1
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
2
|
Womack TR, Vollert CT, Ohia-Nwoko O, Schmitt M, Montazari S, Beckett TL, Mayerich D, Murphy MP, Eriksen JL. Prostacyclin Promotes Degenerative Pathology in a Model of Alzheimer's Disease. Front Cell Neurosci 2022; 16:769347. [PMID: 35197825 PMCID: PMC8860182 DOI: 10.3389/fncel.2022.769347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common form of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid-β (Aβ) disease pathologies. Mice overexpressing both Aβ and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of Aβ accumulation in the brain and selectively increased the production of soluble Aβ42. PGI2 damaged the microvasculature through alterations in vascular length and branching; Aβ expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.
Collapse
Affiliation(s)
- Tasha R. Womack
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Craig T. Vollert
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Odochi Ohia-Nwoko
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Monika Schmitt
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Saghi Montazari
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Tina L. Beckett
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Michael Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jason L. Eriksen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
4
|
Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. Pretreatment of Indobufen and Aspirin and their Combinations with Clopidogrel or Ticagrelor Alleviates Inflammasome Mediated Pyroptosis Via Inhibiting NF-κB/NLRP3 Pathway in Ischemic Stroke. J Neuroimmune Pharmacol 2021; 16:835-853. [DOI: 10.1007/s11481-020-09978-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
|
5
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Cai D, Chen XP, Wei DC, Zhang Q, Chen SQ, He WZ. Combination therapy with beraprost sodium and aspirin for acute ischemic stroke: a single-center retrospective study. J Int Med Res 2019; 47:3014-3024. [PMID: 31142174 PMCID: PMC6683933 DOI: 10.1177/0300060519850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To evaluate the effectiveness and safety of the combination of beraprost sodium (BPS) and aspirin in patients with acute ischemic stroke (AIS). METHODS There were 384 patients with AIS enrolled in this single-center, retrospective study. The BPS group comprised patients who received combination therapy with BPS and aspirin, and the control group comprised those who received only aspirin. Primary measurements were glomerular filtration rate (GFR), cystatin-c (Cys-C), National Institute of Health Stroke Scale (NIHSS) score, modified activities of daily living index (MBI), modified Rankin scale (mRS), and blood coagulation indexes. Recurrence and adverse events were recorded. RESULTS There were no significant differences in patient characteristics at baseline between the two groups. GFR and Cys-C levels increased in the BPS group compared with the control group. After treatment, the NIHSS and mRS score were significantly lower in the BPS group compared with the control group, whereas the MBI scores were significantly higher in the BPS group compared with the control group. There was no significant difference in blood coagulation between the two groups. There were no serious adverse events in either group. CONCLUSIONS Combination therapy with BPS and aspirin may be a safe and effective treatment for AIS.
Collapse
Affiliation(s)
- De Cai
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
| | - Xiao-Pu Chen
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
| | - Dun-Can Wei
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
| | - Qian Zhang
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
| | - Si-Qia Chen
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
| | - Wen-Zhen He
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College Shantou, Guangdong, China
- Wen-Zhen He, Department of Neurology, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
7
|
Protective effects of effective ingredients of Danshen (Radix Salviae Miltiorrhizae) and Honghua (Flos Carthami) compatibility after rat hippocampal neurons induced by hypoxia injury. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30907-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
9
|
Yi X, Lin J, Wang C, Huang R, Liu Y. Interactions among Variants in Eicosanoid Genes Increase Risk of Atherothrombotic Stroke in Chinese Populations. J Stroke Cerebrovasc Dis 2017; 26:1773-1780. [PMID: 28478978 DOI: 10.1016/j.jstrokecerebrovasdis.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Eicosanoids are lipid mediators that may play a role in ischemic stroke (IS). However, the association of variants in eicosanoid genes and these interactions with IS risk has not been investigated. The aim of the present study was to investigate the association of 11 variants in eicosanoid genes with IS and to determine whether these gene-gene interactions increase the risk of IS. METHODS Eleven variants in prostaglandin H synthase-1 (PTGS1), PTGS2, thromboxane A2 synthase (TBXAS1), prostacyclin synthase (PTGIS), and prostaglandin E synthase (PTGES) genes were examined using mass spectrometry method in 297 patients with atherothrombotic stroke and 291 controls. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) method. Platelet aggregation and platelet-leukocyte aggregates were measured on admission. RESULTS There were no significant differences in the genotype distributions of the 11 variants between patients and controls. However, GMDR analysis showed a significant gene-gene interaction among rs20417, rs5602, and rs41708, which scored 10 for cross-validation consistency and 9 for the sign test (P = .014). Logistic regression analysis showed that high-risk interaction among rs20417, rs5602, and rs41708 was an independent risk factor for atherothrombotic stroke (OR = 2.45, 95% CI: 1.33-3.27, P = .019). The high-risk interactive genotypes were associated with higher platelet aggregation and platelet-leukocyte aggregates. CONCLUSIONS PTGS2 rs20417, PTGIS rs5602, and TBXAS1 rs41708 three-locus interactions may confer a higher risk for atherothrombotic stroke. The combinatorial analysis used in this study may be helpful to elucidate complex genetic risk for IS.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Jing Lin
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chun Wang
- Department of Neurology, People's Hospital of Deyang City, Deyang, Sichuan, China.
| | - Ruyue Huang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Liu
- Department of Neurology, People's Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
10
|
Ohkura M, Ohkura N, Yoshiba N, Yoshiba K, Ida-Yonemochi H, Ohshima H, Saito I, Okiji T. Orthodontic force application upregulated pain-associated prostaglandin-I 2/PGI 2-receptor/TRPV1 pathway-related gene expression in rat molars. Odontology 2017. [PMID: 28631175 DOI: 10.1007/s10266-017-0309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to analyze the mRNA expression and protein localization of prostaglandin I2 (PGI2) synthase (PGIS), the PGI2 receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI2-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6-72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR. PGIS, IP receptor, and TRPV1 proteins were immunostained. The force stimulation induced significant upregulation of PGIS at 6-24 h, and PTGIR and TRPV1 at 6 and 12 h in the pulp. PGIS was immunolocalized in odontoblasts and some fibroblasts in the force-stimulated pulp. The IP receptor and TRPV1 immunoreactivities were detected on odontoblasts and some nerve fibers. It was concluded that PGIS, PTGIR, and TRPV1 in rat molar pulp were significantly upregulated shortly after the force application, and that the IP receptor was co-expressed on TRPV1-expressing nerves and odontoblasts. These findings suggest that the PGI2-IP receptor-TRPV1 pathway is associated with the acute phase of force-induced pulp changes involving odontoblasts and nerves.
Collapse
Affiliation(s)
- Mariko Ohkura
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kunihiko Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Isao Saito
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
11
|
Variants in COX-2, PTGIS, and TBXAS1 Are Associated with Carotid Artery or Intracranial Arterial Stenosis and Neurologic Deterioration in Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2017; 26:1128-1135. [PMID: 28108096 DOI: 10.1016/j.jstrokecerebrovasdis.2016.12.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/01/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eicosanoids may play a role in ischemic stroke (IS). However, the association of variants in eicosanoid genes with symptomatic carotid artery or intracranial arterial stenosis and neurologic deterioration (ND) is not fully understood. The aim of the present study was to investigate the association of 11 variants in eicosanoid genes with symptomatic carotid artery or intracranial arterial stenosis and ND. METHODS Eleven variants in eicosanoid genes were examined using mass spectrometry method in 297 IS patients. The symptomatic carotid artery or intracranial arterial stenosis was assessed by computed tomographic angiography. Platelet aggregation and platelet-leukocyte aggregates were measured. The primary outcome was ND within 10 days of admission. ND was defined as an increase of 2 or more points in National Institutes of Health Stroke Scale score. RESULTS Among 297 IS patients, 182 (61.3%) cases had symptomatic carotid artery or intracranial arterial stenosis, and 88 (29.6%) patients experienced ND within 10 days after admission. Symptomatic carotid artery or intracranial arterial stenosis was significantly associated with higher ND (P < .001). Rs20417CC, rs41708TT, and rs5629CC were independent risk factors for symptomatic carotid artery or intracranial arterial stenosis and ND, and associated with higher platelet aggregation and platelet-leukocyte aggregates. CONCLUSIONS Symptomatic carotid artery or intracranial arterial stenosis was associated with higher ND. Rs20417CC, rs41708TT, and rs5629CC were not only independent risk factors for symptomatic carotid artery or intracranial arterial stenosis, but also independent risk predictors for ND.
Collapse
|
12
|
Yi X, Lin J, Luo H, Wang C, Liu Y. Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic stroke patients. PLoS One 2017; 12:e0180704. [PMID: 28704403 PMCID: PMC5507514 DOI: 10.1371/journal.pone.0180704] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 02/02/2023] Open
Abstract
Eicosanoids may play a role in ischemic stroke. However, the associations of variants in cyclooxygenase (COX) pathway genes and interaction among these variants with carotid plaque vulnerability are not fully understood. In present study, twelve variants in COX pathway genes were examined using matrix-assisted laser desorption ionization time-of-flight mass spectrometry method in 396 patients with ischemic stroke and 291 controls. Platelet aggregation, platelet-leukocyte aggregates, and urine 11-dehydrothromboxane B2 (11-dTxB2) were also measured. According to the results of carotid high-resolution B-mode ultrasound, the patients were stratified into the following groups [i.e., non-carotid plaque and carotid plaque. The carotid plaque was further classified into subgroups of echolucent plaque (ELP) and echogenic plaque (EGP)]. Additionally, gene-gene interactions were analyzed to assess whether there was any interactive role for assessed variants in affecting carotid plaque vulnerability, platelet activation and 11-dTxB2 levels. There were no significant differences in the frequencies of genotypes of the twelve variants between patients and controls. Among 396 patients, 294 cases (74.2%) had carotid plaques (106 had ELP, 188 had EGP). Frequency of PTGS2 rs20417CC, TXAS1 rs2267679TT, TXAS1 rs41708TT, PTGIS rs5602CC, and TXA2R rs1131882TT genotype was significantly higher in patients with plaque compared with patients without plaque, or in patients with ELP compared with patients with EGP. 11-dTxB2 levels, platelet aggregation and platelet-leukocyte aggregates were significantly higher in patients with ELP compared with patients without plaque or with EGP. Multivariate logistic regression analysis revealed that PTGS2 rs20417CC, TXA2R rs1131882TT, and high-risk interaction among variants in PTGS2 rs20417, TXA2R rs1131882 and TXAS1 rs41708 were independently associated with the risk of ELP after adjusting for confounding variables. The variants in COX pathway genes and the high-risk interactions among variants in PTGS2 rs20417, TXA2R rs1131882 and TXAS1 rs41708 were associated with high 11-dTxB2 and platelet activation, and independently associated with the risk of carotid plaque vulnerability. These variants might be potential markers for plaque instability.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Jing Lin
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (JL); (HL)
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- * E-mail: (JL); (HL)
| | - Chun Wang
- Department of Neurology, People’s Hospital of Deyang City, Deyang, Sichuan, China
| | - Yingying Liu
- Department of Neurology, People’s Hospital of Deyang City, Deyang, Sichuan, China
| |
Collapse
|
13
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
14
|
Leger PL, Pansiot J, Besson V, Palmier B, Renolleau S, Baud O, Cauli B, Charriaut-Marlangue C. Cyclooxygenase-2-Derived Prostaglandins Mediate Cerebral Microcirculation in a Juvenile Ischemic Rat Model. Stroke 2016; 47:3048-3052. [PMID: 27834752 DOI: 10.1161/strokeaha.116.015095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE We previously showed that the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) increases cerebral microcirculation in a juvenile ischemic rat model. We address the roles of cyclooxygenase (COX)-elaborated prostaglandins in collateral recruitment and blood supply. METHODS Fourteen-day-old rats were subjected to ischemia-reperfusion and treated with either PBS or 7-NI (25 mg/kg) at the reperfusion onset. Six-keto-prostaglandin F1α was measured using ELISA. COX-1 and COX-2 and prostaglandin terminal synthesizing enzymes were evaluated using reverse-transcriptase polymerase chain reaction and immunofluorescence. Microvascular blood flow indexes (artery diameter and capillaries number) were measured using sidestream dark-field videomicroscopy in PBS- and 7-NI-treated ischemic rats in the absence or presence of the COX-2 inhibitor NS-398 (5 mg/kg). Cell death was measured with the TUNEL (terminal transferase dUTP nick end labeling) assay and cleaved-caspase-3 immunostaining. RESULTS Six-keto-prostaglandin F1α and COX-2, associated with a prostaglandin E synthase, were significantly increased in PBS- and 7-NI-treated animals 15 minutes and 1 hour after ischemia-reperfusion, respectively. In contrast and as compared with PBS, 7-NI significantly decreased prostacyclin synthase and cytosolic prostaglandins E synthase mRNA. Selective COX-2 inhibition significantly decreased blood flow indexes and significantly reversed the effects of 7-NI, including the number of TUNEL+- and cleaved-caspase-3+-nuclei. CONCLUSIONS These results show that the juvenile rat brains mostly respond to ischemia by a COX-2-dependent prostaglandins production and suggest that the transcriptional responses observed under 7-NI facilitate and reorient COX-2-dependent prostaglandins production.
Collapse
Affiliation(s)
- Pierre-Louis Leger
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Julien Pansiot
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Valerie Besson
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Bruno Palmier
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Sylvain Renolleau
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Olivier Baud
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Bruno Cauli
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.)
| | - Christiane Charriaut-Marlangue
- From the PROTECT, INSERM, University Paris Diderot, France (P.-L.L., J.P., V.B., O.B., C.C.-M.); UPMC, AP-HP, Hôpital Armand Trousseau, PICU, Paris, France (P.-L.L.); Pharmacologie de la Circulation Cérébrale-EA4475, University Paris Descartes, Faculté de Pharmacie, France (V.B., B.P.); University Rene Descartes, AP-HP, Hôpital Necker, PICU, Paris, France (S.R.); Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France (B.C.).
| |
Collapse
|
15
|
Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med 2016; 92:100-109. [PMID: 26795600 PMCID: PMC4774945 DOI: 10.1016/j.freeradbiomed.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. METHODS Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. RESULTS The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. CONCLUSIONS Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.
Collapse
Affiliation(s)
- Hélène Choquet
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | | | - Marco Fontanella
- Department of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Leslie A Morrison
- Department of Neurology University of New Mexico, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it).
| |
Collapse
|
16
|
Davis CM, Ammi AY, Alkayed NJ, Kaul S. Ultrasound stimulates formation and release of vasoactive compounds in brain endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309:H583-91. [PMID: 26092990 DOI: 10.1152/ajpheart.00690.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
Abstract
Stroke outcome is improved by therapeutic ultrasound. This benefit is presumed to be principally from ultrasound-mediated thrombolysis. We hypothesized that the therapeutic benefit of ultrasound in stroke may, in part, be mediated by the release of beneficial vasoactive substances. Accordingly, we investigated the effect of ultrasound on levels of cytochrome P-450, lipoxygenase, and cyclooxygenase metabolites of arachidonic acid as well as adenosine release and endothelial nitric oxide synthase (eNOS) phosphorylation in primary brain endothelial cells in vitro. Brain endothelial cells were exposed to 1.05-MHz ultrasound at peak rarefactional acoustic pressure amplitudes of 0.35, 0.55, 0.90, and 1.30 MPa. Epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs), PGE2, adenosine, nitrate/nitrite, and eNOS phosphorylation were measured after ultrasound exposure. Levels of 8,9-EET, 11,12-EET, and 14,15-EET increased by 230 ± 28%, 240 ± 30%, and 246 ± 31% (P < 0.05), respectively, whereas 5-HETE and 15-HETE levels were reduced to 24 ± 14% and 10 ± 3% (P < 0.05), respectively, compared with cells not exposed to ultrasound. PGE2 levels were reduced to 56 ± 14% of control. Adenosine increased more than sixfold after ultrasound exposure compared with unstimulated cells (1.36 ± 0.22 vs. 0.37 ± 0.10 ng/ml, P < 0.05), nitrate/nitrite was below levels of quantification, and eNOS phosphorylation was not altered significantly. Our results suggest that ultrasound may enhance tissue perfusion during stroke by augmenting the generation of vasodilator compounds and inhibiting that of vasoconstrictors. Such regulation supports a beneficial role for therapeutic ultrasound in stroke independent of its effect on the occlusive thrombus.
Collapse
Affiliation(s)
- Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Azzdine Y Ammi
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
17
|
Pan Y, Yu L, Lei W, Guo Y, Wang J, Yu H, Tang Y, Yang J. Beraprost sodium protects against chronic brain injury in aluminum-overload rats. Behav Brain Funct 2015; 11:6. [PMID: 25888780 PMCID: PMC4326490 DOI: 10.1186/s12993-014-0051-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022] Open
Abstract
Background Aluminum overload can cause severe brain injury and neurodegeneration. Previous studies suggest that prostacyclin synthase (PGIS) expression and prostacyclin receptor (IP) activation are beneficial for treatment of acute traumatic and ischemic brain injury. However, the potential value of PGIS/IP signaling pathway to chronic brain injury is still unclear. In this study, we investigated the change of PGIS/IP signaling pathway and the effect of beraprost sodium (BPS) on chronic brain injury in chronic aluminum-overload rats. Methods Rat model of chronic cerebral injury was established by chronic intragastric administration of aluminum gluconate(Al3+ 200 mg/kg per day,5d a week for 20 weeks). The methods of ELISA, qRT-PCR and Western blotting were used to detect the PGI2 level and the PGIS and IP mRNA and protein levels in hippocampi of chronic aluminum-overload rats, respectively. Rat hippocampal superoxide dismutase (SOD) activity and malondialdehyde (MDA) content also were measured. The effects of BPS (6, 12 and 24 μg⋅kg-1) on brain injury in chronic aluminum-overload rats were evaluated. Results Compared with the control group, PGIS mRNA expression, PGI2 level, and the IP mRNA and protein expressions significantly increased in hippocampi of chronic aluminum-overload rats. Administration of BPS significantly improved spatial learning and memory function impairment and hippocampal neuron injury induced by chronic aluminum overload in rats. Meanwhile, administration of BPS resulted in a decrease of PGI2 level and downregulation of PGIS and IP expressions in a dose-dependent manner. Aluminum overload also caused a decrease of SOD activity and an increase of MDA content. Administration of BPS significantly blunted the decrease of SOD activity and the increase of MDA content induced by aluminum overload in rats. Conclusions BPS has a significant neuroprotective effect on chronic brain injury induced by aluminum overload in rats. Remodeling the balance of PGIS/IP signaling pathway and inhibition of oxidative stress involve in the neuroprotective mechanism of BPS in aluminum-overload rats. The PGIS/IP signaling pathway is a potential therapeutic strategy for chronic brain injury patients.
Collapse
Affiliation(s)
- Yongquan Pan
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China. .,Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Lijuan Yu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Wenjuan Lei
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Yuanxin Guo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Jianfeng Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Huarong Yu
- Department of Basic College, Chongqing Medical University, Chongqing, 400016, China.
| | - Yong Tang
- Department of Basic College, Chongqing Medical University, Chongqing, 400016, China.
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China. .,Department of Pharmacology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Yu L, Yang B, Wang J, Zhao L, Luo W, Jiang Q, Yang J. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav Brain Funct 2014; 10:42. [PMID: 25388440 PMCID: PMC4240876 DOI: 10.1186/1744-9081-10-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation plays pivotal roles in the progression of cerebral ischemia injury. Prostaglandins (PGs) as the major inflammatory mediators in the brain participate in the pathophysiological processes of cerebral ischemia injury. Cyclooxygenase-2 (COX2) is the rate-limiting enzyme of PGs, and thus it is necessary to characterize of the expression patterns of COX2 and its downstream products at the same time in a cerebral ischemia/reperfusion (I/R) model. METHODS The levels of prostacyclin (PGI2) and thromboxane (TXA2) and the expression of COX2 were detected in the rat hippocampus at different time points after reperfusion (30 min, 2 h, 6 h, 24 h, 48 h, 7 d, and 15 d). RESULTS The COX2 mRNA and protein expressions in hippocampus both remarkably increased at 30 min, and peaked at 7 d after global cerebral I/R compared with the sham-operated group. The level of PGI2 significantly increased at 2 h after reperfusion, with a peak at 48 h, but was still significantly higher than the sham-operated animals at 15 d. TXA2 level decreased at 30 min and 2 h after reperfusion, but significantly increased at 6 h and peaked at 48 h. PGI2/TXA2 ratio increased at 30 min after reperfusion, and peaked at 48 h compared with the sham-operated animals. CONCLUSIONS I/R injury significantly increased the COX2 expression, PGI2 and TXA2 levels, and the PGI2/TXA2 ratio in rat hippocampus in a time-dependent manner. As a consequence, the increased PGI2 level and PGI2/TXA2 ratio may represent a physiological mechanism to protect the brain against the neuronal damage produced by I/R injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd, No 1, Chongqing 400016, China.
| |
Collapse
|
19
|
Bickford JS, Ali NF, Nick JA, Al-Yahia M, Beachy DE, Doré S, Nick HS, Waters MF. Endothelin-1-mediated vasoconstriction alters cerebral gene expression in iron homeostasis and eicosanoid metabolism. Brain Res 2014; 1588:25-36. [PMID: 25230250 DOI: 10.1016/j.brainres.2014.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
Endothelins are potent vasoconstrictors and signaling molecules. Their effects are broad, impacting processes ranging from neurovascular and cardiovascular health to cell migration and survival. In stroke, traumatic brain injury or subarachnoid hemorrhage, endothelin-1 (ET-1) is induced resulting in cerebral vasospasm, ischemia, reperfusion and the activation of various pathways. Given the central role that ET-1 plays in these patients and to identify the downstream molecular events specific to transient vasoconstriction, we studied the consequences of ET-1-mediated vasoconstriction of the middle cerebral artery in a rat model. Our observations demonstrate that ET-1 can lead to increases in gene expression, including genes associated with the inflammatory response (Ifnb, Il6, Tnf) and oxidative stress (Hif1a, Myc, Sod2). We also observed inductions (>2 fold) of genes involved in eicosanoid biosynthesis (Pla2g4a, Pla2g4b, Ptgs2, Ptgis, Alox12, Alox15), heme metabolism (Hpx, Hmox1, Prdx1) and iron homeostasis (Hamp, Tf). Our findings demonstrate that mRNA levels for the hormone hepcidin (Hamp) are induced in the brain in response to ET-1, providing a novel target in the treatment of multiple conditions. These changes on the ipsilateral side were also accompanied by corresponding changes in a subset of genes in the contralateral hemisphere. Understanding ET-1-mediated events at the molecular level may lead to better treatments for neurological diseases and provide significant impact on neurological function, morbidity and mortality.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Narjis F Ali
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Jerelyn A Nick
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Musab Al-Yahia
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Dawn E Beachy
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael F Waters
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
An Y, Belevych N, Wang Y, Zhang H, Nasse JS, Herschman H, Chen Q, Tarr A, Liu X, Quan N. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury. J Inflamm Res 2014; 7:57-67. [PMID: 24971026 PMCID: PMC4070856 DOI: 10.2147/jir.s63205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In a previous study, we found that intracerebral administration of excitotoxin (RS)-(tetrazole-5yl) glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2(flox/flox) ). In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2) in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.
Collapse
Affiliation(s)
- Ying An
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Natalya Belevych
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Yufen Wang
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Hao Zhang
- Institute for Behavior Medicine Research, Columbus, OH, USA
| | - Jason S Nasse
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA
| | - Harvey Herschman
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Qun Chen
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Andrew Tarr
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Xiaoyu Liu
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Ning Quan
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| |
Collapse
|
21
|
Fang W, Wei J, Han D, Chen X, He G, Wu Q, Chu S, Li Y. MC-002 exhibits positive effects against platelets aggregation and endothelial dysfunction through thromboxane A 2 inhibition. Thromb Res 2014; 133:610-5. [DOI: 10.1016/j.thromres.2014.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/10/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
22
|
Takahashi C, Muramatsu R, Fujimura H, Mochizuki H, Yamashita T. Prostacyclin promotes oligodendrocyte precursor recruitment and remyelination after spinal cord demyelination. Cell Death Dis 2013; 4:e795. [PMID: 24030147 PMCID: PMC3789193 DOI: 10.1038/cddis.2013.335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022]
Abstract
Adult oligodendrocyte precursor cells (OPCs) are located adjacent to demyelinated lesion and contribute to myelin repair. The crucial step in remyelination is the migration of OPCs to the demyelinated area; however, the mechanism of OPC migration remains to be fully elucidated. Here we show that prostacyclin (prostaglandin I2, PGI2) promotes OPC migration, thereby promoting remyelination and functional recovery in mice after demyelination induced by injecting lysophosphatidylcholine (LPC) into the spinal cord. Prostacyclin analogs enhanced OPC migration via a protein kinase A (PKA)-dependent mechanism, and prostacyclin synthase expression was increased in the spinal cord after LPC injection. Notably, pharmacological inhibition of prostacyclin receptor (IP receptor) impaired remyelination and motor recovery, whereas the administration of a prostacyclin analog promoted remyelination and motor recovery after LPC injection. Our results suggest that prostacyclin could be a key molecule for facilitating the migration of OPCs that are essential for repairing demyelinated areas, and it may be useful in treating disorders characterized by demyelination.
Collapse
Affiliation(s)
- C Takahashi
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
23
|
VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One 2013; 8:e53388. [PMID: 23308210 PMCID: PMC3538763 DOI: 10.1371/journal.pone.0053388] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022] Open
Abstract
With the development of increasingly large and complex genomic and proteomic data sets, an enhancement in the complexity of available Venn diagram analytical programs is becoming increasingly important. Current freely available Venn diagram programs often fail to represent extra complexity among datasets, such as regulation pattern differences between different groups. Here we describe the development of VennPlex, a program that illustrates the often diverse numerical interactions among multiple, high-complexity datasets, using up to four data sets. VennPlex includes versatile output features, where grouped data points in specific regions can be easily exported into a spreadsheet. This program is able to facilitate the analysis of two to four gene sets and their corresponding expression values in a user-friendly manner. To demonstrate its unique experimental utility we applied VennPlex to a complex paradigm, i.e. a comparison of the effect of multiple oxygen tension environments (1–20% ambient oxygen) upon gene transcription of primary rat astrocytes. VennPlex accurately dissects complex data sets reliably into easily identifiable groups for straightforward analysis and data output. This program, which is an improvement over currently available Venn diagram programs, is able to rapidly extract important datasets that represent the variety of expression patterns available within the data sets, showing potential applications in fields like genomics, proteomics, and bioinformatics.
Collapse
|
24
|
Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, Panerai RB. Cerebral hemodynamics: concepts of clinical importance. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:352-6. [PMID: 22618788 DOI: 10.1590/s0004-282x2012000500010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics and metabolism are frequently impaired in a wide range of neurological diseases, including traumatic brain injury and stroke, with several pathophysiological mechanisms of injury. The resultant uncoupling of cerebral blood flow and metabolism can trigger secondary brain lesions, particularly in early phases, consequently worsening the patient's outcome. Cerebral blood flow regulation is influenced by blood gas content, blood viscosity, body temperature, cardiac output, altitude, cerebrovascular autoregulation, and neurovascular coupling, mediated by chemical agents such as nitric oxide (NO), carbon monoxide (CO), eicosanoid products, oxygen-derived free radicals, endothelins, K+, H+, and adenosine. A better understanding of these factors is valuable for the management of neurocritical care patients. The assessment of both cerebral hemodynamics and metabolism in the acute phase of neurocritical care conditions may contribute to a more effective planning of therapeutic strategies for reducing secondary brain lesions. In this review, the authors have discussed concepts of cerebral hemodynamics, considering aspects of clinical importance.
Collapse
Affiliation(s)
- Edson Bor-Seng-Shu
- Division of Neurological Surgery, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
26
|
Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012; 64:540-82. [PMID: 22679221 DOI: 10.1124/pr.111.004770] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.
Collapse
Affiliation(s)
- Batoule H Majed
- Harvard Medical School, Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis St., Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Davis CM, Siler DA, Alkayed NJ. Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state. ACTA ACUST UNITED AC 2011; 7:293-303. [PMID: 21612351 DOI: 10.2217/whe.11.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelial layer of cells lining the intimal surface of blood vessels is essential for vascular function. The endothelium releases multiple vasodilator and protective factors, including nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor; an imbalance in these factors predisposes individuals to vascular diseases such as stroke. These factors are differentially regulated by vessel size, sex hormones and disease state, therefore playing differential roles in different tissues following vascular injury. In particular, the endothelium-derived hyperpolarizing factor candidate termed epoxyeicosatrienoic acid, plays a prominent role in microvessel function, especially after ischemia, thereby making this signaling pathway an attractive target for therapy in vascular disease, including stroke.
Collapse
Affiliation(s)
- Catherine M Davis
- Cerebrovascular Research Division, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
28
|
Camacho M, Rodríguez C, Guadall A, Alcolea S, Orriols M, Escudero JR, Martínez-González J, Vila L. Hypoxia upregulates PGI-synthase and increases PGI₂ release in human vascular cells exposed to inflammatory stimuli. J Lipid Res 2011; 52:720-31. [PMID: 21296955 DOI: 10.1194/jlr.m011007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia affects vascular function and cell metabolism, survival, growth, and motility; these processes are partially regulated by prostanoids. We analyzed the effect of hypoxia and inflammation on key enzymes involved in prostanoid biosynthesis in human vascular cells. In human vascular smooth muscle cells (VSMC), hypoxia and interleukin (IL)-1β synergistically increased prostaglandin (PG)I₂ but not PGE₂ release, thereby increasing the PGI₂/PGE₂ ratio. Concomitantly, these stimuli upregulated cyclooxygenase-2 (COX-2) expression (mRNA and protein) and COX activity. Interestingly, hypoxia enhanced PGI-synthase (PGIS) expression and activity in VSMC and human endothelial cells. Hypoxia did not significantly modify the inducible microsomal-PGE-synthase (mPGES)-1. Hypoxia-inducible factor (HIF)-1α-silencing abrogated hypoxia-induced PGIS upregulation. PGIS transcriptional activity was enhanced by hypoxia; however, the minimal PGIS promoter responsive to hypoxia (-131 bp) did not contain any putative hypoxia response element (HRE), suggesting that HIF-1 does not directly drive PGIS transcription. Serial deletion and site-directed mutagenesis studies suggested several transcription factors participate cooperatively. Plasma levels of the stable metabolite of PGI₂ and PGIS expression in several tissues were also upregulated in mice exposed to hypoxia. These data suggest that PGIS upregulation is part of the adaptive response of vascular cells to hypoxic stress and could play a role in counteracting the deleterious effect of inflammatory stimuli.
Collapse
Affiliation(s)
- Mercedes Camacho
- Angiology, Vascular Biology, and Inflammation Laboratory, Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Saleem S, Shah ZA, Maruyama T, Narumiya S, Doré S. Neuroprotective properties of prostaglandin I2 IP receptor in focal cerebral ischemia. Neuroscience 2010; 170:317-23. [PMID: 20621166 DOI: 10.1016/j.neuroscience.2010.06.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/26/2010] [Accepted: 06/23/2010] [Indexed: 01/27/2023]
Abstract
We and others have identified that inhibition of cyclooxygenase might not be the optimal approach to limiting brain damage after stroke. Now we are investigating the unique properties of the various prostaglandin receptors to determine whether blocking those that mediate toxicity or stimulating those that reduce toxicity will improve neurological outcomes. Here, we determined the respective contribution of the prostaglandin I(2) (PGI(2)) receptor in transient middle cerebral artery (MCA) occlusion (tMCAO) and permanent MCAO (pMCAO) preclinical stroke models by using male wildtype (WT) and IP receptor knockout (IP(-/-)) C57Bl/6 mice. In addition, we investigated the putative preventive and therapeutic effects of the IP receptor agonist beraprost. The infarct volumes and neurological deficit scores (NDS) were significantly greater in IP(-/-) than in WT mice after both tMCAO and pMCAO. Interestingly, beraprost pretreatment (50 or 100 microg/kg p.o.) 30 min before tMCAO and post-treatment (100 microg/kg p.o.) at 2 or 4.5 h of reperfusion significantly reduced the neurological deficit score and infarct volume in WT mice. Post-treatment with beraprost (100 microg/kg p.o.) 4.5 h after pMCAO also significantly decreased neurological deficits and infarct volume in WT mice. Together, these novel findings suggest for the first time that PGI(2) IP receptor activation can attenuate anatomical and functional damage following ischemic stroke.
Collapse
Affiliation(s)
- S Saleem
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
30
|
Xiang Xie, Ma YT, Fu ZY, Yang YN, Xiang Ma, Chen BD, Wang YH, Fen Liu. Haplotype Analysis of the CYP8A1 Gene Associated With Myocardial Infarction. Clin Appl Thromb Hemost 2009; 15:574-80. [PMID: 19147528 DOI: 10.1177/1076029608329581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to assess the association between the human CYP8A1 gene and myocardial infarction (MI) in Chinese people. Methods: 210 MI patients and 206 age-matched controls were genotyped and constructed haplotypes for 3 SNPs [3982C>T (rs5602), C1117A (rs5629), C251T (rs454-98106)] of the human CYP8A1 gene. Results: The CC genotype of rs5629 was more frequently in MI patients than in control subjects (P = .030). The frequency of the A-C-T haplotype was significantly higher in MI patients than in control subjects (P =.001). The frequency of the C-T-T haplotype was significantly lower in MI patients than in control subjects (P= .011). Conclusions: The present results indicate that MI is associated with the CC genotype of rs5629 in the human CYP8A1 gene. The A-C-T haplotype appears to be a useful genetic marker and the C-T-T haplotype might be a protective factor of MI in Chinese people.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhen-yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bang-Dang Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ying-Hong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
31
|
Xie X, Ma YT, Fu ZY, Yang YN, Ma X, Chen BD, Wang YH, Liu F. Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clin Chem Lab Med 2009; 47:347-52. [DOI: 10.1515/cclm.2009.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract: Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) are enzymes involved in prostaglandin and prostacyclin synthesis, which have been linked to cardiovascular disease risk. We hypothesized that genetic variations altering the function of these enzymes would modify the risk of myocardial infarction (MI).: In a Chinese case control study of MI patients (n=356) and healthy controls (n=350), we investigated the roles of polymorphisms in the PGIS gene (: The CC genotype of: The CC genotype ofClin Chem Lab Med 2009;47:347–52.
Collapse
|
32
|
Castellanos M, Serena J. Applicability of biomarkers in ischemic stroke. Cerebrovasc Dis 2007; 24 Suppl 1:7-15. [PMID: 17971634 DOI: 10.1159/000107374] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cerebral ischemia results in the activation of a cascade of molecular events as a result of which several substances with the potential characteristics of biomarkers are released into the peripheral blood. Although still in the research phase, the analysis of these biomarkers in the serum has proved to be useful for stroke diagnosis, as well as for the prediction of the evolution of the ischemic lesion and the clinical prognosis. In fact, the feasibility and applicability of a panel of biomarkers for the diagnosis of stroke has recently been tested. Biomarkers of excitotoxicity, inflammation and oxidative stress have been demonstrated as being useful in the prediction of ischemic lesion enlargement and secondary neurological deterioration. On the other hand, biomarkers of endothelial damage have been shown to be especially helpful in the prediction of hemorrhagic transformation of the ischemic lesion, both spontaneously and after the administration of thrombolytic therapy, as well as in the prediction of brain edema with the secondary development of malignant middle-cerebral-artery infarction. Moreover, coagulation and fibrinolytic-cascade markers have been reported as being correlated with the recanalization rate after the administration of thrombolysis, and they might therefore be useful in estimating the effectiveness of thrombolytic therapy. However, for these biomarkers to become applicable to routine clinical practice, faster tests to perform the analyses are required and further studies must be undertaken to validate and generalize the results.
Collapse
Affiliation(s)
- Mar Castellanos
- Department of Neurology, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain.
| | | |
Collapse
|
33
|
Abstract
Admission hyperglycemia complicates approximately one-third of acute ischemic strokes and is associated with a worse clinical outcome. Both human and animal studies have showed that hyperglycemia is particularly detrimental in ischemia/reperfusion. Decreased reperfusion blood flow has been observed after middle cerebral artery occlusion in acutely hyperglycemic animals, suggesting the vasculature as an important site of hyperglycemic reperfusion injury. This paper reviews biochemical and molecular pathways in the vasculature that are rapidly affected by hyperglycemia and concludes that these changes result in a pro-vasoconstrictive, pro-thrombotic and pro-inflammatory phenotype that renders the vasculature vulnerable to reperfusion injury. Understanding these pathways should lead to the development of rational therapies that reduce hyperglycemic reperfusion injury and thus improve outcome in this large subset of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Sharyl R Martini
- Department of Neurology, Baylor College of Medicine and the Michael E DeBakey Veterans Affairs Medical Center Stroke Program, Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Aytac E, Seymen HO, Uzun H, Dikmen G, Altug T. Effects of iloprost on visual evoked potentials and brain tissue oxidative stress after bilateral common carotid artery occlusion. Prostaglandins Leukot Essent Fatty Acids 2006; 74:373-8. [PMID: 16687243 DOI: 10.1016/j.plefa.2006.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 03/19/2006] [Indexed: 11/18/2022]
Abstract
Effects of iloprost on visual evoked potentials and oxidant/antioxidant status were evaluated after bilateral carotid artery occlusion. There were three experimental groups; Sham (S) group (n=10), bilateral common carotid artery occluded (BCCAO) group (n=10) and after bilateral common carotid artery occlusion, iloprost-treated (BCCAOI) group (n=10). Iloprost was administered (0.5ng/kg/day) for 10 days by intraperitoneal injection. N(2) and P(2) latencies (millisecond) and N(2)-P(2) (microV) amplitudes were recorded 10 days after operation for evaluating VEPs. The rats were sacrificed by decapitation immediately after recording of VEPs. Malondialdehyte (MDA), glutathione (GSH), Cu-Zn superoxide dysmutase (SOD) were studied spectrophotometricly. After BCCAO, MDA levels were increased, GSH and Cu-Zn SOD levels were decreased significantly, and abnormal VEPs parameters were observed. Iloprost treatment after BCCAO decreased MDA and increased GSH levels significantly. Low Cu-Zn SOD levels and impaired VEPs remained after iloprost treatment. Iloprost treatment may protect the brain tissue from oxidative damage during cerebral hypoperfusion.
Collapse
Affiliation(s)
- Erman Aytac
- Istanbul University, Cerrahpasa Medical Faculty, Department of Physiology, Cerrahpasa, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
35
|
Castellanos M, Sobrino T, Castillo J. Evolving Paradigms for Neuroprotection: Molecular Identification of Ischemic Penumbra. Cerebrovasc Dis 2006; 21 Suppl 2:71-9. [PMID: 16651817 DOI: 10.1159/000091706] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ischemic penumbra defines the existence of tissue at risk of infarction and which is, hence, potentially salvageable and the target for current stroke reperfusion and neuroprotective therapies. Penumbral tissue evolves toward irreversibly damaged tissue at different rates in individual stroke patients yielding different therapeutic windows depending on the individual duration of risk of infarction of this tissue. An accurate identification of the penumbra is then necessary in order to individualize the window of opportunity for therapeutic interventions. Imaging techniques, although helpful, may not give the most accurate information as to the existence of penumbra given that the threshold for identification of penumbra varies depending on the technique used. A better identification of the true penumbral tissue might be based on the cascade of molecular events that are responsible for the evolution of the penumbra toward infarcted tissue. Multiple penumbras can be defined in molecular terms taking into account which vessel is occluded, the time of evolution of the ischemia, the degree of the ischemia, and the sensitivity to ischemia of the different cells. Future studies are necessary to clarify whether the enhancement of cytoprotective mechanisms, and/or the block of cytotoxic mechanisms confirming the existence of penumbra at different times of ischemic evolution, are effective neuroprotective strategies.
Collapse
Affiliation(s)
- Mar Castellanos
- Department of Neurology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | | | | |
Collapse
|