1
|
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140:111709. [PMID: 34020250 DOI: 10.1016/j.biopha.2021.111709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Liu X, Fan B, Chopp M, Zhang Z. Epigenetic Mechanisms Underlying Adult Post Stroke Neurogenesis. Int J Mol Sci 2020; 21:E6179. [PMID: 32867041 PMCID: PMC7504398 DOI: 10.3390/ijms21176179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke remains the leading cause of adult disability. Post-stroke neurogenesis contributes to functional recovery. As an intrinsic neurorestorative process, it is important to elucidate the molecular mechanism underlying stroke-induced neurogenesis and to develop therapies designed specifically to augment neurogenesis. Epigenetic mechanisms include DNA methylation, histone modification and its mediation by microRNAs and long-non-coding RNAs. In this review, we highlight how epigenetic factors including DNA methylation, histone modification, microRNAs and long-non-coding RNAs mediate stroke-induced neurogenesis including neural stem cell self-renewal and cell fate determination. We also summarize therapies targeting these mechanisms in the treatment of stroke.
Collapse
Affiliation(s)
- Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| |
Collapse
|
3
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
4
|
Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra. J Stroke Cerebrovasc Dis 2018; 27:2453-2465. [PMID: 30029838 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.
Collapse
|
5
|
Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta Neuropathol 2018; 135:551-568. [PMID: 29249001 DOI: 10.1007/s00401-017-1795-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg-/- mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.
Collapse
|
6
|
Yang J, Zhang X, Wu Y, Zhao B, Liu X, Pan Y, Liu Y, Ding Y, Qiu M, Wang YZ, Zhao G. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia 2016; 64:1083-91. [PMID: 27003605 DOI: 10.1002/glia.22984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Ischemia not only leads to tissue damage, but also induces seizures, which in turn worsens the outcome of ischemia. Recent studies have revealed the impaired homeostatic functions of reactive astrocytes, which were thought to facilitate the development of seizures. However, how this phenotype of reactive astrocytes is regulated remains unclear. Here, using pentylenetetrazole (PTZ)-kindling model, we investigated the roles of reactive astrocytes and their intracellular Wnt/β-catenin signaling in the ischemia-increased seizure susceptibility. Our data showed that somatosensory cortical ischemia significantly increased the susceptibility to PTZ-induced seizure. Genetic ablation of Nestin-positive reactive astrocytes significantly decreased the incidence and severity of seizures. By using a Wnt signaling reporter mice line Topgal mice, we found that Wnt/β-catenin signaling was upregulated in reactive astrocytes after ischemia. Depletion of β-catenin in reactive astrocytes significantly decreased the susceptibility of seizures and the expression of c-Fos induced by PTZ in the ischemic cortex. Overexpression of β-catenin in reactive astrocytes, in contrast, significantly increased seizure susceptibility and the expression of c-Fos. Furthermore, the expression of aquaporin-4 (AQP-4) and inwardly rectifying K(+) channel 4.1 (Kir4.1), two molecules reportedly associated with seizure development, was oppositely affected in reactive astrocytes with β-catenin depletion or overexpression. Taken together, these data indicated that astrocytic Wnt/β-catenin signaling accounts, at least partially, for the ischemia-increased seizure susceptibility. Inhibiting Wnt/β-catenin signaling may be utilized in the future for preventing postischemic seizures.
Collapse
Affiliation(s)
- Jialei Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiufen Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yin Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Zhao
- Department of Neurology, Anning Branch of Lanzhou General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Xunyuan Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanhang Pan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Liang AC, Mandeville ET, Maki T, Shindo A, Som AT, Egawa N, Itoh K, Chuang TT, McNeish JD, Holder JC, Lok J, Lo EH, Arai K. Effects of Aging on Neural Stem/Progenitor Cells and Oligodendrocyte Precursor Cells After Focal Cerebral Ischemia in Spontaneously Hypertensive Rats. Cell Transplant 2016; 25:705-14. [PMID: 26811151 DOI: 10.3727/096368916x690557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging and vascular comorbidities such as hypertension comprise critical cofactors that influence how the brain responds to stroke. Ischemic stress induces neurogenesis and oligodendrogenesis in younger brains. However, it remains unclear whether these compensatory mechanisms can be maintained even under pathologically hypertensive and aged states. To clarify the age-related remodeling capacity after stroke under hypertensive conditions, we assessed infarct volume, behavioral outcomes, and surrogate markers of neurogenesis and oligodendrogenesis in acute and subacute phases after transient focal cerebral ischemia in 3- and 12-month-old spontaneously hypertensive rats (SHRs). Hematoxylin and eosin staining showed that 3- and 12-month-old SHRs exhibited similar infarction volumes at both 3 and 14 days after focal cerebral ischemia. However, recovery of behavioral deficits (neurological score assessment and adhesive removal test) was significantly less in 12-month-old SHRs compared to 3-month-old SHRs. Concomitantly, numbers of nestin(+) neural stem/progenitor cells (NSPCs) near the infarct border area or subventricular zone in 12-month-old SHRs were lower than 3-month-old SHRs at day 3. Similarly, numbers of PDGFR-α(+) oligodendrocyte precursor cells (OPCs) in the corpus callosum were lower in 12-month-old SHRs at day 3. Lower levels of NSPC and OPC numbers were accompanied by lower expression levels of phosphorylated CREB. By day 14 postischemia, NSPC and OPC numbers in 12-month-old SHRs recovered to similar levels as in 3-month-old SHRs, but the numbers of proliferating NSPCs (Ki-67(+)nestin(+) cells) and proliferating OPCs (Ki-67(+)PDGFR-α(+) cells) remained lower in the older brains even at day 14. Taken together, these findings suggest that aging may also decrease poststroke compensatory responses for neurogenesis and oligodendrogenesis even under hypertensive conditions.
Collapse
Affiliation(s)
- Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Liu R, Zhang S, Yang H, Ju P, Xia Y, Shi Y, Lim TH, Lim AS, Liang F, Feng Z. Characterization and therapeutic evaluation of a Nestin+ CNP+ NG2+ cell population on mouse spinal cord injury. Exp Neurol 2015; 269:28-42. [DOI: 10.1016/j.expneurol.2015.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 11/29/2022]
|
10
|
Uhlemann R, Gertz K, Boehmerle W, Schwarz T, Nolte C, Freyer D, Kettenmann H, Endres M, Kronenberg G. Actin dynamics shape microglia effector functions. Brain Struct Funct 2015; 221:2717-34. [PMID: 25989853 DOI: 10.1007/s00429-015-1067-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/15/2015] [Indexed: 11/28/2022]
Abstract
Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.
Collapse
Affiliation(s)
- Ria Uhlemann
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Karen Gertz
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Boehmerle
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tobias Schwarz
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christiane Nolte
- Cellular Neuroscience, Max-Delbruck-Center for Molecular Medicine, 13092, Berlin-Buch, Germany
| | - Dorette Freyer
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbruck-Center for Molecular Medicine, 13092, Berlin-Buch, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Excellence Cluster NeuroCure, 10117, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), 13347, Berlin, Germany.
| | - Golo Kronenberg
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Abstract
Reactive astrogliosis is associated with many pathologic processes in the central nervous system, including gliomas. The glycoprotein podoplanin (PDPN) is upregulated in malignant gliomas. Using a syngeneic intracranial glioma mouse model, we show that PDPN is highly expressed in a subset of glial fibrillary acidic protein-positive astrocytes within and adjacent to gliomas. The expression of PDPN in tumor-associated reactive astrocytes was confirmed by its colocalization with the astrocytic marker S100β and with connexin43, a major astrocytic gap junction protein. To determine whether the increase in PDPN is a general feature of gliosis, we used 2 mouse models in which astrogliosis was induced either by a needle injury or ischemia and observed similar upregulation of PDPN in reactive astrocytes in both models. Astrocytic PDPN was also found to be coexpressed with nestin, an intermediate filament marker for neural stem/progenitor cells. Our findings confirm that expression of PDPN is part of the normal host response to brain injury and gliomas, and suggest that it may be a novel cell surface marker for a specific population of reactive astrocytes in the vicinity of gliomas and nonneoplastic brain lesions. The findings also highlight the heterogeneity of glial fibrillary acidic protein-positive astrocytes in reactive gliosis.
Collapse
|
12
|
Zhao W, Xu W, Yang WW. Neuroregeneration in the nucleus ambiguus after recurrent laryngeal nerve avulsion in rats. Ann Otol Rhinol Laryngol 2014; 123:490-9. [PMID: 24627406 DOI: 10.1177/0003489414524170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objective was to investigate neuroregeneration, the origins of newborn cells and the proliferation of neuronal and glial cells in the nucleus ambiguus (NA) after ipsilateral recurrent laryngeal nerve (RLN) avulsion. METHODS All of the animals received a CM-Dil injection in the left lateral ventricle. Forty-five adult rats were subjected to a left RLN avulsion injury, while 9 rats were used as controls. 5-Bromo-2-deoxyuridine (BrdU) was injected intraperitoneally. Neuron quantification and immunohistochemical analysis were performed in the brain stems at different time points after RLN injury. RESULTS After RLN avulsion, CM-Dil labeled neural progenitor cells (NPCs) migrated to the ipsilateral NA and differentiated into astrocytes but not into neurons. In the NA, the neuronal cells re-expressed nestin. Only a small number of neuronal and glial cells in the NA showed BrdU immunoreactivity. CONCLUSIONS After RLN avulsion, the NPCs in the ependymal layer of the fourth ventricle or central canal are activated, migrate to the lesion in the NA and differentiate exclusively into astrocytes. The newborn neural stem cells in the NA may arise from the mature region neurons. The presence of both cell types in the NA may play a role in repairing RLN injuries.
Collapse
|
13
|
Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:2-18. [PMID: 24192635 PMCID: PMC3887360 DOI: 10.1038/jcbfm.2013.188] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Collapse
|
14
|
Robins SC, Villemain A, Liu X, Djogo T, Kryzskaya D, Storch KF, Kokoeva MV. Extensive regenerative plasticity among adult NG2-glia populations is exclusively based on self-renewal. Glia 2013; 61:1735-47. [PMID: 23918524 DOI: 10.1002/glia.22554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/07/2013] [Accepted: 05/31/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Sarah C. Robins
- Department of Medicine; McGill University, Royal Victoria Hospital; 687 Pine Avenue West; Montreal; Quebec; Canada
| | - Aude Villemain
- Department of Psychiatry; McGill University, Douglas Mental Health University Institute; 6875 LaSalle Blvd; Montreal; Quebec; Canada
| | - Xiaohong Liu
- Department of Medicine; McGill University, Royal Victoria Hospital; 687 Pine Avenue West; Montreal; Quebec; Canada
| | - Tina Djogo
- Department of Medicine; McGill University, Royal Victoria Hospital; 687 Pine Avenue West; Montreal; Quebec; Canada
| | - Darya Kryzskaya
- Department of Medicine; McGill University, Royal Victoria Hospital; 687 Pine Avenue West; Montreal; Quebec; Canada
| | - Kai-Florian Storch
- Department of Psychiatry; McGill University, Douglas Mental Health University Institute; 6875 LaSalle Blvd; Montreal; Quebec; Canada
| | - Maia V. Kokoeva
- Department of Medicine; McGill University, Royal Victoria Hospital; 687 Pine Avenue West; Montreal; Quebec; Canada
| |
Collapse
|
15
|
Lee SW, Haditsch U, Cord BJ, Guzman R, Kim SJ, Boettcher C, Priller J, Ormerod BK, Palmer TD. Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain Behav Immun 2013; 30:33-44. [PMID: 23041279 PMCID: PMC3556199 DOI: 10.1016/j.bbi.2012.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 02/08/2023] Open
Abstract
Cranial irradiation for the treatment of brain tumors causes a delayed and progressive cognitive decline that is pronounced in young patients. Dysregulation of neural stem and progenitor cells is thought to contribute to these effects by altering early childhood brain development. Earlier work has shown that irradiation creates a chronic neuroinflammatory state that severely and selectively impairs postnatal and adult neurogenesis. Here we show that irradiation induces a transient non-classical cytokine response with selective upregulation of CCL2/monocyte chemoattractant protein-1 (MCP-1). Absence of CCL2 signaling in the hours after irradiation is alone sufficient to attenuate chronic microglia activation and allow the recovery of neurogenesis in the weeks following irradiation. This identifies CCL2 signaling as a potential clinical target for moderating the long-term defects in neural stem cell function following cranial radiation in children.
Collapse
Affiliation(s)
- Star W. Lee
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Ursula Haditsch
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Branden J. Cord
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Raphael Guzman
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soo Jeong Kim
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Chotima Boettcher
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite-Universitaetsmedizin, Berlin, Germany
| | - Josef Priller
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite-Universitaetsmedizin, Berlin, Germany
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Theo D. Palmer
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA,To whom correspondence should be addressed: , The Lorry I. Lokey Stem Cell Research Building, 265 Campus Dr., Stanford, CA 94305-5454, 650-736-1482 phone, 650-736-1949 fax
| |
Collapse
|
16
|
Ninomiya S, Esumi S, Ohta K, Fukuda T, Ito T, Imayoshi I, Kageyama R, Ikeda T, Itohara S, Tamamaki N. Amygdala kindling induces nestin expression in the leptomeninges of the neocortex. Neurosci Res 2013; 75:121-9. [PMID: 23305954 DOI: 10.1016/j.neures.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Nestin is an intermediate filament found in neurogenic progenitors and non-neuronal cells. Nestin-immunoreactivity (IR) in the brain often increases after brain damage. Here we show that amygdala kindling, which mimics the epileptic seizures, also induces nestin expression in the brain. Nestin-IR was greatly enhanced in the leptomeninges (pia and arachnoid maters) and neocortical parenchyma, but not much in the SVZ around the lateral ventricle, SGZ in the dentate gyrus, or the endothelial progenitor cells of blood vessels, fimbria, or choroid plexus after kindling. Electron microscopy revealed that nestin-IR in the leptomeninges was localized to granule cells, where it co-localized with GAD67-IR after electrical stimulation. The nestin-positive granule cells in the leptomeninges, especially around the emissary vein, were proliferative. However, nestin-IR in the neocortical parenchyma was expressed in NG2 glia and did not co-localize with GAD67-IR. Deletion of nestin-positive cells resulted in a high susceptibility to electrical stimulation. Consequently, almost all of the mice died or dropped out during kindling progression in 20 days, from naturally generated epileptic seizure or exhaustion. We speculate that the nestin-positive cells activated by amygdala kindling may involve in the protection of the brain from epilepsy.
Collapse
Affiliation(s)
- Shogo Ninomiya
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sharma V, Ling TW, Rewell SS, Hare DL, Howells DW, Kourakis A, Wookey PJ. A novel population of α-smooth muscle actin-positive cells activated in a rat model of stroke: an analysis of the spatio-temporal distribution in response to ischemia. J Cereb Blood Flow Metab 2012; 32:2055-65. [PMID: 22805872 PMCID: PMC3493995 DOI: 10.1038/jcbfm.2012.107] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a rat model of stroke, the spatio-temporal distribution of α-smooth muscle actin-positive, (αSMA+) cells was investigated in the infarcted hemisphere (ipsilateral) and compared with the contralateral hemisphere. At day 3 postischemia, αSMA+ cells were concentrated in two main loci within the ipsilateral hemisphere (Area A) in the medial corpus callosum and (Area B) midway through the striatum adjacent to the lateral ventricle. By day 7 and further by day 14, fewer αSMA+ cells remained in Areas A and B but a steady increase in the peri-infarct was observed. αSMA+ cells also expressed glial acidic fibrillary protein [GFAP: αSMA+/GFAP+ (29%); αSMA+/GFAP- (71%) phenotypes] and feline leukemia virus C receptor 2 (FLVCR2), but not ED1(microglia) and established markers of pericytes normally located in vascular wall. αSMA+ cells were also located close to the subventricular zones (SVZ) adjacent to Areas A and B. In conclusion, αSMA+ cells have been identified in a spatial and temporal sequence from the SVZ, at intermediate loci and in the vicinity of the peri-infarct. It is hypothesized that novel populations of αSMA+ precursors of pericytes are born on the SVZ, migrate into the peri-infarct region and are incorporated into new vessels of the peri-infarct regions.
Collapse
Affiliation(s)
- Varun Sharma
- Cardiology Department, Austin Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Theodoric N, Bechberger JF, Naus CC, Sin WC. Role of gap junction protein connexin43 in astrogliosis induced by brain injury. PLoS One 2012; 7:e47311. [PMID: 23110066 PMCID: PMC3479098 DOI: 10.1371/journal.pone.0047311] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP), nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43), a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi) while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.
Collapse
Affiliation(s)
- Nicolas Theodoric
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wun-Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Ju PJ, Liu R, Yang HJ, Xia YY, Feng ZW. Clonal analysis for elucidating the lineage potential of embryonic NG2+ cells. Cytotherapy 2012; 14:608-20. [DOI: 10.3109/14653249.2011.651528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Kröber J, Miller KR, Lindauer U, Laufs U, Dirnagl U, Heppner FL, Endres M. Essential role of interleukin-6 in post-stroke angiogenesis. ACTA ACUST UNITED AC 2012; 135:1964-80. [PMID: 22492561 DOI: 10.1093/brain/aws075] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6(-/-)) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6(-/-) mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6(-/-) mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6(-/-) mice. In addition, systemic neoangiogenesis was impaired in IL-6(-/-) mice. Transplantation of interleukin-6 competent bone marrow into IL-6(-/-) mice (IL-6(chi)) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6(chi) mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen-glucose deprivation did not. However, oxygen-glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection.
Collapse
Affiliation(s)
- Karen Gertz
- Department of Neurology, Charité– Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Romero-Grimaldi C, Murillo-Carretero M, López-Toledano MA, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-α-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells 2012; 29:1628-39. [PMID: 21837653 DOI: 10.1002/stem.710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural precursor cells (NPCs) are activated in central nervous system injury. However, despite being multipotential, their progeny differentiates into astrocytes rather than neurons in situ. We have investigated the role of epidermal growth factor receptor (EGFR) in the generation of non-neurogenic conditions. Cultured mouse subventricular zone NPCs exposed to differentiating conditions for 4 days generated approximately 50% astrocytes and 30% neuroblasts. Inhibition of EGFR with 4-(3-chloroanilino)-6,7-dimethoxyquinazoline significantly increased the number of neuroblasts and decreased that of astrocytes. The same effects were observed upon treatment with the metalloprotease inhibitor galardin, N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide (GM 6001), which prevented endogenous transforming growth factor-α (TGF-α) release. These results suggested that metalloprotease-dependent EGFR-ligand shedding maintained EGFR activation and favored gliogenesis over neurogenesis. Using a disintegrin and metalloprotease 17 (ADAM-17) small interference RNAs transfection of NPCs, ADAM-17 was identified as the metalloprotease involved in cell differentiation in these cultures. In vivo experiments revealed a significant upregulation of ADAM-17 mRNA and de novo expression of ADAM-17 protein in areas of cortical injury in adult mice. Local NPCs, identified by nestin staining, expressed high levels of ADAM-17, as well as TGF-α and EGFR, the three molecules necessary to prevent neurogenesis and promote glial differentiation in vitro. Chronic local infusions of GM6001 resulted in a notable increase in the number of neuroblasts around the lesion. These results indicate that, in vivo, the activation of a metalloprotease, most probably ADAM-17, initiates EGFR-ligand shedding and EGFR activation in an autocrine manner, preventing the generation of new neurons from NPCs. Inhibition of ADAM-17, the limiting step in this sequence, may contribute to the generation of neurogenic niches in areas of brain damage.
Collapse
|
22
|
Nakagomi T, Molnár Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, Clausen M, Yoshikawa H, Nakagomi N, Matsuyama T. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 2011; 20:2037-51. [PMID: 21838536 DOI: 10.1089/scd.2011.0279] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence shows that neural stem/progenitor cells (NSPCs) can be activated in the nonconventional neurogenic zones such as the cortex following ischemic stroke. However, the precise origin, identity, and subtypes of the ischemia-induced NSPCs (iNSPCs), which can contribute to cortical neurogenesis, is currently still unclear. In our present study, using an adult mouse cortical infarction model, we found that the leptomeninges (pia mater), which is widely distributed within and closely associated with blood vessels as microvascular pericytes/perivascular cells throughout central nervous system (CNS), have NSPC activity in response to ischemia and can generate neurons. These observations indicate that microvascular pericytes residing near blood vessels that are distributed from the leptomeninges to the cortex are potential sources of iNSPCs for neurogenesis following cortical infarction. In addition, our results propose a novel concept that the leptomeninges, which cover the entire brain, have an important role in CNS restoration following brain injury such as stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast 2011; 2010:894374. [PMID: 21527990 PMCID: PMC3080708 DOI: 10.1155/2010/894374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/18/2010] [Accepted: 12/27/2010] [Indexed: 02/08/2023] Open
Abstract
Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.
Collapse
|
24
|
Kronenberg G, Gertz K, Cheung G, Buffo A, Kettenmann H, Götz M, Endres M. Modulation of fate determinants Olig2 and Pax6 in resident glia evokes spiking neuroblasts in a model of mild brain ischemia. Stroke 2010; 41:2944-9. [PMID: 21051674 DOI: 10.1161/strokeaha.110.583039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Although in vitro studies suggest that non-neurogenic regions of the adult central nervous system potentially contain multipotent parenchymal progenitors, neurons are clearly not replaced in most brain regions after injury. Here, in a well-established model of mild transient brain ischemia, we explored Olig2 antagonism and Pax6 overexpression as potential avenues to redirect endogenous progenitors proliferating in situ toward a neuronal fate. METHODS Retroviral vectors containing either Pax6 or a strong activator form of the repressor Olig2 (Olig2VP16), ie, a functionally dominant negative form of Olig2, were stereotaxically injected into the lateral striatum at 48 hours after 30 minutes middle cerebral artery occlusion (MCAo)/reperfusion. RESULTS Retroviral modulation of fate determinants resulted in a significant number of infected cells differentiating into Doublecortin (DCX)-expressing immature neurons that were not observed after injection of a control virus. Whole-cell patch-clamp recordings in acute brain slices showed that the percentage of virus-infected cells with Na(+) currents was increased by inhibition of the repressor function of Olig2 and by overexpression of Pax6. Furthermore, on retroviral transduction of fate determinants, we detected newly generated cells within the ischemic lesion that were capable of generating single action potentials and that received synaptic input. CONCLUSIONS Taken together, these data show that resident glia in the striatum can be reprogrammed toward functional neuronal differentiation following brain injury.
Collapse
Affiliation(s)
- Golo Kronenberg
- Klinik und Poliklinik für Neurologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Blizzard CA, Chuckowree JA, King AE, Hosie KA, McCormack GH, Chapman JA, Vickers JC, Dickson TC. Focal damage to the adult rat neocortex induces wound healing accompanied by axonal sprouting and dendritic structural plasticity. Cereb Cortex 2010; 21:281-91. [PMID: 20511339 DOI: 10.1093/cercor/bhq091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates that damage to the adult mammalian brain evokes an array of adaptive cellular responses and may retain a capacity for structural plasticity. We have investigated the cellular and architectural alterations following focal experimental brain injury, as well as the specific capacity for structural remodeling of neuronal processes in a subset of cortical interneurons. Focal acute injury was induced by transient insertion of a needle into the neocortex of anesthetized adult male Hooded-Wistar rats and thy1 green fluorescent protein (GFP) mice. Immunohistochemical, electron microscopy, and bromodeoxyuridine cell proliferation studies demonstrated an active and evolving response of the brain to injury, indicating astrocytic but not neuronal proliferation. Immunolabeling for the neuron-specific markers phosphorylated neurofilaments, α-internexin and calretinin at 7 days post injury (DPI) indicated phosphorylated neurofilaments and α-internexin but not calretinin immunopositive axonal sprouts within the injury site. However, quantitative studies indicated a significant realignment of horizontally projecting dendrites of calretinin-labeled interneurons at 14 DPI. This remodeling was specific to calretinin immunopositive interneurons and did not occur in a subpopulation of pyramidal neurons expressing GFP in the injured mouse cortex. These data show that subclasses of cortical interneurons are capable of adaptive structural remodeling.
Collapse
Affiliation(s)
- Catherine A Blizzard
- Wicking Dementia Research and Education Centre, Menzies Research Institute, Hobart Tasmania 7000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis. J Neurosci 2010; 30:3419-31. [PMID: 20203201 DOI: 10.1523/jneurosci.4231-09.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.
Collapse
|
27
|
Nakayama D, Matsuyama T, Ishibashi-Ueda H, Nakagomi T, Kasahara Y, Hirose H, Kikuchi-Taura A, Stern DM, Mori H, Taguchi A. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci 2010; 31:90-8. [PMID: 20104652 DOI: 10.1111/j.1460-9568.2009.07043.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increasing evidence points to accelerated neurogenesis after stroke, and support of such endogenous neurogenesis has been shown to improve stroke outcome in experimental animal models. The present study analyses post-stroke cerebral cortex after cardiogenic embolism in autoptic human brain. Induction of nestin- and musashi-1-positive cells, potential neural stem/progenitor cells, was observed at the site of ischemic lesions from day 1 after stroke. These two cell populations were present at distinct locations and displayed different temporal profiles of marker expression. However, no surviving differentiated mature neural cells were observed by 90 days after stroke in the previously ischemic region. Consistent with recent reports of neurogenesis in the cerebral cortex after induction of stroke in rodent models, the present current data indicate the presence of a regional regenerative response in human cerebral cortex. Furthermore, observations underline the potential importance of supporting survival and differentiation of endogenous neural stem/progenitor cells in post-stroke human brain.
Collapse
Affiliation(s)
- Daisuke Nakayama
- Department of Cerebrovascular Disease, National Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia. Neurosci Res 2010; 66:390-5. [DOI: 10.1016/j.neures.2009.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022]
|
29
|
Choi JS, Shin YJ, Lee JY, Choi JY, Cha JH, Chun MH, Lee MY. Enhanced expression of SOCS-2 in the rat hippocampus after transient forebrain ischemia. J Neurotrauma 2010; 26:2097-106. [PMID: 19469688 DOI: 10.1089/neu.2008.0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Suppressor of cytokine signaling-2 (SOCS-2) has recently been identified as an important regulator involved in neuronal differentiation and maturation. However, the role of SOCS-2 in ischemia-induced hippocampal neurogenesis remains to be clarified. Here we investigated the spatiotemporal expression of SOCS-2 in the rat hippocampus following transient forebrain ischemia, and particular attention was paid to changes in the dentate gyrus. SOCS-2 mRNA was constitutively expressed in hippocampal neurons and astrocytes in control animals. However, its upregulation occurred specifically in reactive astrocytes in the hippocampus proper, in particular the CA1 and dentate hilar regions, at day 3 after reperfusion, and was sustained for more than 2 weeks. In addition to the CA1 and hilar regions, SOCS-2 was transiently increased in the subgranular zone (SGZ) of the dentate gyrus on days 3-7 after reperfusion. This correlated with the post-ischemic upregulation of SOCS-2 in the CA1 or dentate gyrus subfield, including the SGZ detected by semiquantitative reverse transcriptase-polymerase chain reaction analysis. The majority of the SOCS-2-expressing cells in the SGZ were co-labeled with glial fibrillary acidic protein (GFAP), and a subpopulation of GFAP/SOCS-2 double-labeled cells in the SGZ co-expressed the neural progenitor marker nestin, or the proliferation marker proliferating cellular nuclear antigen. In addition, a subset of SOCS-2-labeled cells in the SGZ expressed the immature neuronal marker polysialic acid-neural cell adhesion molecule. These data suggest that SOCS-2 may be involved in glial reactions, and possibly adult hippocampal neurogenesis during ischemic insults.
Collapse
Affiliation(s)
- Jeong-Sun Choi
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, Gotoh A, Soma T, Yoshikawa H, Nishizaki T, Nakagomi N, Stern DM, Matsuyama T. Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci 2009; 29:1842-52. [PMID: 19473237 DOI: 10.1111/j.1460-9568.2009.06732.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The CNS has the potential to marshal strong reparative mechanisms, including activation of endogenous neurogenesis, after a brain injury such as stroke. However, the response of neural stem/progenitor cells to stroke is poorly understood. Recently, neural stem/progenitor cells have been identified in the cerebral cortex, as well as previously recognized regions such as the subventricular or subgranular zones of the hippocampus, suggesting that a contribution of cortex-derived neural stem/progenitor cells may repair ischemic lesions of the cerebral cortex. In the present study, using a highly reproducible murine model of cortical infarction, we have found nestin-positive cells in the post-stroke cerebral cortex, but not in the non-ischemic cortex. Cells obtained from the ischemic core of the post-stroke cerebral cortex formed neurosphere-like cell clusters expressing nestin; such cells had the capacity for self-renewal and differentiated into electrophysiologically functional neurons, astrocytes and myelin-producing oligodendrocytes. Nestin-positive cells from the stroke-affected cortex migrated into the peri-infarct area and differentiated into glial cells in vivo. Although we could not detect differentiation of nestin-positive cells into neurons in vivo, our current observations indicate that endogenous neural stem/progenitors with the potential to become neurons can develop within post-stroke cerebral cortex.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang LP, Cheung G, Kronenberg G, Gertz K, Ji S, Kempermann G, Endres M, Kettenmann H. Mild brain ischemia induces unique physiological properties in striatal astrocytes. Glia 2008; 56:925-34. [PMID: 18442086 DOI: 10.1002/glia.20660] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the properties of GFAP-expressing cells in adult mouse striatum using acute brain slices from transgenic animals expressing EGFP under GFAP promoter. Under physiological conditions, two distinct populations of GFAP-EGFP cells could be identified: (1) brightly fluorescent cells had bushy processes, passive membrane properties, glutamate transporter activity, and high gap junction coupling rate typical for classical astrocytes; (2) weakly fluorescent cells were characterized by thin, clearly distinguishable processes, voltage-gated currents, complex responses to kainate, and low coupling rate reminiscent of an astrocyte subtype recently described in the hippocampus. Mild focal cerebral ischemia confers delayed neuronal cell death and astrogliosis in the striatum. Following middle cerebral artery occlusion and reperfusion, brightly fluorescent cells were the dominant GFAP-EGFP population observed within the ischemic lesion. Interestingly, the majority of these cells expressed voltage-gated channels, showed complex responses to kainate, and a high coupling rate exceeding that of brightly fluorescent control cells. A minority of cells had passive membrane properties and was coupled less compared with passive control cells. We conclude that, in the adult striatum, astrocytes undergo distinct pathophysiological changes after ischemic insults. The dominant population in the ischemic lesion constitutes a novel physiological phenotype unlike any normal astrocyte and generates a large syncytium which might be a neuroprotective response of reactive astrocytes.
Collapse
Affiliation(s)
- Li-Ping Wang
- Department of Cellular Neurosciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. J Neurosci 2008; 28:7219-30. [PMID: 18614692 DOI: 10.1523/jneurosci.0940-08.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.
Collapse
|
33
|
Fiedorowicz A, Figiel I, Zaremba M, Dzwonek K, Oderfeld-Nowak B. The ameboid phenotype of NG2 (+) cells in the region of apoptotic dentate granule neurons in trimethyltin intoxicated mice shares antigen properties with microglia/macrophages. Glia 2008; 56:209-22. [PMID: 18023017 DOI: 10.1002/glia.20605] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NG2+, stellate cells present in the adult central nervous system (CNS) have been recently recognized as a distinct glial class, identified as multipotent progenitor cells. Antigenically, they are indistinguishable from oligodendroglia progenitor cells. In response to a variety of CNS insults, these cells become rapidly activated and undergo morphological changes accompanied by increased cellular proliferation. The role they play with respect to injured neurons is not clear. In our studies, we performed immunocytochemical investigations and identified a response of NG2-expressing cells in the model of selective neurodegeneration of murine dentate gyrus granule cells induced by systemic administration of trimethyltin. Dying neurons exhibited features of apoptotic cells. Around the region of neurodegeneration, we observed activation of NG2+ stellate cells and microglia. During the peak of apoptosis, we detected the appearance of NG2+ cells of the ameboid phenotype, intermingled with granule neurons. These cells also expressed markers of microglia/macrophages, OX42- and ED1-recognized antigens, an antigen recognized by O4 antibody-a marker of more differentiated cells of the oligodendroglia lineage and, in some cases, also a protein of mature oligodendroglia adenomatus polyposis coli. They also expressed nestin. Our results suggest that the injury induces a parallel transformation of both the activated glial classes: NG2+ stellate cells and resident microglia, into ameboid cells, sharing properties of both oligodendrocyte and monocyte lineages. These cells may play a role in the phagocytosis. If this assumption is verified by electron microscopy, it would indicate a novel function of NG2 transformed cells under CNS injury conditions.
Collapse
Affiliation(s)
- Anna Fiedorowicz
- Department of Molecular and Cellular Neurobiology, Laboratory of Mechanisms of Neurodegeneration and Neuroprotection, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | | | | | | | | |
Collapse
|
34
|
Salehi F, Kovacs K, Cusimano MD, Horvath E, Bell CD, Rotondo F, Scheithauer BW. Immunohistochemical expression of nestin in adenohypophysial vessels during development of pituitary infarction. J Neurosurg 2008; 108:118-23. [PMID: 18173320 DOI: 10.3171/jns/2008/108/01/0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this work was to investigate the immunohistochemical expression of nestin, a member of the intermediate filament family, in adenohypophysial vasculature during development and progression of pituitary infarction. METHODS Forty-five nontumorous adenohypophyses and 34 pituitary adenomas of various types, all exhibiting acute or healing infarcts, were examined immunohistochemically using the streptavidin-biotin-peroxidase complex method. RESULTS In both adenohypophyses and pituitary adenomas without infarction, nestin was expressed in only a few capillaries and endothelial cells. In acute infarcts without a vascular response, no nestin was demonstrable within necrotic capillaries (50 cases). In organizing infarcts, newly formed vessels spreading into necrotic zones showed nestin expression in all capillaries and practically every endothelial cell (25 cases). In the hypocellular, fibrotic scar phase, only a few vessels (4) were apparent, and immunoreactivity was focal and mild. CONCLUSIONS Nestin is strongly expressed in newly formed capillaries and is downregulated when infarcts transform to fibrous tissue. Nestin expression may provide valuable insight into the process of pituitary angiogenesis.
Collapse
Affiliation(s)
- Fateme Salehi
- Department of Laboratory Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Chuai M, Imai Y, Takahashi H, Tanaka J. Accumulation of macrophage-like cells expressing NG2 proteoglycan and Iba1 in ischemic core of rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 2008; 28:149-63. [PMID: 17565360 DOI: 10.1038/sj.jcbfm.9600519] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although neurons and glia inevitably undergo degeneration in the core of ischemic lesions, many cells, particularly immune cells, infiltrate the core and survive in it. Such infiltrating cells may play certain roles in the regeneration and repair of damaged brain tissues. In this study, we characterized macrophage-like cells that accumulated in the ischemic core of a rat brain whose right middle cerebral artery was transiently occluded for 90 mins. Many of the accumulated macrophage-like cells expressed Iba1, a marker of macrophages/microglia, as well as NG2 chondroitin sulfate proteoglycan (NG2), which has been recognized as a marker of oligodendrocyte progenitor cells. Such macrophage-like cells were termed BINCs (brain Iba1(+)/NG2(+) cells) to distinguish them from NG2(-)/Iba1(+) or NG2(+)/Iba1(-) cells that were also present in the perilesion and the contralateral hemisphere. Electron microscopy showed the localization of NG2 along the plasma membrane of cells that had many phagosomes and irregular-shaped or reniform heterochromatin-rich nuclei, which are characteristics of monocytes/macrophages. Brain Iba1(+)/NG2(+) cells were highly proliferative and their number peaked at 7 days post-reperfusion. An immunoblot analysis of NG2 revealed the presence of two NG2s: one expressed by BINCs with a molecular weight of 300 kDa, and the other found in the contralateral hemisphere with a molecular weight of 290 kDa. Taken the various functions of NG2, BINCs may be involved in not only phagocytosis of degenerated cells but also the healing and regeneration of lesion cores.
Collapse
Affiliation(s)
- Hiroaki Matsumoto
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yildirim F, Gertz K, Kronenberg G, Harms C, Fink KB, Meisel A, Endres M. Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol 2007; 210:531-42. [PMID: 18234195 DOI: 10.1016/j.expneurol.2007.11.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/20/2007] [Accepted: 11/29/2007] [Indexed: 02/01/2023]
Abstract
Acetylation/deactylation of histones is an important mechanism to regulate gene expression and chromatin remodeling. We have previously demonstrated that the HDAC inhibitor trichostatin A (TSA) protects cortical neurons from oxygen/glucose deprivation in vitro which is mediated--at least in part--via the up regulation of gelsolin expression. Here, we demonstrate that TSA treatment dose-dependently enhances histone acetylation in brains of wildtype mice as evidenced by immunoblots of total brain lysates and immunocytochemical staining. Along with increased histone acetylation dose-dependent up regulation of gelsolin protein was observed. Levels of filamentous actin were largely decreased by TSA pre-treatment in brain of wildtype but not gelsolin-deficient mice. When exposed to 1 h filamentous occlusion of the middle cerebral artery followed by reperfusion TSA pre-treated wildtype mice developed significantly smaller cerebral lesion volumes and tended to have improved neurological deficit scores compared to vehicle-treated mice. These protective effects could not be explained by apparent changes in physiological parameters. In contrast to wildtype mice, TSA pre-treatment did not protect gelsolin-deficient mice against MCAo/reperfusion suggesting that enhanced gelsolin expression is an important mechanism by which TSA protects against ischemic brain injury. Our results suggest that HDAC inhibitors such as TSA are a promising therapeutic strategy for reducing brain injury following cerebral ischemia.
Collapse
Affiliation(s)
- Ferah Yildirim
- Klinik und Poliklinik für Neurologie, Charité-Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Kronenberg G, Wang LP, Geraerts M, Babu H, Synowitz M, Vicens P, Lutsch G, Glass R, Yamaguchi M, Baekelandt V, Debyser Z, Kettenmann H, Kempermann G. Local origin and activity-dependent generation of nestin-expressing protoplasmic astrocytes in CA1. Brain Struct Funct 2007; 212:19-35. [PMID: 17717696 DOI: 10.1007/s00429-007-0141-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/18/2007] [Indexed: 12/15/2022]
Abstract
Since reports that precursor cells in the adult subventricular zone (SVZ) contribute to regenerative neuro- and gliogenesis in CA1, we wondered whether a similar route of migration might also exist under physiological conditions. Permanent labeling of SVZ precursor cells with a lentiviral vector for green fluorescent protein did not reveal any migration from the SVZ into CA1 in the intact murine brain. However, in a nestin-GFP reporter mouse we found proliferating cells within the corpus callosum/alveus region expressing nestin and glial fibrillary acidic protein similar to precursor cells in the neighboring neurogenic region of the adult dentate gyrus. Within 3 weeks of BrdU administration, BrdU-positive nestin-GFP-expressing protoplasmic astrocytes emerged in CA1. Similar to precursor cells isolated from the dentate gyrus and the SVZ, nestin-GFP-expressing cells from corpus callosum/alveus were self-renewing and multipotent in vitro, whereas cells isolated from CA1 were not. Nestin-GFP-expressing cells in CA1 differentiated into postmitotic astrocytes characterized by S100beta expression. No new neurons were found in CA1. The number of nestin-GFP-expressing astrocytes in CA1 was increased by environmental enrichment. We conclude that astrogenesis in CA1 is influenced by environmental conditions. However, SVZ precursor cells do not contribute to physiological cellular plasticity in CA1.
Collapse
Affiliation(s)
- Golo Kronenberg
- Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schölzke MN, Schwaninger M. Transcriptional regulation of neurogenesis: potential mechanisms in cerebral ischemia. J Mol Med (Berl) 2007; 85:577-88. [PMID: 17429598 DOI: 10.1007/s00109-007-0196-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/27/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
Recent data provides evidence that new neurons are born in cerebral ischemia. Although ultimate evidence for their functional importance is lacking, correlational data suggest that they contribute to recovery. Therefore, the underlying mechanisms of neurogenesis are interesting as a basis for pharmacological enhancement of the phenomenon. Neurogenesis is a multistep process that includes proliferation of precursor cells, migration of the newborn cells to the site of lesion, differentiation, integration into neuronal circuits, and survival. All these steps rely on gene transcription. However, only preliminary data about the specific transcriptional control of neurogenesis in cerebral ischemia have been obtained so far. To promote this investigation, we review currently available information on six pathways (Notch, Wnt/beta-catenin, NF-kappaB, signal transducers and activators of transcription (STA) 3, HIF-1, and cyclic AMP response element-binding protein [CREB]) that have been shown to regulate transcription in neurogenesis and that have been implicated in cerebral ischemia. With the exception of CREB, direct involvement in postischemic neurogenesis is quite conjectural and much more must be learned to draw practical conclusions.
Collapse
Affiliation(s)
- Marion N Schölzke
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | |
Collapse
|
39
|
Burns KA, Ayoub AE, Breunig JJ, Adhami F, Weng WL, Colbert MC, Rakic P, Kuan CY. Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. ACTA ACUST UNITED AC 2007; 17:2585-92. [PMID: 17259645 DOI: 10.1093/cercor/bhl164] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The standard method of detecting neurogenesis uses bromodeoxyuridine (BrdU) to label DNA synthesis followed by double labeling with neuronal markers. However, DNA synthesis may occur in events unrelated to neurogenesis including aneuploidy and abortive cell cycle reentry. Hence, it is important to confirm neurogenesis with methods other than BrdU incorporation. To this end, we have generated transgenic nestin-CreER mice that express tamoxifen-inducible Cre recombinase under the control of a nestin enhancer. When crossed with a ubiquitous Enhanced Green Fluorescent Protein (EGFP)-Cre-reporter line, the bitransgenic animals can reveal the nestin-positive progenitors and their progeny with EGFP after tamoxifen induction. This system has many applications including visualization of embryonic neural progenitors, detection of postnatally transformed radial glial cells, and labeling adult neural progenitors in the subventricular zone (SVZ). To examine the contribution of SVZ progenitors to cell replacement after stroke, tamoxifen-induced mice were challenged with focal ischemia or combined ischemia-hypoxia followed by BrdU injection. This analysis revealed only very few EGFP-positive cells outside the SVZ after focal ischemia but robust DNA synthesis by hippocampal neurons without immediate cell death following ischemia-hypoxia. These results suggest that the nestin-CreER system is a useful tool for detecting embryonic and adult neurogensis. They also confirm the existence of nonproliferative DNA synthesis by old neurons after experimental brain injury.
Collapse
Affiliation(s)
- Kevin A Burns
- Divisions of Developmental Biology and Pediatric Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Adermark L, Lovinger DM. Ethanol effects on electrophysiological properties of astrocytes in striatal brain slices. Neuropharmacology 2006; 51:1099-108. [PMID: 16938316 DOI: 10.1016/j.neuropharm.2006.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/02/2006] [Accepted: 05/25/2006] [Indexed: 11/24/2022]
Abstract
Ethanol (EtOH) is known to alter neuronal physiology, but much less is known about the actions of this drug on glial function. To this end, we examined acute effects of ethanol on resting and voltage-activated membrane currents in striatal astrocytes using rat brain slices. Ten minutes exposure to 50mM EtOH reduced slope conductance by 20%, increased input resistance by 25% and decreased capacitance by 38% but did not affect resting membrane potential. Current generated by a hyperpolarizing pulse was inhibited in a concentration dependent manner in passive astrocytes, while no significant EtOH effect was observed in complex astrocytes or neurons. The EtOH effect was blocked when intracellular KCl was replaced with CsCl, but not during chelation of intracellular calcium with BAPTA. During blockage of gap junction coupling with high intracellular CaCl(2) or extracellular carbenoxolone the EtOH effect persisted but was reduced. Interestingly, EtOH effects were largely irreversible when gap junctions were open, but were fully reversible when gap junctions were closed. Ethanol also reduced the spread to other cells of Lucifer Yellow dye from individual glia filled via the patch pipette. These data suggest that EtOH inhibits a calcium-insensitive potassium channel, most likely a passive potassium channel, but also affects gap junction coupling in a way that is sustained after ethanol withdrawal. Astrocytes play a critical role in brain potassium homeostasis, and therefore EtOH effects on astrocytic function could influence neuronal activity.
Collapse
Affiliation(s)
- Louise Adermark
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, NIAAA/NIH, 5625 Fishers Lane, TS-13, Bethesda, MD 20892, USA
| | | |
Collapse
|