1
|
Hodder RK, O'Brien KM, Tzelepis F, Wyse RJ, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2020; 5:CD008552. [PMID: 32449203 PMCID: PMC7273132 DOI: 10.1002/14651858.cd008552.pub7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Testing the effects of interventions to increase consumption of fruit and vegetables, including those focused on specific child-feeding strategies or broader multicomponent interventions targeting the home or childcare environment is required to assess the potential to reduce this disease burden. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 January 2020. We searched Proquest Dissertations and Theses in November 2019. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included trials to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included trials; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 80 trials with 218 trial arms and 12,965 participants. Fifty trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fifteen trials examined the impact of parent nutrition education only in increasing child fruit and vegetable intake. Fourteen trials examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. Two trials examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake. One trial examined the impact of a child-focused mindfulness intervention in increasing vegetable intake. We judged 23 of the 80 included trials as free from high risks of bias across all domains. Performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining trials. There is low-quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption, equivalent to an increase of 5.30 grams as-desired consumption of vegetables (SMD 0.50, 95% CI 0.29 to 0.71; 19 trials, 2140 participants; mean post-intervention follow-up = 8.3 weeks). Multicomponent interventions versus no intervention has a small effect on child consumption of fruit and vegetables (SMD 0.32, 95% CI 0.09 to 0.55; 9 trials, 2961 participants; moderate-quality evidence; mean post-intervention follow-up = 5.4 weeks), equivalent to an increase of 0.34 cups of fruit and vegetables a day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.13, 95% CI -0.02 to 0.28; 11 trials, 3050 participants; very low-quality evidence; mean post-intervention follow-up = 13.2 weeks). We were unable to pool child nutrition education interventions in meta-analysis; both trials reported a positive intervention effect on child consumption of fruit and vegetables (low-quality evidence). Very few trials reported long-term effectiveness (6 trials), cost effectiveness (1 trial) or unintended adverse consequences of interventions (2 trials), limiting our ability to assess these outcomes. Trials reported receiving governmental or charitable funds, except for four trials reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 80 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited in terms of quality of evidence and magnitude of effect. Of the types of interventions identified, there was moderate-quality evidence that multicomponent interventions probably lead to, and low-quality evidence that child-feeding practice may lead to, only small increases in fruit and vegetable consumption in children aged five years and under. It is uncertain whether parent nutrition education or child nutrition education interventions alone are effective in increasing fruit and vegetable consumption in children aged five years and under. Our confidence in effect estimates for all intervention approaches, with the exception of multicomponent interventions, is limited on the basis of the very low to low-quality evidence. Long-term follow-up of at least 12 months is required and future research should adopt more rigorous methods to advance the field. This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Kate M O'Brien
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Flora Tzelepis
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Rebecca J Wyse
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Luke Wolfenden
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| |
Collapse
|
2
|
Hodder RK, O'Brien KM, Stacey FG, Tzelepis F, Wyse RJ, Bartlem KM, Sutherland R, James EL, Barnes C, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2019; 2019:CD008552. [PMID: 31697869 PMCID: PMC6837849 DOI: 10.1002/14651858.cd008552.pub6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Interventions to increase consumption of fruit and vegetables, such as those focused on specific child-feeding strategies and parent nutrition education interventions in early childhood may therefore be an effective strategy in reducing this disease burden. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 August 2019. We searched Proquest Dissertations and Theses in May 2019. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included trials to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included trials; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 78 trials with 214 trial arms and 13,746 participants. Forty-eight trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fifteen trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Fourteen trials examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. Two trials examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake. One trial examined the impact of a child-focused mindfulness intervention in increasing vegetable intake. We judged 20 of the 78 included trials as free from high risks of bias across all domains. Performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining trials. There is very low-quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption equivalent to an increase of 4.45 g as-desired consumption of vegetables (SMD 0.42, 95% CI 0.23 to 0.60; 18 trials, 2004 participants; mean post-intervention follow-up = 8.2 weeks). Multicomponent interventions versus no intervention has a small effect on child consumption of fruit and vegetables (SMD 0.34, 95% CI 0.10 to 0.57; 9 trials, 3022 participants; moderate-quality evidence; mean post-intervention follow-up = 5.4 weeks), equivalent to an increase of 0.36 cups of fruit and vegetables per day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.12, 95% CI -0.03 to 0.28; 11 trials, 3078 participants; very low-quality evidence; mean post-intervention follow-up = 13.2 weeks). We were unable to pool child nutrition education interventions in meta-analysis; both trials reported a positive intervention effect on child consumption of fruit and vegetables (low-quality evidence). Very few trials reported long-term effectiveness (6 trials), cost effectiveness (1 trial) and unintended adverse consequences of interventions (2 trials), limiting their assessment. Trials reported receiving governmental or charitable funds, except for four trials reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 78 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited. There was very low-quality evidence that child-feeding practice may lead to, and moderate-quality evidence that multicomponent interventions probably lead to small increases in fruit and vegetable consumption in children aged five years and younger. It is uncertain whether parent nutrition education interventions are effective in increasing fruit and vegetable consumption in children aged five years and younger. Given that the quality of the evidence is very low or low, future research will likely change estimates and conclusions. Long-term follow-up of at least 12 months is required and future research should adopt more rigorous methods to advance the field. This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Kate M O'Brien
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Fiona G Stacey
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
- University of NewcastlePriority Research Centre in Physical Activity and NutritionCallaghanAustralia
| | - Flora Tzelepis
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Rebecca J Wyse
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Kate M Bartlem
- University of NewcastleSchool of PsychologyUniversity DriveCallaghanNew South WalesAustralia2308
| | - Rachel Sutherland
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Erica L James
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
| | - Courtney Barnes
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Luke Wolfenden
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | | |
Collapse
|
3
|
Faith MS, Epstein LH. Healthy Homes and Obesogenic Genes in Young Children: Rigorous Behavioral Theory and Measurement and the Detection of Gene-Environment Interactions. JAMA Pediatr 2018; 172:1121-1122. [PMID: 30285036 DOI: 10.1001/jamapediatrics.2018.1945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Myles S Faith
- Department of Counseling, School and Educational Psychology, Graduate School of Education, University at Buffalo, State University of New York
| | - Leonard H Epstein
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| |
Collapse
|
4
|
Hodder RK, O'Brien KM, Stacey FG, Wyse RJ, Clinton‐McHarg T, Tzelepis F, James EL, Bartlem KM, Nathan NK, Sutherland R, Robson E, Yoong SL, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2018; 5:CD008552. [PMID: 29770960 PMCID: PMC6373580 DOI: 10.1002/14651858.cd008552.pub5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Interventions to increase consumption of fruit and vegetables, such as those focused on specific child-feeding strategies and parent nutrition education interventions in early childhood may therefore be an effective strategy in reducing this disease burden. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 January 2018. We searched Proquest Dissertations and Theses in November 2017. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included studies to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included studies; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 63 trials with 178 trial arms and 11,698 participants. Thirty-nine trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fourteen trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Nine studies examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. One study examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake.We judged 14 of the 63 included trials as free from high risks of bias across all domains; performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining studies.There is very low quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption equivalent to an increase of 3.50 g as-desired consumption of vegetables (SMD 0.33, 95% CI 0.13 to 0.54; participants = 1741; studies = 13). Multicomponent interventions versus no intervention may have a very small effect on child consumption of fruit and vegetables (SMD 0.35, 95% CI 0.04 to 0.66; participants = 2009; studies = 5; low-quality evidence), equivalent to an increase of 0.37 cups of fruit and vegetables per day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.12, 95% CI -0.03 to 0.28; participants = 3078; studies = 11; very low-quality evidence).Insufficient data were available to assess long-term effectiveness, cost effectiveness and unintended adverse consequences of interventions. Studies reported receiving governmental or charitable funds, except for four studies reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 63 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited. There was very low- and low-quality evidence respectively that child-feeding practice and multicomponent interventions may lead to very small increases in fruit and vegetable consumption in children aged five years and younger. It is uncertain whether parent nutrition education interventions are effective in increasing fruit and vegetable consumption in children aged five years and younger. Given that the quality of the evidence is very low or low, future research will likely change estimates and conclusions. Long-term follow-up is required and future research should adopt more rigorous methods to advance the field.This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Kate M O'Brien
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Fiona G Stacey
- University of Newcastle, Hunter Medical Research Institute, Priority
Research Centre in Health Behaviour, and Priority Research Centre in
Physical Activity and NutritionSchool of Medicine and Public HealthCallaghanAustralia2287
| | - Rebecca J Wyse
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Tara Clinton‐McHarg
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Flora Tzelepis
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Erica L James
- University of Newcastle, Hunter Medical Research InstituteSchool of Medicine and Public HealthUniversity DriveCallaghanAustralia2308
| | - Kate M Bartlem
- University of NewcastleSchool of PsychologyUniversity DriveCallaghanAustralia2308
| | - Nicole K Nathan
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Rachel Sutherland
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Emma Robson
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Sze Lin Yoong
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Luke Wolfenden
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| |
Collapse
|
5
|
Hodder RK, Stacey FG, O'Brien KM, Wyse RJ, Clinton‐McHarg T, Tzelepis F, James EL, Bartlem KM, Nathan NK, Sutherland R, Robson E, Yoong SL, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2018; 1:CD008552. [PMID: 29365346 PMCID: PMC6491117 DOI: 10.1002/14651858.cd008552.pub4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future chronic diseases, including cardiovascular disease. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE and Embase to identify eligible trials on 25 September 2017. We searched Proquest Dissertations and Theses and two clinical trial registers in November 2017. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included studies to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included studies; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 55 trials with 154 trial arms and 11,108 participants. Thirty-three trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Thirteen trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Eight studies examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. One study examined the effect of a nutrition intervention delivered to children in increasing child fruit and vegetable intake.We judged 14 of the 55 included trials as free from high risks of bias across all domains; performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining studies.Meta-analysis of trials examining child-feeding practices versus no intervention revealed a positive effect on child vegetable consumption (SMD 0.38, 95% confidence interval (CI) 0.15 to 0.61; n = 1509; 11 studies; very low-quality evidence), equivalent to a mean difference of 4.03 g of vegetables. There were no short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.11, 95% CI -0.05 to 0.28; n = 3023; 10 studies; very low-quality evidence) or multicomponent interventions versus no intervention (SMD 0.28, 95% CI -0.06 to 0.63; n = 1861; 4 studies; very low-quality evidence).Insufficient data were available to assess long-term effectiveness, cost effectiveness and unintended adverse consequences of interventions. Studies reported receiving governmental or charitable funds, except for three studies reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 55 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains sparse. There was very low-quality evidence that child-feeding practice interventions are effective in increasing vegetable consumption in children aged five years and younger, however the effect size was very small and long-term follow-up is required. There was very low-quality evidence that parent nutrition education and multicomponent interventions are not effective in increasing fruit and vegetable consumption in children aged five years and younger. All findings should be considered with caution, given most included trials could not be combined in meta-analyses. Given the very low-quality evidence, future research will very likely change estimates and conclusions. Such research should adopt more rigorous methods to advance the field.This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Fiona G Stacey
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre in Health Behaviour, and Priority Research Centre in Physical Activity and NutritionSchool of Medicine and Public HealthCallaghanAustralia2287
| | - Kate M O'Brien
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Rebecca J Wyse
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Tara Clinton‐McHarg
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Flora Tzelepis
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Erica L James
- University of Newcastle, Hunter Medical Research InstituteSchool of Medicine and Public HealthUniversity DriveCallaghanAustralia2308
| | - Kate M Bartlem
- University of NewcastleSchool of PsychologyUniversity DriveCallaghanAustralia2308
| | - Nicole K Nathan
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Rachel Sutherland
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Emma Robson
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Sze Lin Yoong
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Luke Wolfenden
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| |
Collapse
|
6
|
Nutrition in the First 1000 Days: Ten Practices to Minimize Obesity Emerging from Published Science. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121491. [PMID: 29194402 PMCID: PMC5750909 DOI: 10.3390/ijerph14121491] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
The prevalence of childhood overweight and obesity has increased in most countries the last decades. Considering this in a simplistic way, we can say that obesity is the result of an imbalance between energy intake and energy expenditure. Moreover, the environment from conception to childhood could influence the child's future health. The first 1000 days of life start with woman's pregnancy, and offer a unique window of opportunity to contribute to obesity prevention. In light of the actual literature, the aim of our article is to discuss a proposal of 10 good practices to minimize obesity in the first 1000 days emerging from published science. (1) Both the mother's and the father's behaviors are important. A balanced diet with appropriate fat and protein intake, and favoring fruits and vegetables, is recommended for both parents during the conception period and pregnancy. Furthermore, overweight/obese women who are planning to become pregnant should reduce their weight before conception. (2) During pregnancy, at birth, and during early life, body composition measurements are crucial to monitor the baby's growth. (3) Exclusive breastfeeding is recommended at the beginning of life until six months of age. (4) Four to six months of age is the optimal window to introduce complementary feeding. Until one year of age, breast milk or follow-on/commercial formula is the main recommended feeding source, and cow's milk should be avoided until one year of age. (5) Fruit and vegetable introduction should begin early. Daily variety, diversity in a meal, and repeated exposure to the food, up to eight times, are efficient strategies to increase acceptance of food not well accepted at first. There is no need to add sugar, salt, or sugary fluids to the diet. (6) Respect the child's appetite and avoid coercive "clean your plate" feeding practices. Adapt the portion of food and don't use food as reward for good behavior. (7) Limit animal protein intake in early life to reduce the risk of an early adiposity rebound. Growing-up milk for children between one and three years of age should be preferred to cow's milk, in order to limit intake and meet essential fatty acid and iron needs. (8) The intake of adequate fat containing essential fatty acids should be promoted. (9) Parents should be role models when feeding, with TV and other screens turned-off during meals. (10) Preventive interventions consisting of promoting physical activity and sufficient time dedicated to sleep should be employed. In fact, short sleep duration may be associated with increased risk of developing obesity. Based on literature reviews, and given the suggestions described in this manuscript, concerted public health efforts are needed to achieve the healthy objectives for obesity and nutrition, and to fight the childhood obesity epidemic.
Collapse
|
7
|
Hodder RK, Stacey FG, Wyse RJ, O'Brien KM, Clinton‐McHarg T, Tzelepis F, Nathan NK, James EL, Bartlem KM, Sutherland R, Robson E, Yoong SL, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2017; 9:CD008552. [PMID: 28945919 PMCID: PMC6483688 DOI: 10.1002/14651858.cd008552.pub3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future chronic diseases, including cardiovascular disease. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE, Embase Classic and Embase to identify eligible trials on 30 September 2016. We searched CINAHL and PsycINFO in July 2016, Proquest Dissertations and Theses in November 2016 and three clinical trial registers in November 2016 and June 2017. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included studies to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included studies; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures.We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 50 trials with 137 trial arms and 10,267 participants. Thirty trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Eleven trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Eight studies examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. One study examined the effect of a nutrition intervention delivered to children in increasing child fruit and vegetable intake.Thirteen of the 50 included trials were judged as free from high risks of bias across all domains; performance, detection and attrition bias were the most common domains judged at high risk of bias of remaining studies.Meta-analysis of trials examining child-feeding practices versus no intervention revealed a positive effect on child vegetable consumption (SMD 0.38, 95% CI 0.15 to 0.61; n = 1509; 11 studies; very low-quality evidence), equivalent to a mean difference of 4.03 grams of vegetables. There were no short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.11, 95% CI -0.05 to 0.28; n = 3023; 10 studies; very low-quality evidence) or multicomponent interventions versus no intervention (SMD 0.28, 95% CI -0.06 to 0.63; n = 1861; 4 studies; very low-quality evidence).Insufficient data were available to assess long-term effectiveness, cost effectiveness and unintended adverse consequences of interventions.Studies reported receiving governmental or charitable funds, except for two studies reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 50 eligible trials of various intervention approaches, the evidence for how to increase fruit and vegetable consumption of children remains sparse. There was very low-quality evidence child-feeding practice interventions are effective in increasing vegetable consumption of children aged five years and younger, however the effect size was very small and long-term follow-up is required. There was very low-quality evidence that parent nutrition education and multicomponent interventions are not effective in increasing fruit and vegetable consumption of children aged five years and younger. All findings should be considered with caution, given most included trials could not be combined in meta-analyses. Given the very low-quality evidence, future research will very likely change estimates and conclusions. Such research should adopt more rigorous methods to advance the field.This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Fiona G Stacey
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre in Health Behaviour, and Priority Research Centre in Physical Activity and NutritionSchool of Medicine and Public HealthCallaghanAustralia2287
| | - Rebecca J Wyse
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | | | - Tara Clinton‐McHarg
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Flora Tzelepis
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| | - Nicole K Nathan
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Erica L James
- University of Newcastle, Hunter Medical Research InstituteSchool of Medicine and Public HealthUniversity DriveCallaghanAustralia2308
| | - Kate M Bartlem
- University of NewcastleSchool of PsychologyUniversity DriveCallaghanAustralia2308
| | - Rachel Sutherland
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Emma Robson
- Hunter New England Local Health DistrictHunter Population HealthLocked Bag 10WallsendAustralia
| | - Sze Lin Yoong
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
| | - Luke Wolfenden
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia2308
| |
Collapse
|
8
|
Wolfenden L, Wyse RJ, Britton BI, Campbell KJ, Hodder RK, Stacey FG, McElduff P, James EL. Interventions for increasing fruit and vegetable consumption in children aged 5 years and under. Cochrane Database Syst Rev 2012; 11:CD008552. [PMID: 23152262 PMCID: PMC4160655 DOI: 10.1002/14651858.cd008552.pub2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future chronic diseases including cardiovascular disease. OBJECTIVES To assess the effectiveness, cost-effectiveness and associated adverse events of interventions designed to increase the consumption of fruit and/or vegetables amongst children aged five years and under. SEARCH METHODS The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library Issue 2, 2010, MEDLINE (1950 to 2010 April week 4), EMBASE (1947 to 2010 week 18), CINAHL (up to 12 May 2010), PsycINFO (up to 12 May 2010) and Proquest Dissertations and Theses (up to February 2011) were searched to identify eligible trials, as well as electronic trial registers (also up to February 2011). The reference lists of included trials were reviewed and handsearches of three international nutrition journals were also performed. Authors of all included trials were contacted in order to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials (RCTs), including cluster-randomised controlled trials, of any intervention primarily targeting fruit and/or vegetable consumption among children aged five years and under and incorporating a biochemical or dietary assessment of fruit and/or vegetable consumption. Two review authors independently screened the titles and abstracts of identified papers. A third review author with expertise in review methodology resolved any disagreements regarding study eligibility. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias of the included studies. A third reviewer resolved disagreements between review authors. Fixed-effect models were used to perform meta-analysis for the primary review outcomes where a sufficient number of trials with suitable data and homogeneity were identified. MAIN RESULTS Five trials, with 13 trial arms and 3967 participants were included in the review. Two trials examined the impact of specific feeding practices (e.g. repeated food exposure) in increasing child intake of a target vegetable. Two trials assessed the effectiveness of home visiting programs implemented in disadvantaged communities and one trial investigated the effect of a preschool-based intervention in increasing child fruit and vegetable intake. Risk of bias of included studies was low although three of the five trials were judged to be at high risk of performance bias. Meta-analysis of two trials examining repeated food exposure versus a no intervention comparison found no significant difference in target vegetable consumption in the short term (mean difference (MD) 1.37, 95% confidence interval (CI) -2.78 to 5.52). Coupling repeated food exposure with a tangible non-food or social reward, was effective in increasing targeted vegetable consumption in the short term based on one trial. Home visiting programs provided to disadvantaged groups did not significantly increase overall fruit intake in the short term (standardised mean difference (SMD) 0.01, 95% CI -0.09 to 0.11). Similarly, a multi-component preschool-based intervention failed to significantly increase child consumption of vegetables, but did report a small significant increase in mean child consumption of fruit, six months following baseline assessment. None of the trials investigated intervention cost-effectiveness or reported information regarding any adverse events or unintended adverse consequences of the intervention. AUTHORS' CONCLUSIONS Despite the importance of encouraging fruit and vegetable consumption among children aged five years and under, this review identified few randomised controlled trials investigating interventions to achieve this.
Collapse
Affiliation(s)
- Luke Wolfenden
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ganann R, Fitzpatrick-Lewis D, Ciliska D, Peirson L. Community-based interventions for enhancing access to or consumption of fruit and vegetables among five to 18-year olds: a scoping review. BMC Public Health 2012; 12:711. [PMID: 22931474 PMCID: PMC3505745 DOI: 10.1186/1471-2458-12-711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/23/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Low fruit and vegetable ( FV) consumption is a key risk factor for morbidity and mortality. Consumption of FV is limited by a lack of access to FV. Enhanced understanding of interventions and their impact on both access to and consumption of FV can provide guidance to public health decision-makers. The purpose of this scoping review is to identify and map literature that has evaluated effects of community-based interventions designed to increase FV access or consumption among five to 18-year olds. METHODS The search included 21 electronic bibliographic databases, grey literature, targeted organization websites, and 15 key journals for relevant studies published up to May 2011. Retrieved citations were screened in duplicate for relevance. Data extracted from included studies covered: year, country, study design, target audience, intervention setting, intervention strategies, interventionists, and reported outcomes. RESULTS The search located 19,607 unique citations. Full text relevance screening was conducted on 1,908 studies. The final 289 unique studies included 30 knowledge syntheses, 27 randomized controlled trials, 55 quasi-experimental studies, 113 cluster controlled studies, 60 before-after studies, one mixed method study, and three controlled time series studies. Of these studies, 46 included access outcomes and 278 included consumption outcomes. In terms of target population, 110 studies focused on five to seven year olds, 175 targeted eight to 10 year olds, 192 targeted 11 to 14 year olds, 73 targeted 15 to 18 year olds, 55 targeted parents, and 30 targeted teachers, other service providers, or the general public. The most common intervention locations included schools, communities or community centres, and homes. Most studies implemented multi-faceted intervention strategies to increase FV access or consumption. CONCLUSIONS While consumption measures were commonly reported, this review identified a small yet important subset of literature examining access to FV. This is a critically important issue since consumption is contingent upon access. Future research should examine the impact of interventions on direct outcome measures of FV access and a focused systematic review that examines these interventions is also needed. In addition, research on interventions in low- and middle-income countries is warranted based on a limited existing knowledge base.
Collapse
Affiliation(s)
- Rebecca Ganann
- Effective Public Health Practice Project, McMaster University, Hamilton, ON, Canada
| | | | - Donna Ciliska
- Effective Public Health Practice Project, McMaster University, Hamilton, ON, Canada
| | - Leslea Peirson
- Effective Public Health Practice Project, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Epstein LH, Dearing KK, Temple JL, Cavanaugh MD. Food reinforcement and impulsivity in overweight children and their parents. Eat Behav 2008; 9:319-27. [PMID: 18549991 PMCID: PMC4682358 DOI: 10.1016/j.eatbeh.2007.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/26/2007] [Accepted: 10/26/2007] [Indexed: 11/16/2022]
Abstract
Pediatric obesity involves choices among healthy and less healthy alternatives, as well as choices whose consequences vary over time, such as engaging in unhealthy behaviors now at the expense of future health. The purpose of this study was to examine the relative reinforcing value of food and behavioral impulsivity under different experimental conditions in a sample of 50 families screened for participation in a pediatric obesity treatment program. Relative reinforcing value for food versus money was studied under conditions in which increased response requirements were placed on either access to food or money, and the amount of money, the alternative reinforcer, was varied. Impulsivity for small immediate versus larger delayed monetary rewards was studied under conditions in which the value of the immediate reward and the duration of the delay were varied. Results showed that response requirements affected the choice of food for both parents and children (p<0.001), and there was a significant correlation between the number of food reinforcers chosen by parents and children (r=0.57, p<0.001). The value of the immediate reward differentially influenced choice of the immediate reward for parents and children (p<0.05), with children (p<0.001) but not parents (p=0.36) more impulsive as value of the immediate reward increased. The length of the delay influenced both parent (p=0.004) and child (p<0.01) choice of the immediate reward. Parent and child impulsivity were not correlated (r=0.15, p=0.29). This study suggests that food reinforcement may be more similar between parents and children than behavioral impulsivity, though additional research using other measures of relative reinforcing value and impulsivity is warranted.
Collapse
Affiliation(s)
- Leonard H Epstein
- Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3000, USA.
| | | | | | | |
Collapse
|
11
|
Faith MS, Dennison BA, Edmunds LS, Stratton HH. Fruit juice intake predicts increased adiposity gain in children from low-income families: weight status-by-environment interaction. Pediatrics 2006; 118:2066-75. [PMID: 17079580 DOI: 10.1542/peds.2006-1117] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Our goal was to test the hypothesis that increased fruit juice intake and parental restriction of children's eating are associated with increased adiposity gain and whether exposure to nutritional counseling predicted reduced adiposity gain among children. PATIENTS AND METHODS A sample of parents or guardians of children aged 1 to 4 years who attended 1 of 49 Special Supplemental Nutrition Program for Women, Infants, and Children agencies in New York State were surveyed in 1999 or 2000 (N = 2801). The survey addressed children's dietary intake, parental feeding practices, and parental exposure to nutritional counseling messages to increase fruit, vegetable, and low-fat milk intakes. Each child's height and weight were measured approximately every 6 months for up to 48 months. A prospective cohort design was used in which survey variables were the predictors and the outcome was change in children's adiposity, defined as change in age- and gender-standardized BMI per month (ie, BMI z-score slope). RESULTS Controlling for gender and ethnicity, the relationship between juice intake and adiposity gain depended on children's initial overweight status. Among children who were initially either at risk for overweight or overweight, increased fruit juice intake was associated with excess adiposity gain, whereas parental offerings of whole fruits were associated with reduced adiposity gain. Each additional daily serving of fruit juice was associated with an excess adiposity gain of 0.009 SD per month. Feeding restriction was greater among parents whose children were initially at risk for overweight or overweight compared with those at a healthy weight. Parental exposure to nutritional messages was not associated with reduced child adiposity gain. CONCLUSION This study supports the Institute of Medicine recommendations to reduce fruit juice intake as a strategy for overweight prevention in high-risk children.
Collapse
Affiliation(s)
- Myles S Faith
- Weight and Eating Disorders Program, University of Pennsylvania School of Medicine, 3535 Market St, 3rd Floor, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|