except for AAV2. AAV5 was the only serotype that showed a statistically significant shift in the percentage of medium or high neutralizing titer. Based on these results, many serotypes are viable vectors in a gene therapy approach and pSS patients do not have a statistically significant higher rate of seropositivity or titer compared with healthy donors.
Collapse
Affiliation(s)
- A Corden
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - B Handelman
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - H Yin
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A Cotrim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Abstract
More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-induced loss of function a chronic problem that affects the quality of life of the patients well beyond the completion of radiotherapy. The restoration of saliva production after irradiation has been a daunting challenge, and this review provides an overview of promising gene therapeutics that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow after radiation. The salient features and shortcomings of each approach are discussed.
Collapse
Affiliation(s)
- Renjith Parameswaran Nair
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States of America
| | - Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States of America
| |
Collapse
|
6
|
Chiorini JA. And one to bind them all. Oral Dis 2016; 22:716-718. [PMID: 27109444 DOI: 10.1111/odi.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John A Chiorini
- AAV Biology Section Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy - oral and systemic implications. Expert Opin Biol Ther 2015; 15:1443-54. [PMID: 26149284 DOI: 10.1517/14712598.2015.1064894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. AREAS COVERED There are two major disorders affecting salivary glands: radiation damage following treatment for head and neck cancers and Sjögren's syndrome (SS). Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. EXPERT OPINION Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on SS suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding how secretory proteins are sorted. Future studies will likely employ ultrasound-assisted and pseudotyped adeno-associated viral vector-mediated gene transfer.
Collapse
Affiliation(s)
- Bruce J Baum
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ilias Alevizos
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - John A Chiorini
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ana P Cotrim
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Changyu Zheng
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| |
Collapse
|
8
|
Nezu A, Morita T, Tanimura A. In vitro and in vivo imaging of intracellular Ca2+ responses in salivary gland cells. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Identification and mutagenesis of the adeno-associated virus 5 sialic acid binding region. J Virol 2014; 89:1660-72. [PMID: 25410855 DOI: 10.1128/jvi.02503-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED As a genus, the dependoviruses use a diverse group of cell surface carbohydrates for attachment and entry. Despite the fact that a majority of adeno-associated viruses (AAVs) utilize sialic acid (SIA) for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, two SIA binding regions were mapped for AAV5. The first site mapped to the depression in the center of the 3-fold axis of symmetry, while the second site was located under the βHI loop close to the 5-fold axis. Mutagenesis of amino acids 569 and 585 or 587 within the 3-fold depression resulted in elimination or alteration in SIA-dependent transduction, respectively. This change in SIA binding was confirmed using glycan microarrays. Mutagenesis of the second site identified a role in transduction that was SIA independent. Further studies of the mutants at the 3-fold site demonstrated a change in transduction activity and cell tropism in vivo as well as resistance to neutralization by a polyclonal antibody raised against the wild-type virus. IMPORTANCE Despite the fact that a majority of AAVs utilize sialic acid for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, the sialic acid binding regions of AAV5 were identified and studied using a variety of approaches. Mutagenesis of this region resulted in elimination or alteration in sialic acid-dependent transduction in cell lines. This change in sialic acid glycan binding was confirmed using glycan arrays. Further study also demonstrated a change in transduction and activity and cell tropism in vivo as well as resistance to neutralization by antibodies raised against the wild-type virus.
Collapse
|
10
|
Timiri Shanmugam PS, Dayton RD, Palaniyandi S, Abreo F, Caldito G, Klein RL, Sunavala-Dossabhoy G. Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia. Hum Gene Ther 2014; 24:604-12. [PMID: 23614651 DOI: 10.1089/hum.2012.235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salivary glands are highly susceptible to radiation, and patients with head and neck cancer treated with radiotherapy invariably suffer from its distressing side effect, salivary hypofunction. The reduction in saliva disrupts oral functions, and significantly impairs oral health. Previously, we demonstrated that adenoviral-mediated expression of Tousled-like kinase 1B (TLK1B) in rat submandibular glands preserves salivary function after single-dose ionizing radiation. To achieve long-term transgene expression for protection of salivary gland function against fractionated radiation, this study examines the usefulness of recombinant adeno-associated viral vector for TLK1B delivery. Lactated Ringers or AAV2/9 with either TLK1B or GFP expression cassette were retroductally delivered to rat submandibular salivary glands (10(11) vg/gland), and animals were exposed, or not, to 20 Gy in eight fractions of 2.5 Gy/day. AAV2/9 transduced predominantly the ductal cells, including the convoluted granular tubules of the submandibular glands. Transgene expression after virus delivery could be detected within 5 weeks, and stable gene expression was observed till the end of study. Pilocarpine-stimulated saliva output measured at 8 weeks after completion of radiation demonstrated >10-fold reduction in salivary flow in saline- and AAV2/9-GFP-treated animals compared with the respective nonirradiated groups (90.8% and 92.5% reduction in salivary flow, respectively). Importantly, there was no decrease in stimulated salivary output after irradiation in animals that were pretreated with AAV2/9-TLK1B (121.5% increase in salivary flow; p<0.01). Salivary gland histology was better preserved after irradiation in TLK1B-treated group, though not significantly, compared with control groups. Single preemptive delivery of AAV2/9-TLK1B averts salivary dysfunction resulting from fractionated radiation. Although AAV2/9 transduces mostly the ductal cells of the gland, their protection against radiation assists in preserving submandibular gland function. AAV2/9-TLK1B treatment could prove beneficial in attenuating xerostomia in patients with head and neck cancer undergoing radiotherapy.
Collapse
|
11
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|
12
|
Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland. PLoS One 2014; 9:e92832. [PMID: 24667436 PMCID: PMC3965469 DOI: 10.1371/journal.pone.0092832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 02/27/2014] [Indexed: 01/05/2023] Open
Abstract
In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (10(8), 10(9), 10(10), or 4.4 × 10(10) vector particles/gland) or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe.
Collapse
|
13
|
Yin H, Kosa P, Liu X, Swaim WD, Lai Z, Cabrera-Perez J, Di Pasquale G, Ambudkar IS, Bugge TH, Chiorini JA. Matriptase deletion initiates a Sjögren's syndrome-like disease in mice. PLoS One 2014; 9:e82852. [PMID: 24551030 PMCID: PMC3923742 DOI: 10.1371/journal.pone.0082852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022] Open
Abstract
Objective The objective of this study was to determine the effect of epithelial barrier disruption, caused by deficiency of the membrane-anchored serine protease, matriptase, on salivary gland function and the induction of autoimmunity in an animal model. Methods Embryonic and acute ablation of matriptase expression in the salivary glands of mice was induced, leading to decreased epithelial barrier function. Mice were characterized for secretory epithelial function and the induction of autoimmunity including salivary and lacrimal gland dysfunction, lymphocytic infiltration, serum anti-Ro/SSA, anti-La/SSB and antinuclear antibodies. Salivary glands immune activation/regulation, barrier function as well as tight junction proteins expression also were determined. Expression of matriptase in minor salivary gland biopsies was compared among pSS patients and healthy volunteers. Results Embryonic ablation of matriptase expression in mice resulted in the loss of secretory epithelial cell function and the induction of autoimmunity similar to that observed in primary Sjögren’s syndrome. Phenotypic changes included exocrine gland dysfunction, lymphocytic infiltrates, production of Sjögren’s syndrome-specific autoantibodies, and overall activation of the immune system. Acute ablation of matriptase expression resulted in significant salivary gland dysfunction in the absence of overt immune activation. Analysis of the salivary glands indicates a loss of electrical potential across the epithelial layer as well as altered distribution of a tight junction protein. Moreover, a significant decrease in matriptase gene expression was detected in the minor salivary glands of pSS patients compared with healthy volunteers. Conclusions Our findings demonstrate that local impairment of epithelial barrier function can lead to loss of exocrine gland dysfunction in the absence of inflammation while systemic deletion can induce a primary Sjögren’s syndrome like phenotype with autoimmunity and loss of gland function.
Collapse
Affiliation(s)
- Hongen Yin
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (HY)
| | - Peter Kosa
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William D. Swaim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhennan Lai
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Javier Cabrera-Perez
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Indu S. Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (HY)
| |
Collapse
|
14
|
Yin H, Cabrera-Perez J, Lai Z, Michael D, Weller M, Swaim WD, Liu X, Catalán MA, Rocha EM, Ismail N, Afione S, Rana NA, Di Pasquale G, Alevizos I, Ambudkar I, Illei GG, Chiorini JA. Association of bone morphogenetic protein 6 with exocrine gland dysfunction in patients with Sjögren's syndrome and in mice. ACTA ACUST UNITED AC 2014; 65:3228-38. [PMID: 23982860 DOI: 10.1002/art.38123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/01/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Primary Sjögren's syndrome (SS) is characterized by autoimmune activation and loss of function in secretory epithelia. The present study was undertaken to investigate and characterize changes in the epithelia associated with the loss of gland function in primary SS. METHODS To identify changes in epithelial gene expression, custom microarrays were probed with complementary RNA (cRNA) isolated from minor salivary glands (MSGs) of female patients with primary SS who had low focus scores and low salivary flow rates, and the results were compared with those obtained using cRNA from the MSGs of sex-matched healthy volunteers. The effect of bone morphogenetic protein 6 (BMP-6) on salivary gland function was tested using adeno-associated virus-mediated gene transfer to the salivary glands of C57BL/6 mice. RESULTS A significant increase in expression of BMP-6 was observed in RNA isolated from SS patients compared with healthy volunteers. Overexpression of BMP-6 locally in the salivary or lacrimal glands of mice resulted in the loss of fluid secretion as well as changes in the connective tissue of the salivary gland. Assessment of the fluid movement in either isolated acinar cells from mice overexpressing BMP-6 or a human salivary gland cell line cultured with BMP-6 revealed a loss in volume regulation in these cells. Lymphocytic infiltration in the submandibular gland of BMP-6 vector-treated mice was increased. No significant changes in the production of proinflammatory cytokines or autoantibodies associated with SS (anti-Ro/SSA and anti-La/SSB) were found after BMP-6 overexpression. CONCLUSION In addition to identifying BMP-6 expression in association with xerostomia and xerophthalmia in primary SS, the present results suggest that BMP-6-induced salivary and lacrimal gland dysfunction in primary SS is independent of the autoantibodies and immune activation associated with the disease.
Collapse
Affiliation(s)
- Hongen Yin
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Increase in muscarinic stimulation-induced Ca2+ response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo. Biochem Biophys Res Commun 2013; 439:433-7. [DOI: 10.1016/j.bbrc.2013.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/24/2013] [Indexed: 02/03/2023]
|
16
|
La Sala MS, Hurtado MD, Brown AR, Bohórquez DV, Liddle RA, Herzog H, Zolotukhin S, Dotson CD. Modulation of taste responsiveness by the satiation hormone peptide YY. FASEB J 2013; 27:5022-33. [PMID: 24043261 DOI: 10.1096/fj.13-228064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.
Collapse
Affiliation(s)
- Michael S La Sala
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, 1149 Newell Dr., Box 100244, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Di Pasquale G, Dicembrini I, Raimondi L, Pagano C, Egan JM, Cozzi A, Cinci L, Loreto A, Manni ME, Berretti S, Morelli A, Zheng C, Michael DG, Maggi M, Vettor R, Chiorini JA, Mannucci E, Rotella CM. Sustained exendin-4 secretion through gene therapy targeting salivary glands in two different rodent models of obesity/type 2 diabetes. PLoS One 2012; 7:e40074. [PMID: 22808093 PMCID: PMC3396615 DOI: 10.1371/journal.pone.0040074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022] Open
Abstract
Exendin-4 (Ex-4) is a Glucagon-like peptide 1 (GLP-1) receptor agonist approved for the treatment of Type 2 Diabetes (T2DM), which requires daily subcutaneous administration. In T2DM patients, GLP-1 administration is reported to reduce glycaemia and HbA1c in association with a modest, but significant weight loss. The aim of present study was to characterize the site-specific profile and metabolic effects of Ex-4 levels expressed from salivary glands (SG) in vivo, following adeno-associated virus-mediated (AAV) gene therapy in two different animal models of obesity prone to impaired glucose tolerance and T2DM, specifically, Zucker fa/fa rats and high fed diet (HFD) mice. Following percutaneous injection of AAV5 into the salivary glands, biologically active Ex-4 was detected in the blood of both animal models and expression persisted in salivary gland ductal cell until the end of the study. In treated mice, Ex-4 levels averaged 138.9±42.3 pmol/L on week 6 and in treated rats, mean circulating Ex-4 levels were 238.2±72 pmol/L on week 4 and continued to increase through week 8. Expression of Ex-4 resulted in a significant decreased weight gain in both mice and rats, significant improvement in glycemic control and/or insulin sensitivity as well as visceral adipose tissue adipokine profile. In conclusion, these results suggest that sustained site-specific expression of Ex-4 following AAV5-mediated gene therapy is feasible and may be useful in the treatment of obesity as well as trigger improved metabolic profile.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ilaria Dicembrini
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | - Laura Raimondi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Claudio Pagano
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Josephine M. Egan
- Diabetes Section, National Institute on Aging and Health, Baltimore, Maryland, United States of America
| | - Andrea Cozzi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Section of Histology, Department of Anatomy, University of Florence, Florence, Italy
| | - Andrea Loreto
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Maria E. Manni
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Berretti
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Drew G. Michael
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Roberto Vettor
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (CMR)
| | | | - Carlo M. Rotella
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
- * E-mail: (JAC); (CMR)
| |
Collapse
|
18
|
Zheng C, Cotrim AP, Nikolov N, Mineshiba F, Swaim W, Baum BJ. A novel hybrid adenoretroviral vector with more extensive E3 deletion extends transgene expression in submandibular glands. Hum Gene Ther Methods 2012; 23:169-81. [PMID: 22817829 PMCID: PMC4015066 DOI: 10.1089/hgtb.2011.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 06/04/2012] [Indexed: 01/05/2023] Open
Abstract
Salivary glands are an attractive target for gene transfer. Salivary epithelial cells are considered to be highly differentiated and have low rates of cell division (~6 months), affording the opportunity to obtain relatively long-term transgene expression in the absence of genomic integration. Here, we report a novel modified hybrid adenoretroviral vector, which provides stable transgene expression in salivary epithelial cells in vivo for up to 6 months in the absence of genomic integration. This modified hybrid vector, Ad(ΔE1/3)LTR(2)EF1α-hEPO, encodes human erythropoietin (hEPO) and differs from a previously developed hybrid vector, AdLTR(2)EF1α-hEPO, by having more extensive E3 gene deletion. Following direct salivary gland gene transfer by retroductal cannulation, rats transduced with Ad(ΔE1/3)LTR(2)EF1α-hEPO had sustained, elevated serum hEPO levels and hematocrits for 6 months (length of experiment), as compared with ~2 months for animals administered the AdLTR(2)EF1α-hEPO vector. Immunohistochemistry demonstrated that this novel vector could transduce both acinar and ductal cells. Interestingly, the Ad(ΔE1/3)LTR(2)EF1α-hEPO vector evoked much weaker local (salivary gland) immune responses than seen after AdLTR(2)EF1α-hEPO vector delivery, which likely permits its significantly lengthened transgene expression in this tissue.
Collapse
Affiliation(s)
- Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Yin H, Nguyen CQ, Samuni Y, Uede T, Peck AB, Chiorini JA. Local delivery of AAV2-CTLA4IgG decreases sialadenitis and improves gland function in the C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's syndrome. Arthritis Res Ther 2012; 14:R40. [PMID: 22369699 PMCID: PMC3392840 DOI: 10.1186/ar3753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a key negative costimulatory molecule that displays a wide range of anti-inflammatory properties and is currently approved to treat rheumatoid arthritis as a recombinant fusion protein (CTLA4IgG). To better understand the role of CTLA4IgG in primary Sjögren's syndrome (pSS), we generated a recombinant adeno-associated virus vector serotype 2 (AAV2) expressing a chimera of mouse CTLA-4 fused with a human immunoglobulin (AAV2-CTLA4IgG) and observed the effect of this molecule in C57BL/6.NOD-Aec1Aec2 mice, an animal model of pSS. METHODS A recombinant adeno-associated virus-2 (AAV-2) vector was constructed encoding a CTLA4IgG fusion protein. The AAV2-CTLA4IgG vector and an AAV2 control vector encoding beta galactosidase (LacZ) were administered by retrograde cannulation of the submandibular glands of C57BL/6.NOD-Aec1Aec2 mice. Protein expression was measured by ELISA and salivary glands were assessed for inflammation and activity. RESULTS Recombinant CTLA4IgG blocked B7 expression on macrophages in vitro. In vivo, localized expression of CTLA4IgG in the salivary glands of C57BL/6.NOD-Aec1Aec2 mice inhibited the loss of salivary gland activity and decreased T and B cell infiltration as well as dendritic cells and macrophages in the glands compared with control mice. In addition a decrease in several proinflammatory cytokines and an increase in transforming growth factor beta-1 (TGF-β1) expression were also observed. CONCLUSIONS These data suggest expression of CTLA4IgG in the salivary gland can decrease the inflammation and improve the xerostomia reported in these mice.
Collapse
Affiliation(s)
- Hongen Yin
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Cranial Research, National Institutes of Health, 10 Center Drive, MSC1190, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Geguchadze RN, Machen L, Zourelias L, Gallo PH, Passineau MJ. An AAV2/5 vector enhances safety of gene transfer to the mouse salivary gland. J Dent Res 2012; 91:382-6. [PMID: 22307036 DOI: 10.1177/0022034512437373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was designed to improve AAV-mediated gene transfer to the murine submandibular salivary glands. Our first aim was to utilize AAV pseudotype vectors, containing the genetic elements of the canonical AAV2, packaged within capsids of AAV serotypes 5, 8, and 9. Having determined that this pseudotyping increased the efficiency of gene transfer to the glands by several orders of magnitude, we next asked whether we could reduce the gene transfer inoculum of the pseudotype while still achieving gene transfer comparable with that achieved with high-dose AAV2. Having achieved gene transfer comparable with that of AAV2 using a pseudotype vector (AAV2/5) at a 100-fold lower dose, our final objective was to evaluate the implications of this lower dose on two pre-clinical parameters of vector safety. To evaluate systemic toxicity, we measured AAV vector sequestration in the liver using qPCR, and found that the 100-fold lower dose reduced the vector recovered from the liver by 300-fold. To evaluate salivary gland function, we undertook whole-proteome profiling of salivary gland lysates two weeks after vector administration and found that high-dose (5 × 10⁹) AAV altered the expression level of ~32% of the entire salivary gland proteome, and that the lower dose (5 × 10⁷) reduced this effect to ~7%.
Collapse
Affiliation(s)
- R N Geguchadze
- Allegheny-Singer Research Institute, West Penn-Allegheny Health System, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA 15212-4772, USA
| | | | | | | | | |
Collapse
|
21
|
Rocha EM, Di Pasquale G, Riveros PP, Quinn K, Handelman B, Chiorini JA. Transduction, tropism, and biodistribution of AAV vectors in the lacrimal gland. Invest Ophthalmol Vis Sci 2011; 52:9567-72. [PMID: 22110082 DOI: 10.1167/iovs.11-8171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The lacrimal gland (LG) delivers defensive and metabolic factors to the ocular surface. These functions may be disrupted in several diseases, and for most of them there is no cure. The aim of this study is to investigate conditions and limitations for using adeno-associated virus (AAV) vectors as gene transfer agents to LG. METHODS Eight-week-old Balb/c mice were used to investigate route, gene expression, and time course of AAV gene vector transfer to LG. AAV vectors encoding firefly luciferase were administered to the LG and luciferase expression was evaluated in vivo by immunohistochemistry. Ocular surface and neutralizing antibodies were also evaluated. RESULTS The present work revealed that AAV vectors are able to delivery DNA to the LGs of mice. Direct injection had the highest level of transduction, and topical ocular drops the lowest. Overall, the AAV strain with highest transduction activity as measured by both luminescence and immunohistochemistry was AAV9, followed by AAV 5w8 and AAV5. Transduction was not different between sexes, could be detected as soon as 24 hours after injection, and lasted for at least 30 days (study termination). No tissue damage was observed when compared with controls. All vectors with detectable LG transduction induced neutralizing antibodies. CONCLUSIONS LG gene delivery by AAV vectors appears to be both safe and well tolerated. The choice of vector influences both the overall transduction activity, as well as the spread of vector to other organs. This work supports the use of AAV-mediated gene therapy for dry eye.
Collapse
Affiliation(s)
- Eduardo M Rocha
- Molecular Physiology and Therapeutic Branch, NIDCR, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Morita T, Tanimura A, Shitara A, Suzuki Y, Nezu A, Takuma T, Tojyo Y. Expression of functional Stim1-mKO1 in rat submandibular acinar cells by retrograde ductal injection of an adenoviral vector. Arch Oral Biol 2011; 56:1356-65. [DOI: 10.1016/j.archoralbio.2011.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/25/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
|
23
|
Abstract
Peptide YY3-36 is a satiation hormone released postprandially into the bloodstream from L-endocrine cells in the gut epithelia. In the current report, we demonstrate PYY3-36 is also present in murine as well as in human saliva. In mice, salivary PYY3-36 derives from plasma and is also synthesized in the taste cells in taste buds of the tongue. Moreover, the cognate receptor Y2R is abundantly expressed in the basal layer of the progenitor cells of the tongue epithelia and von Ebner's gland. The acute augmentation of salivary PYY3-36 induced stronger satiation as demonstrated in feeding behavioral studies. The effect is mediated through the activation of the specific Y2 receptor expressed in the lingual epithelial cells. In a long-term study involving diet-induced obese (DIO) mice, a sustained increase in PYY3-36 was achieved using viral vector-mediated gene delivery targeting salivary glands. The chronic increase in salivary PYY3-36 resulted in a significant long-term reduction in food intake (FI) and body weight (BW). Thus this study provides evidence for new functions of the previously characterized gut peptide PYY3-36 suggesting a potential simple and efficient alternative therapeutic approach for the treatment of obesity.
Collapse
|
24
|
Orthopaedic gene therapy using recombinant adeno-associated virus vectors. Arch Oral Biol 2011; 56:619-28. [DOI: 10.1016/j.archoralbio.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 12/05/2010] [Accepted: 12/18/2010] [Indexed: 12/25/2022]
|
25
|
Zheng C, Voutetakis A, Goldstein B, Afione S, Rivera VM, Clackson T, Wenk ML, Boyle M, Nyska A, Chiorini JA, Vallant M, Irwin RD, Baum BJ. Assessment of the safety and biodistribution of a regulated AAV2 gene transfer vector after delivery to murine submandibular glands. Toxicol Sci 2011; 123:247-55. [PMID: 21625005 DOI: 10.1093/toxsci/kfr144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clinical gene transfer holds promise for the treatment of many inherited and acquired disorders. A key consideration for all clinical gene transfer applications is the tight control of transgene expression. We have examined the safety and biodistribution of a serotype 2, recombinant adeno-associated viral (AAV2) vector that encodes a rapamycin-responsive chimeric transcription factor, which regulates the expression of a therapeutic transgene (human erythropoietin [hEpo]). The vector, AAV2-TF2.3w-hEpo (2.5 × 10(7)-2.5 × 10(10) particles), was administered once to a single submandibular gland of male and female mice and mediated hEpo expression in vivo following a rapamycin injection but not in its absence. Control (saline treated) and vector-treated animals maintained their weight, and consumed food and water, similarly. Vector delivery led to no significant toxicological effects as judged by hematology, clinical chemistry, and gross and microscopic pathology evaluations. On day 3 after vector delivery, vector copies were not only abundant in the targeted right submandibular gland but also detected in multiple other tissues. Vector was cleared from the targeted gland much more rapidly in female mice than in male mice. Overall, our results are consistent with the notion that administration of the AAV2-TF2.3w-hEpo vector to salivary glands posed no significant risk in mice.
Collapse
Affiliation(s)
- Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Passineau MJ, Fahrenholz T, Machen L, Zourelias L, Nega K, Paul R, MacDougall MJ, Mamaeva O, Steet R, Barnes J, Kingston HM, Benza RL. α-Galactosidase A expressed in the salivary glands partially corrects organ biochemical deficits in the fabry mouse through endocrine trafficking. Hum Gene Ther 2011; 22:293-301. [PMID: 20858137 DOI: 10.1089/hum.2010.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fabry disease is caused by an X-linked deficiency of the lysosomal enzyme α-galactosidase A (GLA) and has been treated successfully with enzyme replacement therapy (ERT). Gene therapy has been proposed as an alternative to ERT due to the presumed advantages of continuous, endogenous production of the therapeutic enzyme. GLA production in the liver and its therapeutic efficacy in the Fabry mouse have been demonstrated previously with various viral vector systems. In consideration of the potential advantages of using the salivary glands as endogenous GLA biosynthesis sites, we explored the feasibility of this approach in the Fabry mouse. GLA -/0 or -/- mice received an adenoviral vector (2 × 10(10) or 1 × 10(9) viral particles) expressing GLA to the right submandibular gland via oral cannulation of the submandibular duct. Four days later, animals were sacrificed; saliva, plasma, kidney, liver, and brain were collected and assayed using ELISA, Western blot, and a GLA enzymatic activity assay using both traditional fluorescence methods and isotope dilution mass spectrometry by following the U.S. EPA Method 6800. GLA activity was significantly elevated in the serum and liver of both treatment groups, and improvement in the kidney was marginally significant (P < 0.069) in the high-dose group. Notably, we found that liver and salivary gland produce different glycoforms of the GLA transgene. Only small numbers of adenoviral genomes were observed in the livers of treated animals, but in four of 14 in the high-dose groups, liver levels of adenovirus exceeded 20 copies/μg, indicating that the sequestration in the salivary gland was imperfect at high doses. Taken together, these results indicate that the salivary gland-based gene therapy for Fabry disease is promising, and further studies with advanced viral vector gene delivery systems (e.g., adeno-associated virus) for long-term treatment appear to be warranted.
Collapse
Affiliation(s)
- Michael J Passineau
- Division of Cardiovascular Medicine and Allegheny-Singer Research Institute, West-Penn Allegheny Health System, Pittsburgh, PA 15212, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Palaniyandi S, Odaka Y, Green W, Abreo F, Caldito G, Benedetti AD, Sunavala-Dossabhoy G. Adenoviral delivery of Tousled kinase for the protection of salivary glands against ionizing radiation damage. Gene Ther 2010; 18:275-82. [DOI: 10.1038/gt.2010.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther 2010; 18:38-42. [PMID: 20882054 PMCID: PMC3015016 DOI: 10.1038/gt.2010.128] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously (Shan et al, 2005), we reported that adenoviral vector-mediated transfer of the human aquaporin-1 (hAQP1) cDNA to minipig parotid glands following irradiation (IRti) transiently restored salivary flow to near normal levels. This study evaluated a serotype 2, adeno-associated viral (AAV2) vector for extended correction of IR (single dose; 20 Gy)-induced, parotid salivary hypofunction in minipigs. Sixteen weeks following IR, parotid salivary flow decreased by 85-90%. AAV2hAQP1 administration at week 17 transduced only duct cells and resulted in a dose-dependent increase in salivary flow to ∼35% of pre-IR levels (to ∼1ml/10min) after 8 weeks (peak response). Administration of a control AAV2 vector or saline, was without effect. Little change was observed in clinical chemistry and hematology values after AAV2hAQP1 delivery. Vector treated animals generated high anti-AAV2 neutralizing antibody titers by week 4 (∼1:1600) and significant elevations in salivary (∼15%), but not serum, GM-CSF levels. Following vector administration, salivary [Na+] was dramatically increased, from ∼10mM to ∼55 (at 4 weeks) and 39 mM (8 weeks). The findings demonstrate that localized delivery of AAV2hAQP1 to IR-damaged parotid glands leads to increased fluid secretion from surviving duct cells, and may be useful in providing extended relief of salivary hypofunction in previously irradiated patients.
Collapse
|
29
|
Voutetakis A, Zheng C, Cotrim AP, Mineshiba F, Afione S, Roescher N, Swaim WD, Metzger M, Eckhaus MA, Donahue RE, Dunbar CE, Chiorini JA, Baum BJ. AAV5-mediated gene transfer to the parotid glands of non-human primates. Gene Ther 2009; 17:50-60. [PMID: 19759566 DOI: 10.1038/gt.2009.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Salivary glands are potentially useful target sites for multiple clinical applications of gene transfer. Previously, we have shown that serotype 2 adeno-associated viral (AAV2) vectors lead to stable gene transfer in the parotid glands of rhesus macaques. As AAV5 vectors result in considerably greater transgene expression in murine salivary glands than do AAV2 vectors, herein we have examined the use of AAV5 vectors in macaques at two different doses (n = 3 per group; 10(10) or 3 x 10(11) particles per gland). AAV5 vector delivery, as with AAV2 vectors, led to no untoward clinical, hematological or serum chemistry responses in macaques. The extent of AAV5-mediated expression of rhesus erythropoietin (RhEpo) was dose-dependent and similar to that seen with an AAV2 vector. However, unlike results with the AAV2 vector, AAV5 vector-mediated RhEpo expression was transient. Maximal expression peaked at day 56, was reduced by approximately 80% on day 84 and thereafter remained near background levels until day 182 (end of experiment). Quantitative PCR studies of high-dose vector biodistribution at this last time point showed much lower AAV5 copy numbers in the targeted parotid gland (approximately 1.7%) than found with the same AAV2 vector dose. Molecular analysis of the conformation of vector DNA indicated a markedly lower level of concatamerization for the AAV5 vector compared with that of a similar AAV2 vector. In addition, cellular immunological studies suggest that host response differences may occur with AAV2 and AAV5 vector delivery at this mucosal site. The aggregate data indicate that results with AAV5 vectors in murine salivary glands apparently do not extend to macaque glands.
Collapse
Affiliation(s)
- A Voutetakis
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Voutetakis A, Zheng C, Mineshiba F, Cotrim AP, Goldsmith CM, Schmidt M, Afione S, Roescher N, Metzger M, Eckhaus MA, Chiorini JA, Dunbar CE, Donahue RE, Baum BJ. Adeno-associated virus serotype 2-mediated gene transfer to the parotid glands of nonhuman primates. Hum Gene Ther 2007; 18:142-50. [PMID: 17328682 DOI: 10.1089/hum.2006.154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salivary glands (SGs) are promising gene transfer targets with potential clinical applicability. Previous experiments in rodents using recombinant serotype 2 adeno-associated viral (rAAV2) vectors have demonstrated relatively stable transgene-encoded protein levels after SG gene transfer. In the present study, we examine direct SG administration of rAAV2 vectors encoding rhesus macaque erythropoietin (RhEPO) to the parotid glands of nonhuman primates using two different doses (n = 3 per group; 1 x 10(10) or 3 x 10(11) particles/gland, respectively). Gene transfer had no negative effects on general macaque physiology (e.g., weight, complete blood count, and serum chemistry). Macaques were euthanized 6 months after vector administration and complete necropsy and pathology assessments were performed, revealing no vector-related pathological lesions in any of the examined organs. In the high-dose group, RhEPO expression increased quickly (i.e., by week 1) and levels remained relatively stable both in serum and saliva until the end of the study. Serum-to-saliva ratios of RhEPO revealed secretion of the transgene product into the bloodstream, but not to the extent previously observed in mice. Furthermore, the kinetic results were not predicted by those observed in murine SGs. With respect to viral biodistribution, at necropsy vector was found overwhelmingly in the targeted parotid gland ( approximately 100 times more than levels in other tissues, most of which were similar to tissue levels in nontreated animals). We conclude that administration of modest doses of rAAV2 vectors to SGs for therapeutic purposes can be accomplished without significant or permanent injury to the targeted gland or to distant organs of nonhuman primates.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Department of Human Health Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lodde BM, Mineshiba F, Kok MR, Wang J, Zheng C, Schmidt M, Cotrim AP, Kriete M, Tak PP, Baum BJ. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability. Oral Dis 2006; 12:566-72. [PMID: 17054769 DOI: 10.1111/j.1601-0825.2006.01241.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated viral (rAAV2) vector transfer of immunomodulatory transgenes to alter the SS-like disease in NOD mice. Data collected over a 2-year period indicated a changing SS phenotype in these mice and this phenomenon was investigated. METHODS 10(10) particles rAAV2LacZ/gland were delivered to both submandibular glands (SMGs) of NOD/LtJ mice at 8 weeks (before sialadenitis onset) of age. Salivary flow rates were determined at 8 weeks and time of killing. Blood glucose levels and body weights were measured weekly. After killing, saliva and SMGs were harvested. Analyses of salivary output, inflammatory infiltrates (focus score), SMG cytokine profile, body weight, and diabetes mellitus status were performed. Data from six different experimental studies over 2 years were analyzed and compared. RESULTS Salivary flow rate, focus score, and SMG cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12(p70), tumor necrosis factor-alpha and IFNgamma showed changes over time. There were no differences for body weight, diabetes mellitus prevalence, or blood glucose level of non-diabetic mice. CONCLUSION This retrospective report is the first to describe longitudinal variability in the NOD mouse as a model for SS. We advise other investigators to continuously monitor the SS phenotype parameters and include appropriate controls when studying this disease in NOD mice.
Collapse
Affiliation(s)
- B M Lodde
- Gene Therapy and Therapeutics Branch/NIDCR, NIH, DHHS, Bethesda, MD 20892-1190, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|