1
|
Yang J, Wu S, Yang J, Zhang Q, Dong X. Amyloid beta-correlated plasma metabolite dysregulation in Alzheimer's disease: an untargeted metabolism exploration using high-resolution mass spectrometry toward future clinical diagnosis. Front Aging Neurosci 2023; 15:1189659. [PMID: 37455936 PMCID: PMC10338932 DOI: 10.3389/fnagi.2023.1189659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a leading cause of dementia, and it has rapidly become an increasingly burdensome and fatal disease in society. Despite medical research advances, accurate recognition of AD remains challenging. Epidemiological evidence suggests that metabolic abnormalities are tied to higher AD risk. Methods This study utilized case-control analyses with plasma samples and identified a panel of 27 metabolites using high-resolution mass spectrometry in both the Alzheimer's disease (AD) and cognitively normal (CN) groups. All identified variables were confirmed using MS/MS with detected fragmented ions and public metabolite databases. To understand the expression of amyloid beta proteins in plasma, ELISA assays were performed for both amyloid beta 42 (Aβ42) and amyloid beta 40 (Aβ40). Results The levels of plasma metabolites PAGln and L-arginine were found to significantly fluctuate in the peripheral blood of AD patients. In addition, ELISA results showed a significant increase in amyloid beta 42 (Aβ42) in AD patients compared to those who were cognitively normal (CN), while amyloid beta 40 (Aβ40) did not show any significant changes between the groups. Furthermore, positive correlations were observed between Aβ42/Aβ40 and PAGln or L-arginine, suggesting that both metabolites could play a role in the pathology of amyloid beta proteins. Binary regression analysis with these two metabolites resulted in an optimal model of the ROC (AUC = 0.95, p < 0.001) to effectively discriminate between AD and CN. Discussion This study highlights the potential of advanced high-resolution mass spectrometry (HRMS) technology for novel plasma metabolite discovery with high stability and sensitivity, thus paving the way for future clinical studies. The results of this study suggest that the combination of PAGln and L-arginine holds significant potential for improving the diagnosis of Alzheimer's disease (AD) in clinical settings. Overall, these findings have important implications for advancing our understanding of AD and developing effective approaches for its future clinical diagnosis.
Collapse
Affiliation(s)
- Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Shuo Wu
- Neurology Department, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jun Yang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Qun Zhang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Suzhou Innovation Center of Shanghai University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Melis MR, Argiolas A. Erectile Function and Sexual Behavior: A Review of the Role of Nitric Oxide in the Central Nervous System. Biomolecules 2021; 11:biom11121866. [PMID: 34944510 PMCID: PMC8699072 DOI: 10.3390/biom11121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), the neuromodulator/neurotransmitter formed from l-arginine by neuronal, endothelial and inducible NO synthases, is involved in numerous functions across the body, from the control of arterial blood pressure to penile erection, and at central level from energy homeostasis regulation to memory, learning and sexual behavior. The aim of this work is to review earlier studies showing that NO plays a role in erectile function and sexual behavior in the hypothalamus and its paraventricular nucleus and the medial preoptic area, and integrate these findings with those of recent studies on this matter. This revisitation shows that NO influences erectile function and sexual behavior in males and females by acting not only in the paraventricular nucleus and medial preoptic area but also in extrahypothalamic brain areas, often with different mechanisms. Most importantly, since these areas are strictly interconnected with the paraventricular nucleus and medial preoptic area, send to and receive neural projections from the spinal cord, in which sexual communication between brain and genital apparatus takes place, this review reveals that central NO participates in concert with neurotransmitters/neuropeptides to a neural circuit controlling both the consummatory (penile erection, copulation, lordosis) and appetitive components (sexual motivation, arousal, reward) of sexual behavior.
Collapse
|
3
|
Poole EI, Rust VA, Crosby KM. Nitric Oxide Acts in the Rat Dorsomedial Hypothalamus to Increase High Fat Food Intake and Glutamate Transmission. Neuroscience 2020; 440:277-289. [DOI: 10.1016/j.neuroscience.2020.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
|
4
|
Abstract
Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.”
Collapse
Affiliation(s)
- Snehlata V Gajbhiye
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Kshitij S Jadhav
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Padmaja A Marathe
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Dattatray B Pawar
- Departments of Pharmacology and Therapeutics, Seth Gordhandas Sundardas Medical College and King Edward Memorial Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Zheng H, Bidasee KR, Mayhan WG, Patel KP. Lack of central nitric oxide triggers erectile dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1158-64. [PMID: 17095652 DOI: 10.1152/ajpregu.00429.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erectile dysfunction is a serious and common complication of diabetes mellitus. The proposed mechanisms for erectile dysfunction in diabetes include central and autonomic neuropathy, endothelial dysfunction, and smooth muscle dysfunction. The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in centrally mediated penile erection. This study was designed to examine the role of nitric oxide (NO) within the central nervous system component of the behavioral responses including erection in diabetic rats. N-methyl-d-aspartic acid (NMDA)-induced erection, yawning, and stretch through the PVN can be blocked by prior administration of NO synthase (NOS) blocker, l-NMMA, in freely moving, conscious male normal rats. Four weeks after streptozotocin (STZ) and vehicle injections, NMDA-induced erection, yawning, and stretch responses through the PVN are significantly blunted in diabetic rats compared with control rats. Examination of neuronal NOS (nNOS) protein by Western blot analysis indicated a reduced amount of nNOS protein in the PVN of rats with diabetes compared with control rats. Furthermore, restoring nNOS within the PVN by gene transfer using adenoviral transfection significantly restored the erectile and yawning responses to NMDA in diabetic rats. These data demonstrate that a blunted NO mechanism within the PVN may contribute to NMDA-induced erectile dysfunction observed in diabetes mellitus.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
6
|
Dong HW, Swanson LW. Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 2006; 494:108-41. [PMID: 16304682 PMCID: PMC2570190 DOI: 10.1002/cne.20789] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The basic structural organization of axonal projections from the small but distinct magnocellular and ventral nuclei (of the bed nuclei of the stria terminalis) was analyzed with the Phaseolus vulgaris leucoagglutinin anterograde tract tracing method in adult male rats. The former's overall projection pattern is complex, with over 80 distinct terminal fields ipsilateral to injection sites. Innervated regions in the cerebral hemisphere and brainstem fall into nine general functional categories: cerebral nuclei, behavior control column, orofacial motor-related, humorosensory/thirst-related, brainstem autonomic control network, neuroendocrine, hypothalamic visceromotor pattern-generator network, thalamocortical feedback loops, and behavioral state control. The most novel findings indicate that the magnocellular nucleus projects to virtually all known major parts of the brain network that controls pelvic functions, including micturition, defecation, and penile erection, as well as to brain networks controlling nutrient and body water homeostasis. This and other evidence suggests that the magnocellular nucleus is part of a corticostriatopallidal differentiation modulating and coordinating pelvic functions with the maintenance of nutrient and body water homeostasis. Projections of the ventral nucleus are a subset of those generated by the magnocellular nucleus, with the obvious difference that the ventral nucleus does not project detectably to Barrington's nucleus, the subfornical organ, the median preoptic and parastrial nuclei, the neuroendocrine system, and midbrain orofacial motor-related regions.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-2520, USA
| | | |
Collapse
|
7
|
Argiolas A, Melis MR. Central control of penile erection: Role of the paraventricular nucleus of the hypothalamus. Prog Neurobiol 2005; 76:1-21. [PMID: 16043278 DOI: 10.1016/j.pneurobio.2005.06.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 05/02/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
The paraventricular nucleus of the hypothalamus is an integration centre between the central and peripheral autonomic nervous systems. It is involved in numerous functions from feeding, metabolic balance, blood pressure and heart rate, to erectile function and sexual behaviour. In particular, a group of oxytocinergic neurons originating in this nucleus and projecting to extra-hypothalamic brain areas (e.g., hippocampus, medulla oblongata and spinal cord) control penile erection in male rats. Activation of these neurons by dopamine and its agonists, excitatory amino acids (N-methyl-D-aspartic acid) or oxytocin itself, or by electrical stimulation leads to penile erection, while their inhibition by gamma-amino-butyric acid (GABA) and its agonists or by opioid peptides and opiate-like drugs inhibits this sexual response. The activation of these neurons is secondary to the activation of nitric oxide synthase, which produces nitric oxide. Nitric oxide in turn causes, by a mechanism that is as yet unidentified, the release of oxytocin in extra-hypothalamic brain areas. Other compounds recently identified that facilitate penile erection by activating central oxytocinergic neurons are peptide analogues of hexarelin, a growth hormone releasing peptide, pro-VGF-derived peptides, endogenous peptides that may be released by neuronal nerve endings impinging on oxytocinergic cell bodies, SR 141716A, a cannabinoid CB1 receptor antagonist, and, less convincingly, adrenocorticotropin-melanocyte-stimulating hormone (ACTH-MSH)-related peptides. Paraventricular oxytocinergic neurons and similar mechanisms are also involved in penile erection occurring in physiological contexts, namely noncontact erections that occur in male rats in the presence of an inaccessible receptive female, and during copulation. These findings show that the paraventricular nucleus of the hypothalamus plays an important role in the control of erectile function and sexual activity. As the male rat is a model of sexual behaviour and penile physiology, which has largely increased in the last years our knowledge of peripheral and central mechanisms controlling erectile function (drugs that induce penile erection in male rats usually do so also in man), the above results may have great significance in terms of a human perspective for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Antonio Argiolas
- Bernard B. Brodie Department of Neuroscience, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, S.P. Sestu-Monserrato Km 0.700, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
8
|
Jahng JW, Spencer CM, Choi SH, Kim DG, Houpt TA. Nitric oxide is involved in lithium-induced immediate early gene expressions in the adrenal medulla. Eur J Pharmacol 2004; 489:111-6. [PMID: 15063162 DOI: 10.1016/j.ejphar.2004.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/16/2004] [Accepted: 02/26/2004] [Indexed: 11/26/2022]
Abstract
This study was conducted to determine if nitric oxide (NO) is involved in lithium-induced expression of c-Fos and inducible cAMP early repressor (ICER) in the adrenal gland. Rats received an intraperitoneal injection of isotonic lithium (76 mg/kg) with either an intracerebroventricle (i.c.v., 250 microg) or intraperitoneal (i.p., 30 mg/kg) N(omega)-nitro-L-arginine methyl ester (L-NAME) pretreatment. The adrenal expression of c-Fos and ICER was examined by in situ hybridization 1 h after the lithium injection. The cortical c-Fos/ICER expression induced by lithium was not modulated by L-NAME pretreatment. However, lithium-induced medullary expression of c-Fos was attenuated by central L-NAME, and ICER by systemic L-NAME. These results suggest that nitric oxide is, at least partly, involved in lithium-induced c-Fos/ICER expression in the adrenal medulla, and that central nitric oxide may play a different role from peripheral nitric oxide in lithium-induced activation of adrenal medulla.
Collapse
Affiliation(s)
- Jeong Won Jahng
- Department of Pharmacology, Yonsei Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | | | | | | | | |
Collapse
|
9
|
Chen KK, Chang LS. Effect of excitatory amino acid receptor agonists on penile erection after administration into paraventricular nucleus of hypothalamus in the rat. Urology 2003; 62:575-80. [PMID: 12946780 DOI: 10.1016/s0090-4295(03)00411-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate whether the excitatory amino acid receptor agonists can activate the paraventricular nucleus of the hypothalamus (PVN) and induce penile erections in the rat. METHODS Male adult Sprague-Dawley rats were used. A 26-gauge needle was inserted into the corpus cavernosum to monitor the intracavernous pressure (ICP) simultaneously with the systemic arterial pressure and heart rate. The study was divided into seven parts: stereotaxic delivery of N-methyl-d-aspartic acid (NMDA) (50 ng/500 nL) into the PVN; administration of the NMDA noncompetitive antagonist MK-801 (100 ng/250 nL) and NMDA (50 ng/250 nL) into the PVN; administration of the NMDA competitive antagonist (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 100 ng/250 nL) and NMDA (50 ng/250 nL) into the PVN; microinjection of (+/-)-alpha-(amino)-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA; 100 ng/500 nL) into the PVN; microinjection of trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD; 100 ng/500 nL) into the PVN; saline 500 nL into the PVN; and intracavernous administration of NMDA (50 ng/100 microL). RESULTS On administration of NMDA into the PVN, a significant increase occurred in the ICP from a resting 8.3 +/- 1.8 mm Hg to a peak at 59.0 +/- 8.4 mm Hg. No change occurred in the resting ICP after administration of either the mixture of MK-801 and NMDA or CPP and NMDA into the PVN. Microinjection of AMPA, ACPD, or saline into the PVN and intracavernous administration of NMDA were all ineffective to induce an increase in ICP. CONCLUSIONS The results of this study suggest that ionotropic excitatory amino acid (NMDA) may have an effect on inducing penile erection through activation of the PVN in the rat.
Collapse
Affiliation(s)
- Kuang-Kuo Chen
- Division of Urology, Department of Surgery, Taipei Veterans General Hospital, Taiwan, People's Republic of China
| | | |
Collapse
|
10
|
Andersson KE. Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J Urol 2003; 170:S6-13; discussion S13-4. [PMID: 12853766 DOI: 10.1097/01.ju.0000075362.08363.a4] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE The importance of signaling pathways in penile smooth muscles involved in normal erection and erectile dysfunction (ED) is discussed based on a review of the literature. MATERIALS AND METHODS Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents but also by visual, olfactory and imaginary stimuli. The generated nervous signals will influence the balance between the contractant and relaxant factors, which control the degree of contraction of penile smooth muscles and, thus, determine the functional state of the penis. The different steps involved in neurotransmission, impulse propagation and intracellular transduction of neural signals may be changed in different types of erectile dysfunction. RESULTS Recent findings have suggested an important role for RhoA/Rho kinase in the regulation of cavernosal smooth muscle tone and that changes in this pathway may contribute to ED in various patient subgroups, eg diabetes and vascular disease. Neurogenic nitric oxide is still considered the most important factor for immediate relaxation of penile vessels and corpus cavernosum. However, endothelially generated nitric oxide seems essential for maintaining erection. Endothelial dysfunction can contribute to ED in several patient subgroups. In addition, in conditions associated with reduced function of nerves and endothelium, such as aging, hypertension, smoking, hypercholesterolemia and diabetes, circulatory and structural changes in the penile tissues can result in arterial insufficiency and defect muscle relaxation. CONCLUSIONS Different types of ED often have overlapping pathophysiologies but may also have common pathways contributing to ED. Such pathways may be potential treatment targets.
Collapse
|