1
|
Hori I, Harashima H, Yamada Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics 2023; 16:49. [PMID: 38258060 PMCID: PMC10821366 DOI: 10.3390/pharmaceutics16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Most of the energy in neurons is produced in mitochondria. Mitochondria generate the ATP that is essential for neuronal growth, function, and regeneration. Mitochondrial axonal transport plays a crucial role in maintaining neuronal homeostasis and biological activity. Decreased mitochondrial axonal transport at axon terminals, where the metabolism of substances is likely to be delayed, may contribute to neurological dysfunction. Therefore, regulation of mitochondrial dynamics at axon terminals has attracted considerable interest as a strategy to modulate neuronal function. Nanoparticles may be useful in controlling local mitochondrial dynamics. Nevertheless, there are few reports on the influence of drug delivery that nanoparticles impart on the mitochondrial dynamics in neurons. This paper reports the results of a study using liposomes (LPs) to examine local drug delivery and pharmacological actions on neurons. We tested berberine (BBR), which is an activator of AMP-activated protein kinase (AMPK), to examine the utility of this drug as a cellular energy sensor. Axon terminals targeting LPs were prepared. The amount of axon terminals targeting LPs was increased compared with treatment using cationic LPs. Moreover, axon terminal-targeting LPs increased anterograde transport by about 40% compared with that of either naked BBR or cationic LPs and suppressed axonal retraction. Our findings suggest that local drug delivery to neurons is important for enhancing pharmacological activity in axon terminals.
Collapse
Affiliation(s)
- Ikuma Hori
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
2
|
Pozzi D, Caracciolo G. Looking Back, Moving Forward: Lipid Nanoparticles as a Promising Frontier in Gene Delivery. ACS Pharmacol Transl Sci 2023; 6:1561-1573. [PMID: 37974625 PMCID: PMC10644400 DOI: 10.1021/acsptsci.3c00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/19/2023]
Abstract
Lipid nanoparticles (LNPs) have shown remarkable success in delivering genetic materials like COVID-19 LNP vaccines, such as mRNA-1273/SpikeVax by Moderna and BNT162b2/Comirnaty by BioNTech/Pfizer, as well as siRNA for rare inherited diseases, such as Onpattro from Alnylam Pharmaceuticals. These LNPs are advantageous since they minimize side effects, target specific cells, and regulate payload delivery. There has been a surge of interest in these particles due to their success stories; however, we still do not know much about how they work. This perspective will recapitulate the evolution of lipid-based gene delivery, starting with Felgner's pioneering 1987 PNAS paper, which introduced the initial DNA-transfection method utilizing a synthetic cationic lipid. Our journey takes us to the early 2020s, a time when advancements in bionano interactions enabled us to create biomimetic lipoplexes characterized by a remarkable ability to evade capture by immune cells in vivo. Through this overview, we propose leveraging previous achievements to assist us in formulating improved research goals when optimizing LNPs for medical conditions such as infectious diseases, cancer, and heritable disorders.
Collapse
Affiliation(s)
- Daniela Pozzi
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| |
Collapse
|
3
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
5
|
Huang SQ, Zhang HM, Zhang YC, Wang LY, Zhang ZR, Zhang L. Comparison of two methods for tumour-targeting peptide modification of liposomes. Acta Pharmacol Sin 2023; 44:832-840. [PMID: 36271156 PMCID: PMC10043035 DOI: 10.1038/s41401-022-01011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Liposomes decorated with tumour-targeting cell-penetrating peptides can enhance specific drug delivery at the tumour site. The TR peptide, c(RGDfK)-AGYLLGHINLHHLAHL(Aib)HHIL, is pH-sensitive and actively targets tumour cells that overexpress integrin receptor αvβ3, such as B16F10 melanoma cells. Liposomes can be modified with the TR peptide by two different methods: utilization of the cysteine residue on TR to link DSPE-PEG2000-Mal contained in the liposome formula (LIPTR) or decoration of TR with a C18 stearyl chain (C18-TR) for direct insertion into the liposomal phospholipid bilayer through electrostatic and hydrophobic interactions (LIPC18-TR). We found that both TR and C18-TR effectively reversed the surface charge of the liposomes when the systems encountered the low pH of the tumour microenvironment, but LIPC18-TR exhibited a greater increase in the charge, which led to higher cellular uptake efficiency. Correspondingly, the IC50 values of PTX-LIPTR and PTX-LIPC18-TR in B16F10 cells in vitro were 2.1-fold and 2.5-fold lower than that of the unmodified PTX-loaded liposomes (PTX-LIP), respectively, in an acidic microenvironment (pH 6.3). In B16F10 tumour-bearing mice, intravenous administration of PTX-LIPTR and PTX-LIPC18-TR (8 mg/kg PTX every other day for a total of 4 injections) caused tumour reduction ratios of 39.4% and 56.1%, respectively, compared to 20.8% after PTX-LIP administration. Thus, we demonstrated that TR peptide modification could improve the antitumour efficiency of liposomal delivery systems, with C18-TR presenting significantly better results. After investigating different modification methods, our data show that selecting an adequate method is vital even when the same molecule is used for decoration.
Collapse
Affiliation(s)
- Shi-Qi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Han-Ming Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Yi-Cong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Lu-Yao Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy; College of Polymer Science and Engineering; Med-X Center for Materials, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
7
|
Harashima H. Innovative System for Delivering Nucleic Acids/Genes Based on Controlled Intracellular Trafficking as Well as Controlled Biodistribution for Nanomedicines. Biol Pharm Bull 2023; 46:1648-1660. [PMID: 38044089 DOI: 10.1248/bpb.b23-00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
This review paper summarizes progress that has been made in the new field of "Controlled Intracellular Trafficking." This involves the development of new systems for delivering plasmid DNA (pDNA), small interfering RNA (siRNA), mRNA, proteins, their escape from endosomes, the mechanism for how they enter the nucleus, how they enter mithochondria and how materials subsequently function within a cell. In addition, strategies for delivering these materials to a selective tissue after intravenous administration was also intensively investigated not only to the liver but also to tumors, lungs, adipose tissue and the spleen. In 2020, a new mRNA vaccine was developed against coronavirus disease 2019 (COVID-19), where ionizable cationic lipids were used as a delivery system. Our strategy to identify an efficient ionizable cationic lipids (iCL) based on a lipid library as well as their applications concerning the delivery of siRNA/mRNA/pDNA is also described.
Collapse
Affiliation(s)
- Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
8
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2218-2229. [PMID: 33406826 DOI: 10.1021/acsami.0c17866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA50-P(DEAx-r-D5Ay) (EAE5x/y), we concluded a multifactor matching concept (pKa values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency in vitro and in vivo. We identified that the stronger BCs in a pH 5.5-7.4 subset induced by EAE548/29 (pKa = 6.79) and EAE539/37 (pKa = 6.20) are effective for siRNA delivery in vitro. Further, the stronger BCs occurred in a narrow subset of pH 5.5-6.5 and the lower CMC attributed to higher siRNA delivery capacity of EAE539/37 in vivo than EAE548/29 after intravenous administration and subcutaneous injection. More importantly, 87.2% gene knockdown efficacy was achieved by EAE539/37 via subcutaneous injection, which might be useful for an mRNA vaccine adjuvant. Furthermore, EAE539/37 also successfully delivered siRRM2 to tumor via intravenous administration and received highly efficient antitumor activity. Taken together, the suitable pKa values, strong BCs occurred in pH 5.5-6.5, and low CMCs were probably the potential solution for designing efficient polycationic vehicles for siRNA delivery.
Collapse
Affiliation(s)
- Changrong Wang
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Lili Du
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yanliang Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bo Hu
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Suping Bai
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Yuanyu Huang
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Anjie Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Zantye P, Shende S, Ramanan SR, Talukdar I, Kowshik M. Design of a Biocompatible Hydroxyapatite-Based Nanovehicle for Efficient Delivery of Small Interference Ribonucleic Acid into Mouse Embryonic Stem Cells. Mol Pharm 2021; 18:796-806. [PMID: 33464088 DOI: 10.1021/acs.molpharmaceut.0c00684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The small interference RNA (siRNA)-assisted RNA interference approach in stem cells for differentiating into cell-specific lineages is gaining importance for its therapeutic potential. An effective gene delivery platform is crucial to achieve this goal. In this context, self-fluorescent, cell-penetrating peptide (CPP)-functionalized hydroxyapatite nanoparticles (R8HNPs) were synthesized by a modified sol gel technique. R8HNPs were crystalline, displayed characteristic bands, and exhibited broad emission spectra from 350 to 750 nm corresponding to green and red fluorescence. The biocompatible R8HNPs displayed robust binding with siRNA and excellent uptake in R1 ESCs. This was attributed to functionalization with CPP. Moreover, the R8HNP-complexed siRNA exhibited excellent serum and room temperature stability. The NPs protected the siRNA from sonication, pH, and temperature-induced stress and efficiently delivered siRNA to trigger 80% silencing of a pluripotency marker gene, Oct4, in R1 ESCs at 48 h. The transient downregulation was also observed at the protein level. Our findings demonstrate R8HNPs as a promising delivery agent for siRNA therapeutics with the potential for lineage-specific differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Pranjita Zantye
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Soniya Shende
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India
| |
Collapse
|
11
|
Paulino da Silva Filho O, Ali M, Nabbefeld R, Primavessy D, Bovee-Geurts PH, Grimm S, Kirchner A, Wiesmüller KH, Schneider M, Walboomers XF, Brock R. A comparison of acyl-moieties for noncovalent functionalization of PLGA and PEG-PLGA nanoparticles with a cell-penetrating peptide. RSC Adv 2021; 11:36116-36124. [PMID: 35492790 PMCID: PMC9043423 DOI: 10.1039/d1ra05871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.
Collapse
Affiliation(s)
- Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, DF, Brasília, 70.040-03, Brazil
| | - Muhanad Ali
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rike Nabbefeld
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Daniel Primavessy
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmaceutics and Biopharmacy, Philipps-University Marburg, 35032 Marburg, Germany
| | - Petra H. Bovee-Geurts
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Silko Grimm
- Evonik Industries, Health Care, Formulation and Polymers, Kirschenallee, 64293 Darmstadt, Germany
| | - Andreas Kirchner
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | | | - Marc Schneider
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | - X. Frank Walboomers
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| |
Collapse
|
12
|
Khalil IA, Younis MA, Kimura S, Harashima H. Lipid Nanoparticles for Cell-Specific in Vivo Targeted Delivery of Nucleic Acids. Biol Pharm Bull 2020; 43:584-595. [PMID: 32238701 DOI: 10.1248/bpb.b19-00743] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The last few years have witnessed a great advance in the development of nonviral systems for in vivo targeted delivery of nucleic acids. Lipid nanoparticles (LNPs) are the most promising carriers for producing clinically approved products in the future. Compared with other systems used for nonviral gene delivery, LNPs provide several advantages including higher stability, low toxicity, and greater efficiency. Additionally, systems based on LNPs can be modified with ligands and devices for controlled biodistribution and internalization into specific cells. Efforts are ongoing to improve the efficiency of lipid-based gene vectors. These efforts depend on the appropriate design of nanocarriers as well as the development of new lipids with improved gene delivery ability. Several ionizable lipids have recently been developed and have shown dramatically improved efficiency. However, enhancing the ability of nanocarriers to target specific cells in the body remains the most difficult challenge. Systemically administered LNPs can access organs in which the capillaries are characterized by the presence of fenestrations, such as the liver and spleen. The liver has received the most attention to date, although targeted delivery to the spleen has recently emerged as a promising tool for modulating the immune system. In this review, we discuss recent advances in the use of LNPs for cell-specific targeted delivery of nucleic acids. We focus mainly on targeting liver hepatocytes and spleen immune cells as excellent targets for gene therapy. We also discuss the potential of endothelial cells as an alternate approach for targeting organs with a continuous endothelium.
Collapse
Affiliation(s)
- Ikramy A Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University.,Faculty of Pharmacy, Assiut University
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University.,Faculty of Pharmacy, Assiut University
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | |
Collapse
|
13
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
14
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J Control Release 2020; 327:533-545. [PMID: 32916227 PMCID: PMC7477636 DOI: 10.1016/j.jconrel.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Due to the rapid changes that have occurred in the field of drug discovery and the recent developments in the early 21st century, the role of drug delivery systems (DDS) has become increasingly more important. For the past 20 years, our laboratory has been developing gene delivery systems based on lipid-based delivery systems. One of our efforts has been directed toward developing a multifunctional envelope-type nano device (MEND) by modifying the particle surface with octaarginine, which resulted in a remarkably enhanced cellular uptake and improved intracellular trafficking of plasmid DNA (pDNA). When we moved to in vivo applications, however, we were faced with the PEG-dilemma and we shifted our strategy to the incorporation of ionizable cationic lipids into our system. This resulted in some dramatic improvements over our original design and this can be attributed to the development of a new lipid library. We have also developed a mitochondrial targeting system based on a membrane fusion mechanism using a MITO-Porter, which can deliver nucleic acids/pDNA into the matrix of mitochondria. After the appearance of antibody medicines, Opdivo, an immune checkpoint inhibitor, has established cancer immunology as the 4th strategy in cancer therapy. Our DDS technologies can also be applied to this new field of cancer therapy to cure cancer by controlling our immune mechanisms. The latest studies are summarized in this review article.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
15
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. J Pharmacol Exp Ther 2020; 374:354-365. [PMID: 32561686 PMCID: PMC7430450 DOI: 10.1124/jpet.119.264127] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 11/22/2022] Open
Abstract
The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Takahisa Kanekiyo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| |
Collapse
|
16
|
Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J Control Release 2020; 325:10-24. [PMID: 32251770 DOI: 10.1016/j.jconrel.2020.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/27/2022]
Abstract
Malignant melanoma, a highly dangerous type of skin cancer, is usually resistant to pro-apoptosis agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to low death receptor expression levels. After verifying combination of chemotherapy drug paclitaxel (PTX) and TRAIL could significantly enhance their anti-melanoma effects, we developed a liposomal melanoma target-delivery system with tumor microenvironment responsiveness (TRAIL-[Lip-PTX]C18-TR) to co-deliver TRAIL and PTX. TRAIL is attached to negatively-charged liposome surface while PTX is encapsulated inside, with final surface modification of a stearyl chain (C18) fused pH-sensitive cell-penetrating peptide (TR). Here, C18-TR could specifically binds to melanoma-rich integrin receptors αvβ3 for melanoma targeting, help release TRAIL in low pH microenvironment by reversing the liposomal charge, and facilitate consequent liposome internalization. TRAIL-[Lip-PTX]C18-TR displayed significantly better in vitro half-maximal inhibitory concentration (IC50) than other formulations, and an in vivo tumor inhibition rate of 93.8%. Mechanistic study revealed that this synergistic effect is associated with the upregulation of death receptors DR4/5 by PTX. This co-delivery system significantly improved TRAIL-based therapy against melanoma, and provided a simple platform to co-deliver other drugs/agents for melanoma treatment.
Collapse
|
17
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
18
|
Nakamura T, Yamada Y, Sato Y, Khalil IA, Harashima H. Innovative nanotechnologies for enhancing nucleic acids/gene therapy: Controlling intracellular trafficking to targeted biodistribution. Biomaterials 2019; 218:119329. [DOI: 10.1016/j.biomaterials.2019.119329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
19
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Spleen selective enhancement of transfection activities of plasmid DNA driven by octaarginine and an ionizable lipid and its implications for cancer immunization. J Control Release 2019; 313:70-79. [PMID: 31526828 DOI: 10.1016/j.jconrel.2019.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
Abstract
Efficiently delivering plasmid DNA (pDNA) to the spleen is particularly significant for DNA immunization. However, increasing the efficiency of gene expression in spleen cells for achieving a therapeutic effect remains a serious challenge. An ideal spleen-targeted system should avoid liver uptake and should efficiently transfect specific functional spleen cells. Here, we report on pDNA nanocarriers with enhanced transfection in spleen cells driven by synergism between an octaarginine (R8) peptide and YSK05; a pH-responsive ionizable lipid. A double-coating design is essential for enhancing spleen selective transfection which is significantly affected by the total amount of lipid and the composition of the outer coat. The optimized R8/YSK system shows a high gene expression in the spleen with a high spleen/liver ratio and a surprising ability to target spleen B cells. Compared to other organs, the high spleen activity cannot be explained based on the amount of pDNA delivered to each organ, indicating that the system is extremely efficient in transfecting spleen cells. The system can be used in cancer immunization where a strong anti-tumor effect was observed in mice immunized with the R8/YSK system encapsulating antigen-encoding pDNA. The R8/YSK system holds great promise for future applications in the field of DNA vaccination.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
20
|
Kamei N, Yamamoto S, Hashimoto H, Nishii M, Miyaura M, Tomada K, Nakase I, Takeda-Morishita M. Optimization of the method for analyzing endocytosis of fluorescently tagged molecules: Impact of incubation in the cell culture medium and cell surface wash with glycine-hydrochloric acid buffer. J Control Release 2019; 310:127-140. [PMID: 31442466 DOI: 10.1016/j.jconrel.2019.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
To obtain the therapeutic effect of biological medicines, such as proteins and nucleic acids, these medicines must achieve their intracellular target, such as the cytoplasm, and pass through biological membrane barriers. Endocytosis is an attractive route for the intracellular delivery of such drugs, and various endocytosis inhibitors have been used as tools to study the involvement of endocytosis in the cell internalization of delivery carriers. However, the specificity of these inhibitors has been insufficiently studied, and our preliminary tests could not detect the expected effect of the well-known endocytosis inhibitors. Therefore, the present study aimed to optimize the experimental conditions to precisely analyze cellular internalization via endocytosis. We first found that incubation of model molecules, such as transferrin (Tf) and cholera toxin subunit B (CTB), in cell culture medium (DMEM) could efficiently induce their internalization to HeLa cells compared to that in transport buffer (HBSS). Moreover, we clarified that cell surface wash with glycine-hydrochloric acid buffer before confocal microscopy and flow cytometry strengthened the intracellular fluorescence of Tf, CTB, and dextran tagged with fluorescent probes possibly via the neutralization of endosomal pH. Even under the optimized condition, however, the specificity of endocytosis inhibitors was disputable. The present study suggested the importance of the optimization of the study design with endocytosis inhibitors in analyzing cellular internalization.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| | - Satoshi Yamamoto
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Hiro Hashimoto
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Megumi Nishii
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Moe Miyaura
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Kiho Tomada
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Ikuhiko Nakase
- Laboratory for Cellular Regulation Chemistry, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai-Shi, Osaka 599-8570, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
21
|
Guevara ML, Persano S, Persano F. Lipid-Based Vectors for Therapeutic mRNA-Based Anti-Cancer Vaccines. Curr Pharm Des 2019; 25:1443-1454. [DOI: 10.2174/1381612825666190619150221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Cancer vaccines have been widely explored as a key tool for effective cancer immunotherapy. Despite
a convincing rationale behind cancer vaccines, extensive past efforts were unsuccessful in mediating significantly
relevant anti-tumor activity in clinical studies. One of the major reasons for such poor outcome, among others, is
the low immunogenicity of more traditional vaccines, such as peptide-, protein- and DNA- based vaccines.
Recently, mRNA emerged as a promising alternative to traditional vaccine strategies due to its high immunogenicity,
suitability for large-scale and low-cost production, and superior safety profile. However, the clinical
application of mRNA-based anti-cancer vaccines has been limited by their instability and inefficient in vivo delivery.
Recent technological advances have now largely overcome these issues and lipid-based vectors have demonstrated
encouraging results as mRNA vaccine platforms against several types of cancers. This review intends to
provide a detailed overview of lipid-based vectors for the development of therapeutic mRNA-based anti-tumor
vaccines.
Collapse
Affiliation(s)
- Maria L. Guevara
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Persano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
22
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
23
|
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J 2018; 20:108. [PMID: 30306365 PMCID: PMC6398936 DOI: 10.1208/s12248-018-0267-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.
Collapse
Affiliation(s)
- Brittany E Givens
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Youssef W Naguib
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
24
|
Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opin Drug Deliv 2018; 15:1053-1065. [PMID: 30198792 DOI: 10.1080/17425247.2018.1520836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikramy A. Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
25
|
|
26
|
Khalil IA, Kimura S, Sato Y, Harashima H. Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. J Control Release 2018; 275:107-116. [PMID: 29452131 DOI: 10.1016/j.jconrel.2018.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/21/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
We report on the development of a highly efficient gene delivery system based on synergism between octaarginine (R8), a representative cell penetrating peptide, and YSK05, a recently developed pH-sensitive cationic lipid. Attaching a high density of R8 on the surface of YSK05 nanoparticles (NPs) that contained encapsulated plasmid DNA resulted in the formation of positively charged NPs with improved transfection efficiency. To avoid the development of a net positive charge, we controlled the density and topology of the R8 peptide through the use of a two-step coating methodology, in which the inner lipid coat was modified with a low density of R8 which was then covered with an outer neutral YSK05 lipid layer. Although used in low amounts, the R8 peptide improved cellular uptake and endosomal escape of the DNA encapsulated in YSK05 NPs, which resulted in a high transfection efficiency. The two-step coating design was essential for achieving a high degree of transfection, as evidenced by the low activity of NPs modified with the same amount of R8 in a regular single-coated design. In addition, a high transfection efficiency was not observed when R8 or YSK05 were used alone, which confirms the existence of a synergistic effect between both components. The results of this study indicate that cationic cell penetrating peptides have the ability to improve transfection activities without imparting a net positive charge when used in the proper amount and in conjunction with the appropriate design. This is expected to significantly increase the potential applications of these peptides as tools for augmenting the activity of lipid nanoparticles used in gene delivery.
Collapse
Affiliation(s)
- Ikramy A Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
27
|
Zhu J, Qiao M, Wang Q, Ye Y, Ba S, Ma J, Hu H, Zhao X, Chen D. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018; 162:47-59. [PMID: 29432988 DOI: 10.1016/j.biomaterials.2018.01.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective strategy to achieve efficient disassembly from stable polyplexes. Moreover, polyplexes equipped with the enhanced disassembly and endosomal escape provides a new potential way to tackle the intracellular delivery bottleneck for siRNA delivery.
Collapse
Affiliation(s)
- Jia Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Qi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Yuqing Ye
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Shuang Ba
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Jingjing Ma
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
28
|
Khalil IA, Harashima H. An efficient PEGylated gene delivery system with improved targeting: Synergism between octaarginine and a fusogenic peptide. Int J Pharm 2018; 538:179-187. [PMID: 29341911 DOI: 10.1016/j.ijpharm.2018.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/10/2023]
Abstract
Because of their ability to translocate different cargos into cells, arginine-rich cell penetrating peptides (CPPs) are promising vehicles for drug and gene delivery. The use of CPP-based carriers, however, is hampered by the lack of specificity and by interactions with negative serum components. Polyethylene glycol (PEG) is used to decrease such non-specific interactions, albeit its use is associated with reduced transfection efficiency. In this study, we describe the development of PEGylated CPP-based gene carrier with an improved targeting and a high transfection activity. The system was prepared by condensing DNA with a polycation followed by coating with a lipid envelope containing the octaarginine (R8) peptide as a model CPP. R8-modified nanoparticles produced high transfection activities, but the efficiency was reduced by PEG shielding. The reduced activity could be fully restored by the addition of a targeting ligand and a pH-sensitive fusogenic peptide. The efficiency of the proposed system is quite high, even in the presence of serum, and shows improved targeting and selectivity. Surprisingly, the effect of the fusogenic peptide was dramatically reduced in the absence of R8. Although shielded, R8 augmented the activity of the fusogenic peptide, suggesting a synergistic effect between the two peptides at the intracellular level.
Collapse
Affiliation(s)
- Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
29
|
Vanegas Sáenz JR, Tenkumo T, Kamano Y, Egusa H, Sasaki K. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles. PLoS One 2017; 12:e0188347. [PMID: 29145481 PMCID: PMC5690608 DOI: 10.1371/journal.pone.0188347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.
Collapse
Affiliation(s)
- Juan Ramón Vanegas Sáenz
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- * E-mail: ,
| | - Taichi Tenkumo
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Nakase I, Noguchi K, Fujii I, Futaki S. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci Rep 2016; 6:34937. [PMID: 27748399 PMCID: PMC5066177 DOI: 10.1038/srep34937] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kosuke Noguchi
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan.,Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
Ha KD, Bidlingmaier SM, Liu B. Macropinocytosis Exploitation by Cancers and Cancer Therapeutics. Front Physiol 2016; 7:381. [PMID: 27672367 PMCID: PMC5018483 DOI: 10.3389/fphys.2016.00381] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022] Open
Abstract
Macropinocytosis has long been known as a primary method for cellular intake of fluid-phase and membrane-bound bulk cargo. This review seeks to re-examine the latest studies to emphasize how cancers exploit macropinocytosis to further their tumorigenesis, including details in how macropinocytosis can be adapted to serve diverse functions. Furthermore, this review will also cover the latest endeavors in targeting macropinocytosis as an avenue for novel therapeutics.
Collapse
Affiliation(s)
- Kevin D Ha
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Scott M Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
32
|
Tenkumo T, Vanegas Sáenz JR, Takada Y, Takahashi M, Rotan O, Sokolova V, Epple M, Sasaki K. Gene transfection of human mesenchymal stem cells with a nano-hydroxyapatite-collagen scaffold containing DNA-functionalized calcium phosphate nanoparticles. Genes Cells 2016; 21:682-95. [DOI: 10.1111/gtc.12374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Taichi Tenkumo
- Liaison Center for Innovative Dentistry; Tohoku University Graduate School of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Juan Ramón Vanegas Sáenz
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate school of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Yukyo Takada
- Division of Dental Biomaterials; Tohoku University Graduate School of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Masatoshi Takahashi
- Division of Dental Biomaterials; Tohoku University Graduate School of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| | - Olga Rotan
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE); University of Duisburg-Essen; Universitätsstraße 5-7 Essen D-45117 Germany
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE); University of Duisburg-Essen; Universitätsstraße 5-7 Essen D-45117 Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE); University of Duisburg-Essen; Universitätsstraße 5-7 Essen D-45117 Germany
| | - Keiichi Sasaki
- Liaison Center for Innovative Dentistry; Tohoku University Graduate School of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate school of Dentistry; 4-1 Seiryo-machi Aoba-ku Sendai 980-8575 Japan
| |
Collapse
|
33
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
34
|
Somiya M, Kuroda S. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Adv Drug Deliv Rev 2015; 95:77-89. [PMID: 26482188 DOI: 10.1016/j.addr.2015.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
As drug delivery systems, nanocarriers should be capable of executing the following functions: evasion of the host immune system, targeting to the diseased site, entering cells, escaping from endosomes, and releasing payloads into the cytoplasm. Since viruses perform some or all of these functions, they are considered naturally occurring nanocarriers. To achieve biomimicry of the hepatitis B virus (HBV), we generated the "bio-nanocapsule" (BNC)-which deploys the human hepatocyte-targeting domain, fusogenic domain, and polymerized-albumin receptor domain of HBV envelope L protein on its surface-by overexpressing the L protein in yeast cells. BNCs are capable of delivering various payloads to the cytoplasm of human hepatic cells specifically in vivo, which is achieved via formation of complexes with various materials (e.g., drugs, nucleic acids, and proteins) by electroporation, fusion with liposomes, or chemical modification. In this review, we describe BNC-related technology, discuss retargeting strategies for BNCs, and outline other virus-inspired nanocarriers.
Collapse
|
35
|
Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods. Adv Drug Deliv Rev 2015; 91:70-91. [PMID: 25858664 DOI: 10.1016/j.addr.2015.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel B Allan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
36
|
Baio JE, Schach D, Fuchs AV, Schmüser L, Billecke N, Bubeck C, Landfester K, Bonn M, Bruns M, Weiss CK, Weidner T. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chem Commun (Camb) 2015; 51:273-275. [PMID: 25329926 DOI: 10.1039/c4cc07278b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-sensitive viral fusion protein mimics are widely touted as a promising route towards site-specific delivery of therapeutic compounds across lipid membranes. Here, we demonstrate that a fusion protein mimic, designed to achieve a reversible, pH-driven helix-coil transition mechanism, retains its functionality when covalently bound to a surface.
Collapse
Affiliation(s)
- Joe E Baio
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | - Denise Schach
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | - Adrian V Fuchs
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | - Lars Schmüser
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | - Nils Billecke
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | | | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| | - Michael Bruns
- Karlsruhe Institute of Technology, Institute for Applied Materials and Karlsruhe Nano Micro Facility, 76344 Eggenstein-Leopoldshafen, Germany
| | - Clemens K Weiss
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany.,University of Applies Sciences Bingen, 55411 Bingen, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, 55270 Mainz, Germany
| |
Collapse
|
37
|
Sato Y, Nakamura T, Yamada Y, Akita H, Harashima H. Multifunctional enveloped nanodevices (MENDs). ADVANCES IN GENETICS 2015; 88:139-204. [PMID: 25409606 DOI: 10.1016/b978-0-12-800148-6.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| |
Collapse
|
38
|
Abstract
Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.
Collapse
|
39
|
Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, Zhou J, Zhong H. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 2015; 23:1980-91. [PMID: 26181841 DOI: 10.3109/10717544.2015.1043472] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biodegradable polymer nanoparticle drug carriers are an attractive strategy for oral delivery of peptide and protein drugs. However, their ability to cross the intestinal epithelium membrane is largely limited. Therefore, in the present study, cell-penetrating peptides (R8, Tat, penetratin) and a secretion peptide (Sec) with N-terminal stearylation were introduced to modify nanoparticles (NPs) on the surface to improve oral bioavailability of peptide and protein drugs. In vitro studies conducted in Caco-2 cells showed the value of the apparent permeability coefficient (Papp) of the nanoparticles co-modified with Sec and penetratin (Sec-Pen-NPs) was about two-times greater than that of the nanoparticles modified with only penetratin (Pen-NPs), while the increase of transcellular transport of nanoparticles modified together with Sec and R8 (Sec-R8-NPs), or Sec and Tat (Sec-Tat-NPs), was not significant compared with nanoparticles modified with only R8 (R8-NPs) or Tat (Tat-NPs). Using insulin as the model drug, in vivo studies performed on rats indicated that compared to Pen-NPs, the relative bioavailability of insulin for Sec-Pen-NPs was 1.71-times increased after ileal segments administration, and stronger hypoglycemic effects was also observed. Therefore, the nanoparticles co-modified with penetratin and Sec could act as attractive carriers for oral delivery of insulin.
Collapse
Affiliation(s)
- Siqi Zhu
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Shuangxi Chen
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Yuan Gao
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Feng Guo
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Fengying Li
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Baogang Xie
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Jianliang Zhou
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Haijun Zhong
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| |
Collapse
|
40
|
Li Y, Tian H, Ding J, Lin L, Chen J, Gao S, Chen X. Guanidinated Thiourea-Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Adv Healthc Mater 2015; 4:1369-75. [PMID: 25899995 DOI: 10.1002/adhm.201500165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/29/2015] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) provides the promising treatments of gene-related diseases while hindered by the lack of highly efficient delivery platform with low cytotoxicity. Moreover, the intracellular fates of nonviral gene carriers are closely related to their internalization pathway, and eventually influence their RNAi efficiency. Herein, a series of guanidinated thiourea-modified polyethylenimines (PEI-MTU-Gs) are synthesized and utilized as the efficient carriers of small interfering RNA (siRNA) with up to 71.6% inhibition of luciferase activity in the luciferase-expressing cell lines (i.e., HeLa/Luc cells). The introduction of noncationic hydrogen bond donors, that is, thiourea groups, provides the carriers with much lower cytotoxicities and relatively looser complex structures that facilitate the intracellular release of siRNAs. Furthermore, the multiguanidino structures endow the PEI-MTU-G/siRNA complexes with the ability to directly penetrate cell membrane, which facilitates the cellular internalization while avoiding them suffering from the rigorous lysosomes. The results demonstrate PEI-MTU35 -Gs as promising siRNA carriers for further gene therapy.
Collapse
Affiliation(s)
- Yuce Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Shiqian Gao
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
41
|
Kim SW, Khang D. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency. Int J Nanomedicine 2015; 10:3989-4008. [PMID: 26124658 PMCID: PMC4476429 DOI: 10.2147/ijn.s83951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Dongwoo Khang
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
42
|
Peptide-mediated delivery: an overview of pathways for efficient internalization. Ther Deliv 2015; 5:1203-22. [PMID: 25491671 DOI: 10.4155/tde.14.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery.
Collapse
|
43
|
Di Pisa M, Chassaing G, Swiecicki JM. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. J Pept Sci 2015; 21:356-69. [PMID: 25787823 DOI: 10.1002/psc.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
Abstract
Cell-penetrating peptides (CPPs) are short sequences often rich in cationic residues with the remarkable ability to cross cell membranes. In the past 20 years, CPPs have gained wide interest and have found numerous applications in the delivery of bioactive cargoes to the cytosol and even the nucleus of living cells. The covalent or non-covalent addition of hydrocarbon moieties to cationic CPPs alters the hydrophobicity/hydrophilicity balance in their sequence. Such perturbation dramatically influences their interaction with the cell membrane, might induce self-assembling properties and modifies their intracellular trafficking. In particular, the introduction of lipophilic moieties changes the subcellular distribution of CPPs and might result in a dramatically increase of the internalization yield of the co-transported cargoes. Herein, we offer an overview of different aspects of the recent findings concerning the properties of CPPs covalently or non-covalently associated to hydrocarbons. We will focus on the impact of the hydrocarbon moieties on the delivery of various cargoes, either covalently or non-covalently bound to the modified CPPs. We will also provide some key elements to rationalize the influence of the hydrocarbons moieties on the cellular uptake. Furthermore, the recent in vitro and in vivo successful applications of acylated CPPs will be summarized to provide a broad view of the versatility of these modified CPPs as small-molecules and oligonucleotides vectors.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; Ecole Normale Supérieure (ENS), UMR 7203, Laboratoire des Biomolécules, Département de Chimie, 24 Rue Lhomond, Paris, F-75005, France
| | | | | |
Collapse
|
44
|
Yamada Y, Hashida M, Harashima H. Hyaluronic acid controls the uptake pathway and intracellular trafficking of an octaarginine-modified gene vector in CD44 positive- and CD44 negative-cells. Biomaterials 2015; 52:189-98. [PMID: 25818425 DOI: 10.1016/j.biomaterials.2015.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
The cellular uptake pathway for a gene vector is an important factor in transgene expression. We previously constructed an original gene vector, multifunctional envelope-type nano device (MEND). The use of octaarginine (R8), a cell-penetrating peptide dramatically enhanced the transfection activity of the MEND since efficient cellular uptake via macropinocytosis, while the R8 should overcome its poor cell selectivity. Here we prepared an R8-MEND equipped with GALA (a peptide for endosomal escape) (R8/GALA-MEND) coated with hyaluronic acid (HA) (HA-R8/GALA-MEND), a natural ligand for cancer cells overexpressing CD44. We investigated the cellular uptake pathway of the HA-R8/GALA-MEND and the R8/GALA-MEND using HCT116 cells overexpressing CD44. Both carriers were taken up by cells mainly via macropinocytosis, whereas only the HA-R8/GALA-MEND was partially internalized into cells via a CD44-mediated pathway. Investigation of transgene expression showed that the HA-R8/GALA-MEND had a high transfection activity in HCT116 cells via both macropinocytotic and CD44-mediated pathways. On the other hand, the value for the HA-R8/GALA-MEND was significantly decreased compared with the value for the R8/GALA-MEND in NIH3T3 cells (CD44-negative cells). These findings indicate that the HA-coating controls the intracellular pathway for R8-modified nanocarriers, and that a CD44-mediated pathway is an important route for transgene expression.
Collapse
Affiliation(s)
- Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Masahiro Hashida
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
45
|
Naik RJ, Sharma R, Nisakar D, Purohit G, Ganguli M. Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1053-64. [PMID: 25637297 DOI: 10.1016/j.bbamem.2015.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Arginine-rich peptides have been used extensively as efficient cellular transporters. However, gene delivery with such peptides requires development of strategies to improve their efficiency. We had earlier demonstrated that addition of small amounts of exogenous glycosaminoglycans (GAGs) like heparan sulfate or chondroitin sulfate to different arginine-rich peptide-DNA complexes (polyplexes) led to an increase in their gene delivery efficiency. This was possibly due to the formation of a 'GAG coat' on the polyplex surface through electrostatic interactions which improved their extracellular stability and subsequent cellular entry. In this report, we have attempted to elucidate the differences in intracellular processing of the chondroitin sulfate (CS)-coated polyplexes in comparison to the native polyplexes by using a combination of endocytic inhibitors and co-localization with endosomal markers in various cell lines. We observed that both the native and CS-coated polyplexes are internalized by multiple endocytic pathways although in some cell lines, the coated polyplexes are taken up primarily by caveolae mediated endocytosis. In addition, the CS-coat improves the endosomal escape of the polyplexes as compared to the native polyplexes. Interestingly, during these intracellular events, exogenous CS is retained with the polyplexes until their accumulation near the nucleus. Thus we show for the first time that exogenous GAGs in small amounts improve intracellular routing and nuclear accumulation of arginine-based polyplexes. Therefore, addition of exogenous GAGs is a promising strategy to enhance the transfection efficiency of cationic arginine-rich peptides in multiple cell types.
Collapse
Affiliation(s)
- Rangeetha J Naik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Gunjan Purohit
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India.
| |
Collapse
|
46
|
Maeki M, Saito T, Sato Y, Yasui T, Kaji N, Ishida A, Tani H, Baba Y, Harashima H, Tokeshi M. A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Adv 2015. [DOI: 10.1039/c5ra04690d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation behavior was discussed for lipid nanoparticles (LNPs) in the microfluidic devices equipped with different cycle numbers of the micromixers.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Tatsuyoshi Saito
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Sapporo 060-0812
- Japan
| | - Takao Yasui
- Department of Applied Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Noritada Kaji
- Department of Applied Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Akihiko Ishida
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Hirofumi Tani
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | | | - Manabu Tokeshi
- Division of Biotechnology and Macromolecular Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
47
|
Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Schach D, Globisch C, Roeters SJ, Woutersen S, Fuchs A, Weiss CK, Backus EHG, Landfester K, Bonn M, Peter C, Weidner T. Sticky water surfaces: Helix–coil transitions suppressed in a cell-penetrating peptide at the air-water interface. J Chem Phys 2014; 141:22D517. [DOI: 10.1063/1.4898711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Denise Schach
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christoph Globisch
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Steven J. Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Adrian Fuchs
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Clemens K. Weiss
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Life Sciences and Engineering, Universtiy of Applied Sciences Bingen, 55411 Bingen, Germany
| | | | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
49
|
“Programmed packaging” for gene delivery. J Control Release 2014; 193:316-23. [DOI: 10.1016/j.jconrel.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
|
50
|
Kajimoto K, Sato Y, Nakamura T, Yamada Y, Harashima H. Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo. J Control Release 2014; 190:593-606. [DOI: 10.1016/j.jconrel.2014.03.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
|